18.11.2012 Views

Download Abstract Book - the ICAAM 2012 Conference in Gumushane

Download Abstract Book - the ICAAM 2012 Conference in Gumushane

Download Abstract Book - the ICAAM 2012 Conference in Gumushane

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TABLE OF CONTENTS<br />

P a g e | i<br />

Shadow<strong>in</strong>g <strong>in</strong> <strong>the</strong> parabolic equations<br />

S. Piskarev________________________________________________________________1<br />

Fractals aris<strong>in</strong>g from Newton's method<br />

F. Çil<strong>in</strong>gir _________________________________________________________________2<br />

On <strong>the</strong> Classifications of C-Algebras Us<strong>in</strong>g Unitary Groups<br />

A. Al-Rawashdeh___________________________________________________________3<br />

Solution of One Problem for <strong>the</strong> Equation of Parabolic type with Involution Perturbation<br />

A. A.Sarsenbi, A.A. Tengaeva ________________________________________________4<br />

A Note on <strong>the</strong> Numerical Solution of Fractional Schröd<strong>in</strong>ger Differential Equations<br />

A. Ashyralyev, B. Hicdurmaz _________________________________________________5<br />

On Bitsadze-Samarskii type nonlocal boundary value problems for semil<strong>in</strong>ear elliptic equations<br />

A. Ashyralyev, E. Ozturk_____________________________________________________6<br />

A Third-Order of Accuracy Difference Scheme for <strong>the</strong> Bitsadze-Samarskii Type Nonlocal<br />

Boundary Value Problem<br />

A. Ashyralyev, F. S. Ozesenli Tetikoglu_________________________________________7<br />

NBVP for Hyperbolic Equations Involv<strong>in</strong>g Multi-po<strong>in</strong>t and Integral Conditions<br />

A. Ashyralyev, N. Aggez _____________________________________________________8<br />

Boundary Value Problem for a Third Order Partial Differential Equation<br />

A. Ashyralyev, N. Aggez, F. Hezenci___________________________________________9<br />

Fractional Parabolic Differential and Difference Equations with <strong>the</strong> Dirichlet-Neumann<br />

Condition<br />

A. Ashyralyev, N. Emirov, Z. Cakir _________________________________________10-11<br />

High Order of Accuracy Stable Difference Schemes for Numerical Solutions of NBVP for<br />

Hyperbolic Equations<br />

A. Ashyralyev, O. Yildirim___________________________________________________12<br />

Positivity of Two-dimensional Elliptic Differential Operators <strong>in</strong> Hölder Spaces<br />

A. Ashyralyev, S. Akturk, Y. Sozen_________________________________________13-14<br />

On <strong>the</strong> Numerical Solution of Ultra Parabolic Equations with Neumann Condition<br />

A. Ashyralyev, S. Yılmaz____________________________________________________15<br />

Existence and Uniqueness of Solutions for Nonl<strong>in</strong>ear Impulsive Differential Equations with<br />

Two-po<strong>in</strong>t and Integral Boundary Conditions<br />

A. Ashyralyev, Y.A. Sharifov_________________________________________________16<br />

Optimal Control Problem for Impulsive Systems with Integral Boundary Conditions<br />

A. Ashyralyev, Y.A. Sharifov______________________________________________17-18<br />

On Stability of Hyperbolic- Elliptic Differential Equations With Nonlocal Integral Condition<br />

A. Ashyralyev, Z. Odemis Ozger, F. Ozger___________________________________19-20<br />

Fuzzy Cont<strong>in</strong>uous Dynamical System: A Multivariate Optimization Technique<br />

A. Bandyopadhyay, Samarjit Kar_____________________________________________21<br />

Analysis of Dynamical Complex Network of Ecological Stability Diversity and Persistence<br />

A. Bandyopadhyay, Samarjit Kar__________________________________________22-23<br />

Analytical solution for <strong>the</strong> recovery tests after constant-discharge tests <strong>in</strong> conf<strong>in</strong>ed aquifers<br />

A. Atangana______________________________________________________________24<br />

Bright and dark soliton solutions for <strong>the</strong> variable coefficient generalizations of <strong>the</strong> KP equation<br />

A. Bekir, Ö. Güner, A.C. Çevikel___________________________________________25-27<br />

A Characterization of Compactness <strong>in</strong> Banach Spaces with Cont<strong>in</strong>uous L<strong>in</strong>ear<br />

Representations of <strong>the</strong> Rotation Group of a Circle<br />

A. Cavus, M. Kunt_______________________________________________________28-29<br />

The approximate solutions of l<strong>in</strong>ear Goursat Problems via Homotopy Analysis Method<br />

A. Eryılmaz, M. Basbük, H.Tuna______________________________________________30<br />

Paths of M<strong>in</strong>imal Length on Suborbital Graphs with Recurrence Relations<br />

A.H. Deger, M. Besenk, B.O. Guler____________________________________________31<br />

Riesz Basis Property of Eigenfunctions of One Boundary-Value Transmission Problem<br />

A. H. Olgar, O. Sh. Mukhtarov________________________________________________32


P a g e | ii<br />

On a Subclass of Univalent Functions with Negative Coefficients<br />

A. S. Juma, H. Zırar________________________________________________________33<br />

F<strong>in</strong>e spectra of upper triangular triple-band matrices over <strong>the</strong> sequence space lp,(0 < p < 1)<br />

A. Karaisa________________________________________________________________34<br />

Approximation by Certa<strong>in</strong> L<strong>in</strong>ear Positive Operators of Two Variables<br />

A.K. Gazanfer, I. Büyükyazıcı________________________________________________35<br />

Impulsive differential equations with variable times<br />

A.Lakmeche, F.Berrabah____________________________________________________36<br />

Parabolic Problems with Parameter Occur<strong>in</strong>g <strong>in</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g<br />

A. Sahmurova, V.B. Shakhmurov_____________________________________________37<br />

On Darboux Helices <strong>in</strong> M<strong>in</strong>kowski Space R1 3<br />

A. Senol, E. Zıplar, Y. Yaylı__________________________________________________38<br />

On <strong>the</strong> Numerical Solution of a Diffusion Equation Aris<strong>in</strong>g <strong>in</strong> Two-phase Fluid Flow<br />

A.S. Erdogan, A.U. Sazaklioglu_______________________________________________39<br />

On <strong>the</strong> Solution of a Three Dimensional Convection Diffusion Problem<br />

A. S. Erdogan, M. Alp____________________________________________________40-41<br />

A Fuzzy Max-M<strong>in</strong> Approach to Multi Objective, Multi Echelon Closed Loop Supply Cha<strong>in</strong><br />

B. Ahlatcioglu Ozkok, E. Budak, S. Ercan______________________________________42<br />

A Fuzzy Approach to Multi Objective Multi Echelon Supply Cha<strong>in</strong><br />

B. Ahlatcioglu Ozkok, S. Ercan, E. Budak______________________________________43<br />

Model<strong>in</strong>g Vot<strong>in</strong>g Behavior <strong>in</strong> <strong>the</strong> Eurovision Song Contest<br />

B. Dogru_________________________________________________________________44<br />

Derivation and numerical study of relativistic Burgers equations posed on Schwarzschild<br />

spacetime<br />

B. Okutmustur____________________________________________________________45<br />

Newton-Pade Approximations for Univariate and Multivariate Functions<br />

C. Akal, A. Lukashov____________________________________________________46-47<br />

F<strong>in</strong>ite Difference Method for The Reverse Parabolic Problem with Neumann Condition<br />

C. Ashyralyyev, A. Dural, Y. Sozen____________________________________________48<br />

Three Models based Fusion Approach <strong>in</strong> <strong>the</strong> Fuzzy Logic Context for <strong>the</strong> Segmentation of MR<br />

Images : A Study and an Evaluation<br />

C. Lamiche, A. Moussaoui___________________________________________________49<br />

Approximate Solutions of The Cauchy Problem for The Heat Equations<br />

D. Agirseven______________________________________________________________50<br />

The normal <strong>in</strong>verse Gaussian distribution: exposition and applications to model<strong>in</strong>g asset,<strong>in</strong>dex<br />

and foreign exchange clos<strong>in</strong>g prices<br />

D. Teneng, K. Parna________________________________________________________51<br />

Radial basis functions method for determ<strong>in</strong><strong>in</strong>g of unknown coefficient <strong>in</strong> parabolic equation<br />

E. Can___________________________________________________________________52<br />

Compact and Fredholm Operators on Matrix Doma<strong>in</strong>s of Triangles <strong>in</strong> <strong>the</strong> Space of Null<br />

Sequences<br />

E. Malkowsky_____________________________________________________________53<br />

Compact Operators on Spaces of Sequences of Weighted Means<br />

E. Malkowsky, F. Özger_____________________________________________________54<br />

Extended Eigenvalues of Direct Integral of Operators<br />

E. Otkun Cevik, Z.I. Ismailov_________________________________________________55<br />

Exponential decay and blow up of a solution for a system of nonl<strong>in</strong>ear higher-order wave<br />

equations<br />

E. Pisk<strong>in</strong>, N. Polat__________________________________________________________56<br />

A New General Inequality for double <strong>in</strong>tegrals<br />

E. Set, M. Z. Sarıkaya, A. O. Akdemir_______________________________________57-58<br />

Exact Solutions of <strong>the</strong> Schröd<strong>in</strong>ger Equation with Position Dependent Mass for <strong>the</strong> solvable<br />

Potentials<br />

F. Aricak, M.Sezg<strong>in</strong>________________________________________________________59


P a g e | iii<br />

Sturm Liouville Problem with Discont<strong>in</strong>uity Conditions at Several Po<strong>in</strong>ts<br />

F.Hıra, N. Altınısık_______________________________________________________60-61<br />

Characterization of Three Dimensional Cellular Automata over Zm<br />

F. Sah, I. Siap, H. Akın______________________________________________________62<br />

Positivity of Elliptic Difference Operators and its Applications<br />

G.E. Semenova____________________________________________________________63<br />

On (α, β)-derivations <strong>in</strong> BCI-algebras<br />

G. Muhiudd<strong>in</strong> _____________________________________________________________64<br />

Transient and Cycle Structure of Elementary Rule 150 with Reflective Boundary<br />

H. Akın, I. Siap, M.E. Koroglu________________________________________________65<br />

Numerical solution of a lam<strong>in</strong>ar viscous .ow boundary layer equation us<strong>in</strong>g Haar Wavelet<br />

Quasil<strong>in</strong>earization Method<br />

H. Kaur, R.C. Mittal, V. Mishra________________________________________________66<br />

Characterizations of Slant Helices Accord<strong>in</strong>g to Quaternionic Frame<br />

H. Kocayigit, M. Önder, B. B. Pekacar _________________________________________67<br />

Some Characterizations of Constant Breadth Tımelıke Curves <strong>in</strong> M<strong>in</strong>kowskı 4-space E 4<br />

H. Kocayiğit, M. Önder, Z. Çiçek ___________________________________________68-69<br />

Us<strong>in</strong>g Inverse Laplace Transform for <strong>the</strong> solution of a Flood Rout<strong>in</strong>g Problem<br />

H. Saboorkazeran, M.F. Maghrebi_____________________________________________70<br />

Applied Ma<strong>the</strong>matics Analysis of <strong>the</strong> Multibody Systems<br />

H. Sah<strong>in</strong>, A. K. Kar, E. Tacg<strong>in</strong>_____________________________________________71-72<br />

Multibody Railway Vehicle Dynamics Us<strong>in</strong>g Symbolic Ma<strong>the</strong>matics<br />

H. Sah<strong>in</strong>, A. K. Kar, E. Tacg<strong>in</strong>_____________________________________________73-74<br />

Existence of Global Solutions for a Multidimensional Bouss<strong>in</strong>esq-Type Equation with<br />

Supercritical Initial Energy<br />

H. Taskesen, N. Polat_______________________________________________________75<br />

Dissipative Extensions of Fourth Order Differential Operators <strong>in</strong> <strong>the</strong> Lim- 3 case<br />

H. Tuna __________________________________________________________________76<br />

On <strong>the</strong> stability of <strong>the</strong> steady-state solutions of cell equations <strong>in</strong> a tumor growth model<br />

I. Atac, S. Pamuk __________________________________________________________77<br />

The Cutt<strong>in</strong>gs Transport Modell<strong>in</strong>g with Couette Flow<br />

I. Cumhur ________________________________________________________________78<br />

On <strong>the</strong> Numerical Solution of Diffusion Problem with S<strong>in</strong>gular Source Terms<br />

I. Turk, M. Ashyraliyev______________________________________________________79<br />

One Boundary-Value Problem Perturbed by <strong>Abstract</strong> L<strong>in</strong>ear Operator<br />

K. Aydemir, O. Sh. Mukhtarov________________________________________________80<br />

Us<strong>in</strong>g expand<strong>in</strong>g method of (G′/G) to f<strong>in</strong>d <strong>the</strong> travell<strong>in</strong>g wave solutions of nonl<strong>in</strong>ear<br />

partial differential equations and solv<strong>in</strong>g mkdv equation by this method<br />

K. Nojoomi, M. Mahmoudi, A. Rahmani _____________________________________81-82<br />

Weighted Bernste<strong>in</strong> Inequality for Trigonometric Polynomials on a Part of The Period<br />

M. A. Akturk, A. Lukashov___________________________________________________83<br />

Mixed problem for a differential equation with <strong>in</strong>volution under boundary conditions of general<br />

form<br />

M.A. Sadybekov, A.M.Sarsenbi_______________________________________________84<br />

An Application on Suborbital Graphs<br />

M. Besenk, A.H. Deger, B.O. Guler____________________________________________85<br />

Cellular Automata Based Byte Error Correct<strong>in</strong>g Codes over F<strong>in</strong>ite Fields<br />

M. E. Koroglu, I. Siap, H. Ak<strong>in</strong>________________________________________________86<br />

On The First Fundamental Theorem for Special Dual Orthogonal Group SO(2;D) and its<br />

Application to Dual Bezier Curves<br />

M.Incesu, O. Gursoy _______________________________________________________87<br />

On Euler’s differential method for cont<strong>in</strong>ued fractions<br />

M. J. Shah Belaghi, A. Bashirov______________________________________________88<br />

Almost Convergence and Generalized Weighted<br />

M. Kirişçi_________________________________________________________________89


P a g e | iv<br />

Wavelet-based prediction of crude oil prices<br />

M. Mahmoudi, K. Nojoomi, A. Rahmani_____________________________________90-91<br />

Numerical solution of a time-fractional Navier–Stokes Equation with modified Riemann-<br />

Liouville derivative<br />

M. Merdan, A. Gökdoğan_________________________________________________92-93<br />

The Modified Simple Equation Method for Solv<strong>in</strong>g Some Nonl<strong>in</strong>ear Evolution Equations<br />

M.Mızrak, A.Ertaş_______________________________________________________94-95<br />

Application of Cross Efficiency <strong>in</strong> Stock Exchange<br />

M. M. Kaleibara, S. Daneshvar_______________________________________________96<br />

Application of <strong>the</strong> Trial Equation Method for some Nonl<strong>in</strong>ear Evolution Equations<br />

M. Odabasi, E. Misirli ______________________________________________________97<br />

Paranormality of Some Class Differential Operators for First Order<br />

M. Sertbas, L. Cona________________________________________________________98<br />

Oscillation Theorems for Second-Order Damped Dynamic Equation on Time Scales<br />

M. T. Senel_______________________________________________________________99<br />

On <strong>the</strong> f<strong>in</strong>e spectrum of <strong>the</strong> $\Lambda$ operator def<strong>in</strong>ed by a lambda matrix over <strong>the</strong><br />

sequence space $c_{0}$ and $c$<br />

M. Yeşilkayagil, F. Başar___________________________________________________100<br />

On Hadamard Type Integral Inequalities For Nonconvex Functions<br />

M. Z. Sarikaya, H. Bozkurt, N. Alp________________________________________101-102<br />

A geometrical approach of an optimal control problem governed by EDO<br />

N. Driai__________________________________________________________________103<br />

Existence of Local Solution for a Double Dispersive Bad Bouss<strong>in</strong>esq-Type Equation<br />

N. Dündar, N. Polat________________________________________________________104<br />

A Perturbation Solution Procedure for a Boundary Layer Problem<br />

N. Elmas, A. Ashyralyev, H. Boyaci_______________________________________105-106<br />

Solution of Differential Equations by Perturbation Technique Us<strong>in</strong>g any Time Transformation<br />

N. Elmas, H. Boyaci ___________________________________________________107-108<br />

Aproximation Properties of a Generalization of L<strong>in</strong>ear Positive Operators <strong>in</strong> C[0,A]<br />

N.Gonul_________________________________________________________________109<br />

Three-term Asymptotic Expansion for <strong>the</strong> Moments of <strong>the</strong> Ergodic Distribution of a Renewalreward<br />

Process with Gamma Distributed Interference of Chance<br />

N. Okur Bekar, R. Aliyev, T. Khaniyev________________________________________110<br />

Blow up of a solution for a system of nonl<strong>in</strong>ear higher-order wave equations with strong<br />

damp<strong>in</strong>g<br />

N. Polat, E. Pisk<strong>in</strong>_________________________________________________________111<br />

Reduction of spectral problem of Cauchy-Riemann operator with homogeneous boundary<br />

conditions to an <strong>in</strong>tegral equation<br />

N.S.Imanbayev___________________________________________________________112<br />

A Note on Some Elementary Geometric Inequalities<br />

O. Gercek, D. Caliskan, A. Sobucova, F. Cekic_____________________________113-114<br />

Solv<strong>in</strong>g Crossmatch<strong>in</strong>g Puzzles Us<strong>in</strong>g Multi-Layer Genetic Algorithms<br />

O. Kesemen, E. Ozkul _____________________________________________________115<br />

Generate Adaptive Quasi-Random Numbers<br />

O. Kesemen, N. Jabbari____________________________________________________116<br />

Polygonal Approximation of Digital Curve Us<strong>in</strong>g Artificial Bee Colony Optimization Algorithms<br />

O. Kesemen, S. Vafaei_____________________________________________________117<br />

Generat<strong>in</strong>g Random Po<strong>in</strong>ts from Arbitrary Distribution In Polygonal Areas<br />

O. Kesemen, U. Unsal _____________________________________________________118<br />

Panoramic Image Mosaic<strong>in</strong>g Us<strong>in</strong>g Multi-Object Artificial Bee Colony Optimization Algorithm<br />

O. Kesemen, Y. Yeg<strong>in</strong>oglu__________________________________________________119<br />

Some Properties of a Sturm-Liouville-Type Problem and The Green Function<br />

O. Kuzu, Y. Kuzu, M. Kadakal ___________________________________________120-121


P a g e | v<br />

Real Time 3D Palmpr<strong>in</strong>t Pose Estimation and Feature Extraction Us<strong>in</strong>g Multiple View<br />

Geometry Techniques<br />

Ö. B<strong>in</strong>göl, M. Ek<strong>in</strong>ci_______________________________________________________122<br />

Chaos <strong>in</strong> cubic-qu<strong>in</strong>tic nonl<strong>in</strong>ear oscillator<br />

P. Sharma, V. G. Gupta____________________________________________________123<br />

The Numerical Solution of Boundary Value Problems by us<strong>in</strong>g Galerk<strong>in</strong> Method<br />

S. Alkan, T. Yeloğlu, D. Yılmaz______________________________________________124<br />

Semismooth Newton method for gradient constra<strong>in</strong>ed m<strong>in</strong>imization problem<br />

S.Anyyeva, K.Kunisch_____________________________________________________125<br />

The F<strong>in</strong>ite Element Method Solution of Variable Diffusion Coefficient Convection-Diffusion<br />

Equations<br />

S.H Aydın, C. Çiftçi________________________________________________________126<br />

Multiple solutions for quasil<strong>in</strong>ear equations depend<strong>in</strong>g on a parameter<br />

S. Heidarkhani________________________________________________________127-128<br />

The Modified Bi-qu<strong>in</strong>tic B-spl<strong>in</strong>e base functions: An Application to Diffusion Equation<br />

S. Kutluay, N.M. Yagmurlu _________________________________________________129<br />

Numerical Solutions of <strong>the</strong> Modified Burgers' Equation by Cubic B-spl<strong>in</strong>e Collocation Method<br />

S. Kutluay, Y. Ucar, N.M. Yagmurlu__________________________________________130<br />

The Modified Kudryashov Method for Solv<strong>in</strong>g Some Evolution Equations<br />

S.M. Ege, E. Misirli____________________________________________________131-132<br />

Study of an <strong>in</strong>verse problem that models <strong>the</strong> detection of corrosion <strong>in</strong> metalic plate whose<br />

lower part is embedded<br />

S. M. Said _______________________________________________________________133<br />

Commut<strong>in</strong>g nilpotent operators with maximal rank<br />

S. Ozturk Kaptanoglu______________________________________________________134<br />

F<strong>in</strong>d<strong>in</strong>g Global m<strong>in</strong>ima with a new class of filled function<br />

T. Hamaizia______________________________________________________________135<br />

Weak Convergence Theorem For A Semi-Markovian Random Walk With Delay And Pareto<br />

Distributed Interference Of Chance<br />

T. Kesemen, F. Yetim______________________________________________________136<br />

Parameter dependent Navier-Stokes like problems<br />

V. B. Shakhmurov________________________________________________________137<br />

A New Spl<strong>in</strong>e Approximation for <strong>the</strong> Solution of One-space Dimensional Second Order Nonl<strong>in</strong>ear<br />

Wave Equations With Variable Coefficients<br />

V. Gopal, R. K. Mohanty________________________________________________138-139<br />

An error correction method for solv<strong>in</strong>g stiff <strong>in</strong>itial value problems based on a cubic C1-spl<strong>in</strong>e<br />

collocation method<br />

Xi. Piaoa, S. Dong Kima, P. Kim_________________________________________140-141<br />

On Numerical Solution of Multipo<strong>in</strong>t NBVP for Hyperbolic-Parabolic Equations with Neumann<br />

Condition<br />

A. Ashyralyev, Y. Ozdemir__________________________________________________142<br />

Classification of exact solutions for <strong>the</strong> Pochhammer-Chree equations<br />

Y. Gurefe, Y. Pandir, E. Misirli_______________________________________________143<br />

On <strong>the</strong> Density of Regular Functions <strong>in</strong> Variable Exponent Sobolev Spaces<br />

Y. Kaya _________________________________________________________________144<br />

Numerical Solution of a Hyperbolic-Schröd<strong>in</strong>ger Equation with Nonlocal Boundary Conditions<br />

Y. Ozdemir, M. Kucukunal__________________________________________________145<br />

New generalized hyperbolic functions to f<strong>in</strong>d exact solution of <strong>the</strong> nonl<strong>in</strong>ear partial differential<br />

equation<br />

Y. Pandir, H. Ulusoy___________________________________________________146-148<br />

Equivalence of af<strong>in</strong>e curves<br />

Y. Sağıroğlu__________________________________________________________149-150<br />

Modified trial equation method for nonl<strong>in</strong>ear differential equations<br />

Y. A Tandogan, Y. Pandir, Y. Gurefe_________________________________________151


P a g e | vi<br />

F<strong>in</strong>ite Difference Method for <strong>the</strong> Integral-Differential Equation of <strong>the</strong> Hyperbolic Type<br />

Z. Direk, M. Ashyraliyev____________________________________________________152<br />

Normal Extensions of a S<strong>in</strong>gular Differential Operator For First Order<br />

Z.I. Ismailov, R. Ozturk Mert ________________________________________________153<br />

Reproduc<strong>in</strong>g Kernel Hilbert Space Method for Solv<strong>in</strong>g <strong>the</strong> Pollution Problem of Lakes<br />

Z. Karabulut, V. S. Ertürk___________________________________________________154


��������� �� ��� ��������� ���������<br />

�������� ��<br />

��������� ������ ����� ����������<br />

������������������<br />

���� ���� �� ������� �� ��� ��������� �������� �� �������� ���������� ��������� �������<br />

u ′ (t) = Au(t) + f(u(t)), u(0) = u 0 , �� ���� ������� ������ ����� E. �� ��� ����������<br />

� ������� �������� �� ��������� ��� �������� ��������� �� � ���� ������� ������� ���<br />

����� ��������� �������� ���� ������� ��������� �� ��� ���������� ������� ���� �����<br />

�� �������� ������������� �� ����� �� �� ���������� ���� ���� ��� ����� ����� �� ���<br />

������������ �� ��� ���������� ����������� ��� �� ����� �� � ���� ��� ���� ��� ��������<br />

������� ����� ������� �� ������� �� ������� ����� �������� ���� ����������� �������� �����<br />

����� �� �������� ���� ���������� �� ��� ��� ������ �� ������� ������������� ���������<br />

��� ������������ ���������� ������������� �� ���� ���� ���� � ������������� �� ���<br />

��� �������� ����� ������ ������� ������������� �������� ��� ���� ���������� �� ���<br />

������� ��� ��������� ��������� �� ����������� ��� ��������� ���� ������� ���������� ���<br />

���������� ���������� ��� ��� �� ������� ��� ����� ������� �� ���� �� ����� ���������<br />

��������<br />

Page 1


F˙IGEN Ç˙IL˙ING˙IR<br />

Çankaya University, Turkey<br />

cil<strong>in</strong>girfigen@gmail.com<br />

Fractals aris<strong>in</strong>g from Newton’s method<br />

<strong>Abstract</strong>. The aim of this talk is to <strong>in</strong>troduce <strong>the</strong> concept of fractals aris<strong>in</strong>g from Newton’s<br />

method. We consider <strong>the</strong> dynamics as a special class of rational functions that are obta<strong>in</strong>ed<br />

from Newton’s method when applied to a polynomial equation. F<strong>in</strong>d<strong>in</strong>g solutions of <strong>the</strong>se<br />

equations leads to some beautiful images <strong>in</strong> complex functions. These images represent <strong>the</strong><br />

bas<strong>in</strong>s of attraction of roots of complex functions. If z0 is an attract<strong>in</strong>g periodic po<strong>in</strong>t of<br />

some rational function of degree larger that one, its bas<strong>in</strong> of attraction is as follows:<br />

B(z0) := {z ∈ C |Nf n (z0) converges to z0, n → ∞}.<br />

The bas<strong>in</strong> of attraction B(z0) is a union of components of <strong>the</strong> Fatou set, and <strong>the</strong> boundary<br />

of B(z0) co<strong>in</strong>cides with <strong>the</strong> Julia sets of a rational function Nf. In this presentation, we seek<br />

will <strong>the</strong> answer of <strong>the</strong> follow<strong>in</strong>g question:<br />

For example,<br />

“What is <strong>the</strong> dynamics near <strong>the</strong> chosen parabolic fixed po<strong>in</strong>ts?”<br />

f(z) = (z 2 + 4)e z <strong>the</strong> Newton function of f is Nf(z) = z3 +z 2 +4z−z<br />

z 2 +2z+4<br />

and <strong>the</strong> fractal image of that function on Riemann sphere is presented.<br />

References<br />

Page 2<br />

[1] Ahlfors,L.V.[1979] Complex Analysis, McGraw-Hill.<br />

[2] Alexander,D.[1992] The Historical background to <strong>the</strong> works of Pierre Fatou and Gaston Julia <strong>in</strong><br />

Complex Dynamics, Thesis, Boston University.<br />

[3] Beardon,A.[1991] Iteration of RationalFunctions, Spr<strong>in</strong>ger-Verlag.<br />

[4] Çil<strong>in</strong>gir, F. [2004] ”F<strong>in</strong>iteness of <strong>the</strong> Area of Bas<strong>in</strong>s of Attraction of Relaxed Newton Method for<br />

Certa<strong>in</strong> Holomorphic Functions”, IJBC, Vol14, No.12 (2004) 4177 − 4190.<br />

[5] Devaney,R.L.[1989] An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Redwood City,Calif.<br />

[6] Keen,L.[1989] Julia sets, Chaos and Fractals, <strong>the</strong> Ma<strong>the</strong>matics beh<strong>in</strong>d <strong>the</strong> Compuer Graphics, ed.<br />

R.L.Devaney & L.Keen,Proc.Symp.Appl.Math.39,Amer.Math.Soc., pp.57-75.


<strong>Abstract</strong><br />

On <strong>the</strong> Classifications of C ∗ -Algebras Us<strong>in</strong>g Unitary Groups<br />

Ahmed Al-Rawashdeh<br />

Department of Ma<strong>the</strong>matical Sciences, UAEU, Al A<strong>in</strong><br />

United Arab Emirates<br />

In 1955, Dye proved that <strong>the</strong> discrete unitary group <strong>in</strong> a factor determ<strong>in</strong>es <strong>the</strong> algebraic type of <strong>the</strong><br />

factor. Us<strong>in</strong>g Dye’s approach, we prove similar results to a larger class of amenable unital C ∗ -algebras<br />

<strong>in</strong>clud<strong>in</strong>g simple unital AH-algebras (of SDG) with real rank zero. If φ is an isomorphism between <strong>the</strong><br />

unitary groups of two unital C ∗ -algebras, it <strong>in</strong>duces a bijective map θφ between <strong>the</strong> sets of projections of<br />

<strong>the</strong> algebras. For some UHF-algebras, we construct an automorphism φ of <strong>the</strong>ir unitary group, such that<br />

θφ does not preserve <strong>the</strong> orthogonality of projections. For a large class of unital C ∗ -algebras, we show that<br />

θφ is always an orthoisomorphism. This class <strong>in</strong>cludes <strong>in</strong> particular <strong>the</strong> Cuntz algebras On, 2 ≤ n ≤ ∞,<br />

and <strong>the</strong> simple unital AF-algebras hav<strong>in</strong>g 2-divisible K0-group. If φ is a cont<strong>in</strong>uous automorphism of<br />

<strong>the</strong> unitary group of a UHF-algebra A, we show that φ is implemented by a l<strong>in</strong>ear or a conjugate l<strong>in</strong>ear<br />

∗-automorphism of A.<br />

References<br />

[1] K.R. Davidson, C ∗ -Algebras by Example, Fields Institute Monographs, 6, Amer. Math. Soc.,<br />

Providencs, RI (1996).<br />

[2] H. Dye, On <strong>the</strong> Geometry of Projections <strong>in</strong> Certa<strong>in</strong> Operator Algebras, Ann. of Math., 61 (1955),<br />

p.73-89.<br />

[3] G. Elliott and G. Gong, On <strong>the</strong> Classification of C ∗ -algebras of Real Rank Zero,II, Ann. of Math.,<br />

144 (1996), p.497-610.<br />

[4] M. Rørdam, Classification of Nuclear C ∗ -Algebras, <strong>in</strong> Encyclopedia of Math. Sci., Operator Alge-<br />

bras and Non-commutative Geometry VII, Spr<strong>in</strong>ger-Verlag Berl<strong>in</strong> Heidelberg-New York (2000).<br />

Page 3


Solution of One Problem for <strong>the</strong> Equation of Parabolic type<br />

with Involution Perturbation<br />

Abdisalam A.Sarsenbi ∗ and A.A. Tengaeva †<br />

∗ M.Auezov South-Kazakhstan State University, Shymkent, Kazakhstan, abzhahan@mail.ru<br />

† M.Auezov South-Kazakhstan State University, Shymkent, Kazakhstan, aijan0973@mail.ru<br />

<strong>Abstract</strong>. In <strong>the</strong> doma<strong>in</strong> D = {(x,t) : −1 < x < 1,0 < t < T } <strong>the</strong> follow<strong>in</strong>g problem is considered: Obta<strong>in</strong> <strong>the</strong> solution<br />

u ∈ C 2,1 (D) ∩C(D) of <strong>the</strong> equation<br />

ut(x,t) = uxx(−x,t) − αuxx(x,t), (1)<br />

which satisfies <strong>the</strong> conditions<br />

u(x,0) = ϕ(x),−1 ≤ x ≤ 1;u(−1,t) = 0,u(1,t) = 0,0 ≤ t ≤ T,ϕ(−1) = 0,ϕ(1) = 0. (2)<br />

Application of <strong>the</strong> Fourier method gives <strong>the</strong> spectral problem of <strong>the</strong> form<br />

−X ′′ (−x) + αX ′′ (x) = λX(x),−1 < x < 1,X(−1) = 0,X(1) = 0. (3)<br />

The system of eigenfunctions of (3) is generated Riesz basis <strong>in</strong> L2(−1,1).<br />

Theorem 1. If α is real number α and |α| > 1, <strong>the</strong>n <strong>the</strong> problem (1)-(2) has a unique solution.<br />

Theorem 2. If α is a complex number and |Reα| ≥ 1, <strong>the</strong>n <strong>the</strong> problem (1)-(2) has a unique solution.<br />

Moreover, we have <strong>the</strong> follow<strong>in</strong>g formula<br />

∞<br />

u(x,t) = ∑<br />

k=0<br />

π (1−α)(<br />

cke 2 +kπ)2t π<br />

cos(<br />

2<br />

∞<br />

+ kπ)x + ∑ dke<br />

k=1<br />

−(1+α)(kπ)2 t<br />

s<strong>in</strong>kπx.<br />

Many papers are devoted to <strong>in</strong>vestigation of partial differential equations and spectral problems of differential operators<br />

with <strong>in</strong>volution see, for example, [1-4].<br />

Keywords: Spectral of Problems, Differential Operators with <strong>in</strong>volutions, Exact Solutions, Fourier Series<br />

PACS: 87.10.Ed<br />

REFERENCES<br />

Page 4<br />

1. J. Wiener, Generalized solutions of functional differential equations, 1993.<br />

2. A. B. L<strong>in</strong>’kov, The substantiation of a method of Fourier for bounders value provlems with <strong>in</strong>volution deviation, The Bullet<strong>in</strong><br />

Sam. GU., 2, 60-66, 1999.<br />

3. A.M. Sarsenbi, Unconditional’s <strong>the</strong> bases connected with <strong>the</strong> nonclassical differential operator of <strong>the</strong> second order, Dif.<br />

Equation, 46(4), 506-511, 2010.<br />

4. A.A. Tengaeva, A.M. Sarsenbi, About basic properties of root functions of two generalized spectral problems, Dif.Equation,<br />

48(2), 294-296, <strong>2012</strong>.


A Note on <strong>the</strong> Numerical Solution of Fractional Schröd<strong>in</strong>ger Di¤erential Equations<br />

A. Ashyralyev 1;2 , B. Hicdurmaz 3;4<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, 34500 Buyukcekmece, Istanbul, Turkey 2 International<br />

Turkmen-Turkish University, Ashgabat, Turkmenistan 3 Department of Ma<strong>the</strong>matics, Faculty of<br />

Sciences, Istanbul Medeniyet University, 34720 Istanbul, Turkey 4 Department of Ma<strong>the</strong>matics, Gebze<br />

<strong>Abstract</strong><br />

Institute of Technology, Kocaeli, Turkey<br />

Many di¤erent equations are called by fractional Schröd<strong>in</strong>ger di¤erential equation (FSDE) until today.<br />

In recent years, <strong>the</strong> FSDE which is derived from classical Schröd<strong>in</strong>ger di¤erential equation has received<br />

more attention. This problem is solved by some numerical methods (see [2]-[5]). However, …nite di¤erence<br />

method which is a useful tool for <strong>in</strong>vestigation of fractional di¤erential equations has not been applied<br />

to a FSDE yet. The present paper …lls a gap by apply<strong>in</strong>g …nite di¤erence method to <strong>the</strong> follow<strong>in</strong>g<br />

multi-dimensional l<strong>in</strong>ear FSDE<br />

8<br />

><<br />

@ u(t;x)<br />

i @t<br />

mP<br />

(ar(x)uxr )xr + u(t; x) = f(t; x);<br />

r=1<br />

0 < t < 1; x = (x1; ; xm) 2 ;<br />

u(0; x) = 0; x 2 ;<br />

>: u(t; x) = 0; x 2 S<br />

where 0 < < 1. Here ar(x); x 2 and f(t; x) (t 2 [0; 1]; x 2 ) are given smooth functions and<br />

ar(x) a 0: First and second orders of accuracy di¤erence schemes are constructed for problem (1).<br />

Numerical experiment on a one-dimensional FSDE shows <strong>the</strong> e¤ectiveness of <strong>the</strong> di¤erence schemes.<br />

References<br />

[1] Ashyralyev A., A note on fractional derivatives and fractional powers of operators, Journal of<br />

Ma<strong>the</strong>matical Analysis and Applications, 357(1), 232-236, 2009.<br />

[2] Ashyralyev A., Hicdurmaz B., A note on <strong>the</strong> fractional Schröd<strong>in</strong>ger di¤erential equations, Kyber-<br />

netes, 40(5/6), 736-750, 2011.<br />

[3] Naber M., Time fractional Schrod<strong>in</strong>ger equation, Journal of Ma<strong>the</strong>matical Physics, 45(8), 18, 2004.<br />

[4] Odibat Z., Moman S. and Alawneh A., Analytic Study on Time-Fractional Schröd<strong>in</strong>ger Equations:<br />

Exact Solutions by GDTMS, J. Phys.: Conf. Ser. 96 012066, 2008.<br />

[5] Rida S. Z., El-Sherb<strong>in</strong>y H. M. and Arafa A. A. M., On <strong>the</strong> solution of <strong>the</strong> fractional nonl<strong>in</strong>ear<br />

Schröd<strong>in</strong>ger equation, Physics Letters A, 372(5), 553–558, 2008.<br />

Page 5<br />

(1)


On Bitsadze-Samarskii type nonlocal boundary value problems for semil<strong>in</strong>ear elliptic<br />

equations<br />

A. Ashyralyev 1 , E. Ozturk 2<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey 2 Department of Ma<strong>the</strong>matics, Uludag<br />

<strong>Abstract</strong><br />

University, Bursa, Turkey<br />

In <strong>the</strong> literature, <strong>the</strong> problem of Bitsadze-Samarskii type is often referred to as <strong>the</strong> boundary value<br />

problem with Bitsadze-Samarskii condition (see [2], [4] and [7]). Previously, <strong>the</strong> Bitsadze-Samarskii type<br />

nonlocal boundary value problems for l<strong>in</strong>ear elliptic equations were studied ([5]). In this paper, <strong>the</strong><br />

Bitsadze-Samarskii type nonlocal boundary value problems for semil<strong>in</strong>ear elliptic equations<br />

8<br />

><<br />

>:<br />

d 2 u(t)<br />

dt 2<br />

+ Au(t) = f(t; u(t)); 0 < t < 1;<br />

u(0) = '; u(1) = JP<br />

ju( j) + ;<br />

j=1<br />

0 < 1 < < J < 1; JP<br />

j jj 1<br />

<strong>in</strong> a Hilbert space H with <strong>the</strong> self-adjo<strong>in</strong>t positive de…nite operator A is considered. The …rst and second<br />

orders of accuracy di¤erence schemes approximately solv<strong>in</strong>g <strong>the</strong>se problems are studied. A procedure of<br />

modi…ed Gauss elim<strong>in</strong>ation method is used for solv<strong>in</strong>g <strong>the</strong>se di¤erence schemes for <strong>the</strong> two-dimensional<br />

elliptic di¤erential equation. The method is illustrated by numerical examples. The converge estimates<br />

for <strong>the</strong> solution of <strong>the</strong>se di¤erence schemes are obta<strong>in</strong>ed.<br />

References<br />

[1] Ashyralyev A. and Yurtsever A.,On a nonlocal boundary value problem for semil<strong>in</strong>ear hyperbolic-<br />

j=1<br />

parabolic equations, Nonl<strong>in</strong>ear Analysis, 47, 3585-3592, 2001.<br />

[2] Skubaczewski A.L., Solvability of ellipic problems wih Bitsadze-Samarskii boundary conditions,<br />

Di¤erencial’nye Uravneniya, 21, 701-706, 1985.<br />

[3] Ashyralyev A. and S¬rma A., A note on <strong>the</strong> numerical solution of <strong>the</strong> semil<strong>in</strong>ear Schröd<strong>in</strong>ger<br />

equation, Nonl<strong>in</strong>ear Analysis, 71, e507-e2516, 2009.<br />

[4] Bitsadze A.V. and Samarskii A.A., On some simple generalizations of l<strong>in</strong>ear elliptic boundary<br />

problems, Soviet Mat. Dokl., 10 (2), 398- 400, 1969.<br />

[5] Ashyralyev A. and Ozturk E., The numerical solution of Bitsadze-Samarskii nonlocal boundary<br />

value problems with <strong>the</strong> dirichlet-Neumann condition, <strong>Abstract</strong> and Applied Analysis, 730804, <strong>2012</strong>.<br />

[6] Chabrowski J., Multiple solutions for a class of non-local problems for semil<strong>in</strong>ear elliptic equations,<br />

RIMS. Kyoto Uni., 28, 1-11, 1992.<br />

[7] Samarskii A.A., Some problems <strong>in</strong> di¤erential equation <strong>the</strong>ory, Di¤erencial’nye Uravneniya, 16,<br />

1925-1935, 1980.<br />

Page 6


<strong>Abstract</strong><br />

A Third-Order of Accuracy Difference Scheme<br />

for <strong>the</strong> Bitsadze-Samarskii Type Nonlocal Boundary Value Problem<br />

A. Ashyralyev 1,2 , F. S. Ozesenli Tetikoglu 1<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey<br />

2 Department of Ma<strong>the</strong>matics, ITTU, Ashgabat, Turkmenistan<br />

The role played by coercive <strong>in</strong>equalities <strong>in</strong> <strong>the</strong> study of local boundary-value problems for elliptic and<br />

parabolic differential equations is well-known ([1], [2]). Theory, applications and methods of solutions of<br />

Bitsadze-Samarskii nonlocal boundary value problems for elliptic differential equations have been studied<br />

extensively by many researchers ([3]-[5]). The Bitsadze-Samarskii type nonlocal boundary value problem<br />

⎧<br />

⎪⎨<br />

− d2 u(t)<br />

dt 2<br />

+ Au(t) = f(t), 0 < t < 1,<br />

ut(0) = ϕ, ut(1) = βut(λ) + ψ,<br />

⎪⎩ 0 ≤ λ < 1, |β| ≤ 1<br />

for <strong>the</strong> differential equation <strong>in</strong> a Hilbert space H with <strong>the</strong> self-adjo<strong>in</strong>t positive def<strong>in</strong>ite operator A is<br />

considered. The third order of accuracy difference scheme for <strong>the</strong> approximate solution of this problem<br />

is presented. The well-posedness of this difference scheme <strong>in</strong> difference analogue of Hölder spaces is<br />

established. In applications, <strong>the</strong> stability, <strong>the</strong> almost coercivity and <strong>the</strong> coercivity estimates for solution<br />

of difference scheme for elliptic equations are obta<strong>in</strong>ed.<br />

References<br />

[1] V. L. Gorbachuk, M.L. Gorbachuk, Boundary Value Problems for Dierential - Operator Equations,<br />

Naukova Dumka, Kiev, 1984 (<strong>in</strong> Russian).<br />

[2] G. Berikelashvili, ”On a nonlocal boundary value problem for a two-dimensional elliptic equation”,<br />

Comput. Methods Appl. Math. 3, no.1, pp. 35-44, 2003.<br />

[3] A.V. Bitsadze, A. A. Samarskii, ”On some simplest generalizations of l<strong>in</strong>ear elliptic problems”,<br />

Dokl. Akad. Nauk SSSR 185, 1969.<br />

[4] A. Ashyralyev, ”Nonlocal boundary-value problems for elliptic equations: Well- posedness <strong>in</strong><br />

Bochner spaces”, <strong>Conference</strong> Proceed<strong>in</strong>gs, ICMS International Con- ference on Ma<strong>the</strong>matical Science,<br />

vol. 1309, pp. 66-85, 2010.<br />

[5] A. Ashyralyev, ”On well-posedness of <strong>the</strong> nonlocal boundary value problem for el- liptic equations”,<br />

Numerical Functional Analysis and Optimization, vol. 24, no.1-2, pp. 1-15, 2009.<br />

Page 7


NBVP for Hyperbolic Equations Involv<strong>in</strong>g Multi-po<strong>in</strong>t and Integral Conditions<br />

A. Ashyralyev 1 ;N. Aggez 1<br />

<strong>Abstract</strong><br />

1 Department of Ma<strong>the</strong>matics, Fatih University, 34500 Istanbul, Turkey<br />

Nonlocal boundary value problems <strong>in</strong>volv<strong>in</strong>g multi-po<strong>in</strong>t and <strong>in</strong>tegral conditions for a hyperbolic<br />

equation <strong>in</strong> a Hilbert space are <strong>in</strong>vestigated. The stability estimates for <strong>the</strong> solution of <strong>the</strong>se<br />

multi-po<strong>in</strong>t NBVP are established. In applications, <strong>the</strong> stability estimates for <strong>the</strong> solution of <strong>the</strong>se<br />

problems are obta<strong>in</strong>ed.<br />

The authors of [3] developed a numerical procedure for <strong>the</strong> NBVP with a <strong>in</strong>tegral conditions for hyper-<br />

bolic equations. In <strong>the</strong> paper [4], <strong>in</strong>stead of nonlocal <strong>in</strong>tegral conditions multi-po<strong>in</strong>t nonlocal conditions<br />

used. In <strong>the</strong> present work, we consider <strong>the</strong> NBVP with multi-po<strong>in</strong>t and <strong>in</strong>tegral conditions<br />

8<br />

><<br />

>:<br />

d 2 u(t)<br />

dt2 + Au(t) = f(t) (0 t 1);<br />

1R<br />

u(0) = ( ) u( )d +<br />

0<br />

nP<br />

aiu( i) + ';<br />

1R<br />

ut(0) =<br />

i=1<br />

( ) ut( )d + nP<br />

biut( i) +<br />

0<br />

for <strong>the</strong> di¤erential equation <strong>in</strong> a Hilbert space H with a self-adjo<strong>in</strong>t positive de…nite operator A. We are<br />

<strong>in</strong>terested <strong>in</strong> study<strong>in</strong>g <strong>the</strong> stability of solutions of problem (1) under <strong>the</strong> assumption<br />

><br />

Z<br />

1 +<br />

Z1<br />

0<br />

0<br />

1<br />

(s) (s) ds +<br />

(j (s)j + j (s)j) ds +<br />

nX<br />

k=1<br />

akbk +<br />

nX<br />

k=1<br />

nX<br />

jak + bkj :<br />

k=1<br />

i=1<br />

ak<br />

Z1<br />

0<br />

(s) ds +<br />

A function u(t) is a solution of problem (1) if <strong>the</strong> follow<strong>in</strong>g conditions are satis…ed:<br />

nX<br />

k=1<br />

bk<br />

Z1<br />

0<br />

(1)<br />

(s)ds (2)<br />

i) u(t) is twice cont<strong>in</strong>uously di¤erentiable on <strong>the</strong> <strong>in</strong>terval (0; 1) and cont<strong>in</strong>uously di¤erentiable on<br />

<strong>the</strong> segment [0; 1]. The derivatives at <strong>the</strong> endpo<strong>in</strong>ts of <strong>the</strong> segment are understood as <strong>the</strong> appropriate<br />

unilateral derivatives.<br />

[0; 1].<br />

ii) The element u(t) belongs to D(A) for all t 2 [0; 1], and function Au(t) is cont<strong>in</strong>uous on <strong>the</strong> segment<br />

iii) u(t) satis…es <strong>the</strong> equation and nonlocal boundary conditions (1).<br />

References<br />

[1] Ashyralyev A. and Sobolevskii P.E., A note on <strong>the</strong> di¤erence schemes for hyperbolic equations,<br />

<strong>Abstract</strong> and Applied Analysis, 6 (2), 63-70, 2001.<br />

[2] Fattor<strong>in</strong>i H. O., Second Order L<strong>in</strong>ear Di¤erential Equations <strong>in</strong> Banach Space,Notas de Matematica.<br />

North-Holland, 1985.<br />

[3] Ashyralyev A. and Aggez N., F<strong>in</strong>ite Di¤erence Method for Hyperbolic Equations with <strong>the</strong> Nonlocal<br />

Integral Condition, Discrete Dynamics <strong>in</strong> Nature and Society, 2011, 1-15, 2011.<br />

[4]Ashyralyev A., Yildirim O., On multipo<strong>in</strong>t nonlocal boundary value problems for hyperbolic di¤er-<br />

ential and di¤erence equations, Taiwanese Journal of Ma<strong>the</strong>matics, 14, 165-194, 2010.<br />

Page 8


Boundary Value Problem for a Third Order Partial Di¤erential Equation<br />

A. Ashyralyev 1 ; N. Aggez 1 ; F. Hezenci 1<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, 34500 Istanbul, Turkey<br />

<strong>Abstract</strong>. Boundary value problems for third order partial di¤erential equations <strong>in</strong> a Hilbert space<br />

are <strong>in</strong>vestigated. The stability estimates for <strong>the</strong> solution of <strong>the</strong> boundary value problem is established.<br />

To validate <strong>the</strong> ma<strong>in</strong> result, some stability estimates for solutions of <strong>the</strong> boundary value problems for<br />

third order equations are given. Here, <strong>the</strong> boundary value problem<br />

8<br />

<<br />

:<br />

d 3 u(t)<br />

dt 3<br />

Au(t) = f(t); 0 < t < 1;<br />

u(0) = '; ut(0) = ; utt(1) = ;<br />

for a third order partial di¤erential equation <strong>in</strong> a Hilbert space H with a self-adjo<strong>in</strong>t positive de…nite<br />

operator A is considered. We are <strong>in</strong>terested <strong>in</strong> study<strong>in</strong>g <strong>the</strong> stability of solutions of problem (1).<br />

A function u(t) is a solution of problem (1) if <strong>the</strong> follow<strong>in</strong>g conditions are satis…ed:<br />

i) u(t) is three times cont<strong>in</strong>uously di¤erentiable on <strong>the</strong> <strong>in</strong>terval (0; 1) and cont<strong>in</strong>uously di¤erentiable<br />

on <strong>the</strong> segment [0; 1]. The derivatives at <strong>the</strong> endpo<strong>in</strong>ts of <strong>the</strong> segment are understood as <strong>the</strong> appropriate<br />

unilateral derivatives.<br />

[0; 1].<br />

ii) The element u(t) belongs to D(A) for all t 2 [0; 1], and function Au(t) is cont<strong>in</strong>uous on <strong>the</strong> segment<br />

iii) u(t) satis…es <strong>the</strong> equation and boundary conditions (1).<br />

References<br />

[1] A. Ashyralyev and Sobolevskii P.E, Abstr. Appl. Anal., 6(2), 63-70 (2001).<br />

[2] A. Ashyralyev and Aggez N., Discrete Dyn. Nat. Soc., 2011, 1-15 (2011).<br />

[3] A. Guezane-Lakoud, N. Hamidane and R. KhaldiInt., Int. J. Math. Math. Sci., <strong>2012</strong>, (<strong>2012</strong>).<br />

[4] K. Schrader, Proc. Am. Math. Soc., 32(1), 247-252 (<strong>2012</strong>).<br />

[5] B. Ahmad, Electron. J. Di¤er. Equ., 2011(94), 1-7 (2011).<br />

[6] S. Simirnov, Nonl<strong>in</strong>ear Anal., 16(2), 231-241 (2011).<br />

[7] Yu.P. Apakov and S. Rutkauskas, Nonl<strong>in</strong>ear Analysis, 16(3), 255-269 (2011).<br />

[8] A. P. Palamides and A. N. Veloni, Electron. J. Di¤er. Equ, 2007(151), 1-13 (2007).<br />

[9] M. Denche and A. Memou, J. Appl. Math., 2003(11), 553-567(2003).<br />

Page 9<br />

(1)


Fractional Parabolic Differential and Difference Equations with <strong>the</strong> Dirichlet-Neumann<br />

Condition<br />

A. Ashyralyev 1 , N. Emirov 1 and Z. Cakir 2<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey 2 Department of Ma<strong>the</strong>matical<br />

<strong>Abstract</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g, <strong>Gumushane</strong> University,<strong>Gumushane</strong>, Turkey<br />

The multidimensional fractional parabolic equation with <strong>the</strong> Dirichlet-Neumann condition is studied.<br />

Stability estimates for <strong>the</strong> solution of <strong>the</strong> <strong>in</strong>itial-boundary value problem for this fractional parabolic<br />

equation are established. The stable difference schemes for this problem are presented. Stability estimates<br />

for <strong>the</strong> solution of <strong>the</strong> first order of accuracy difference scheme are obta<strong>in</strong>ed. A procedure of modified<br />

Gauss elim<strong>in</strong>ation method is applied for <strong>the</strong> solution of first and second order of accuracy difference<br />

schemes of one-dimensional fractional parabolic differential equations.<br />

References [1] I. Podlubny, Fractional differential Equations,vol. 198 of Mahematics <strong>in</strong> Science and<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Academic Press, San Diego, California, USA, 1999.<br />

[2] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and<br />

Breach, Yverdon, Switzerland, 1993.<br />

[3] A. A. Kilbas, H. M. Sristava, and J. J. Trujillo, Theory and Applications of Fractional Differential<br />

Equations, North-Holland Ma<strong>the</strong>matics Studies, 2006.<br />

[4] J. L. Lavoie, T. J. Osler, and R. Tremblay, SIAM Review 18(2), 240–268 (1976).<br />

[5] V. E. Tarasov, Internatioanl Journal of Ma<strong>the</strong>matics 18(3), 281–299 (2007).<br />

[6] M. De la Sen, R. P. Agarwal, A. Ibeas, et al. Advances <strong>in</strong> Difference Equations, 2011, Article ID<br />

748608, 32 pages (2011).<br />

[7] R. P. Agarwal, B. de Andrade, C. Cuevas, Nonl<strong>in</strong>ear Analysis Series B: Real World Applications<br />

11, pp 3532–3554 (2010).<br />

[8] R. Gorenflo, and F. Ma<strong>in</strong>ardi, Fractional Calculus: Integral and Differential Equations of Frac-<br />

tional Order, <strong>in</strong> Fractals and Fractional Calculus <strong>in</strong> Cont<strong>in</strong>uum Mechanics, Edited by A.Carp<strong>in</strong>teri and<br />

F.Ma<strong>in</strong>ardi, 378 of CISM Courses and Lectures, Spr<strong>in</strong>ger, Vienna, Austria 1997, pp. 223–276<br />

[9] A. S. Berdyshev, A. Cabada, E. T. Karimov, Nonl<strong>in</strong>ear Anal.,75(6) 3268–3273 (2011).<br />

[10] A. Ashyralyev, D. Amanov, <strong>Abstract</strong> and Applied Analysis , <strong>2012</strong>, Article ID 594802, 14 pages<br />

(<strong>2012</strong>).<br />

[11] A. Ashyralyev, B. Hicdurmaz, Kybernetes 40(5-6), 736–750 (2011).<br />

[12] F. Ma<strong>in</strong>ardi, Fractional Calculus: Some Basic Problems <strong>in</strong> Cont<strong>in</strong>uum and Statistical Mechanics,<br />

<strong>in</strong> Fractals and Fractional Calculus <strong>in</strong> Cont<strong>in</strong>uum Mechanics , Edited by A. Carp<strong>in</strong>teri and F.Ma<strong>in</strong>ardi,<br />

Spr<strong>in</strong>ger-Verlag, New-York,USA, 1997, pp. 291–348.<br />

[13] M. Kirane, Y. Laskri, Applied Ma<strong>the</strong>matics and Computation, 167(2), 1304–1310 (2005).<br />

[14] A. Ashyralyev, F. Dal, and Z. Pınar, Appl. Math. Comput. 217(9), 4654–4664 (2011).<br />

[15] V. Lakshimikantham, A. Vatsala, Appl.Anal., 11(3-4), 395–402 (2007).<br />

[16] A. Ashyralyev, Applied Ma<strong>the</strong>matics Letters 24, 1176–1180 (2011).<br />

Page 10<br />

[17] A. Ashyralyev, Journal of Ma<strong>the</strong>matical Analysis and Applications357(1), 232–236 (2009).


[18] S. G. Kre<strong>in</strong>, L<strong>in</strong>ear Differential Equations <strong>in</strong> a Banach Space, Nauka, Moscow, 1966(Russian).<br />

[19] G. Da Prato, P. Grisvard, J. Math. Pures et Appl., 54, 305–387 (1975).<br />

[20] P. E. Sobolevskii, Dokl. Akad. Nauk, 225(6), 1638–1641 (1975).<br />

[21] Ph. Clement, On (L p -L a ) coerciveness for a class of <strong>in</strong>tegrodifferential equation on <strong>the</strong> l<strong>in</strong>e p<br />

Prepr<strong>in</strong>t 5-4-90, VGU, Voronezh, 1990.<br />

[22] Z. Cakir <strong>Abstract</strong> and Applied Analysis , <strong>2012</strong>, Article ID 463746, 17 pages (<strong>2012</strong>).<br />

Page 11


High Order of Accuracy Stable Di¤erence Schemes for Numerical<br />

Solutions of NBVP for Hyperbolic Equations<br />

A. Ashyralyev 1 , O. Yildirim 2<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey 2 Department of Ma<strong>the</strong>matics, Yildiz<br />

<strong>Abstract</strong><br />

Technical University, Istanbul, Turkey<br />

The abstract nonlocal boundary value problem for <strong>the</strong> hyperbolic equation<br />

8<br />

< u<br />

:<br />

00<br />

(t) + Au (t) = f (t) ; 0 < t < T;<br />

u(0) = u(1) + '; u 0 (0) = u 0 (1) +<br />

<strong>in</strong> a Hilbert space H with <strong>the</strong> self -adjo<strong>in</strong>t positive de…nite operator A is considered. The third and<br />

fourth order of accuracy di¤erence schemes for <strong>the</strong> approximate solutions of this problem are presented.<br />

The stability estimates for <strong>the</strong> solutions of <strong>the</strong>se di¤erence schemes are obta<strong>in</strong>ed and numerical results<br />

are presented <strong>in</strong> order to verify <strong>the</strong>oretical statements.<br />

References<br />

[1] A. Ashyralyev and P. E. Sobolevskii, Two new approaches for construction of <strong>the</strong> high order of<br />

accuracy di¤erence schemes for hyperbolic di¤erential equations, Discrete Dynamics Nature and Society,<br />

vol. 2, no. 1, pp. 183-213, 2005.<br />

[2] A. Ashyralyev and P. E. Sobolevskii, A note on <strong>the</strong> di¤erence schemes for hyperbolic equations,<br />

<strong>Abstract</strong> and Applied Analysis, vol. 6, no. 2, pp. 63-70, 2001.<br />

[3] A. Ashyralyev and O. Yildirim, On multipo<strong>in</strong>t nonlocal boundary value problems for hyperbolic<br />

di¤erential and di¤erence equations,Taiwanese Journal of Ma<strong>the</strong>matics, vol. 14, no.1, pp. 165-194, 2010.<br />

[4] S. Piskarev and Y. Shaw, On certa<strong>in</strong> operator families related to cos<strong>in</strong>e operator function, Tai-<br />

wanese Journal of Ma<strong>the</strong>matics, vol. 1, no. 4, pp. 3585-3592, 1997.<br />

Page 12


Positivity of Two-dimensional Elliptic Differential Operators <strong>in</strong> Hölder Spaces<br />

<strong>Abstract</strong><br />

A. Ashyralyev 1 , S. Akturk 1 and Y. Sozen 1<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey<br />

This paper considers <strong>the</strong> follow<strong>in</strong>g operator<br />

Au(t, x) = −a11(t, x)utt(t, x) − a22(t, x)uxx(t, x) + σu(t, x),<br />

def<strong>in</strong>ed over <strong>the</strong> region R + × R with <strong>the</strong> boundary condition u(0, x) = 0, x ∈ R. Here, <strong>the</strong> coefficients<br />

aii(t, x), i = 1, 2 are cont<strong>in</strong>uously differentiable and satisfy <strong>the</strong> uniform ellipticity<br />

a 2 11(t, x) + a 2 22(t, x) ≥ δ > 0,<br />

and σ > 0. It <strong>in</strong>vestigates <strong>the</strong> structure of <strong>the</strong> fractional spaces generated by this operator. Moreover,<br />

<strong>the</strong> positivity of <strong>the</strong> operator <strong>in</strong> Hölder spaces is proved.<br />

1968.<br />

1984.<br />

References<br />

[1] Kre<strong>in</strong> S.G., L<strong>in</strong>ear Differential Equations <strong>in</strong> a Banach Space, Amer. Math. Soc., Providence RI,<br />

[2] Grisvard P., Elliptic Problems <strong>in</strong> Nonsmooth Doma<strong>in</strong>s, Patman Adv. Publ. Program, London,<br />

[3] Fattor<strong>in</strong>i H.O., Second Order L<strong>in</strong>ear Differential Equations <strong>in</strong> Banach Spaces, North-Holland:<br />

Ma<strong>the</strong>matics Studies, 1985.<br />

[4] Solomyak M.Z., Analytic semigroups generated by elliptic operators <strong>in</strong> Lp spaces, Dokl. Acad.<br />

Nauk. SSSR, 127(1) 37–39, 1959 (Russian).<br />

[5] Solomyak M.Z., Estimation of norm of <strong>the</strong> reseolvent of elliptic operator <strong>in</strong> Lp spaces, Usp. Mat.<br />

Nauk., 15(6) 141–148, 1960 (Russian).<br />

[6] Krasnosel’skii M.A., Zabreiko P.P., Pustyl’nik E.I. and Sobolevskii P.E., Integral Operators <strong>in</strong><br />

Spaces of Summable Functions, Nauka, Moscow, 1966 (Russian). English transl.: Integral Operators <strong>in</strong><br />

Spaces of Summable Functions, Noordhoff, Leiden, 1976.<br />

[7] Stewart H.B., Generation of analytic semigroups by strongly elliptic operators under general bound-<br />

ary conditions, Trans. Amer. Math. Soc. 259 299–310, 1980.<br />

[8] Ashyralyev A. and Sobolevskii P.E., Well-Posedness of Parabolic Difference Equations, Birkhauser<br />

Verlag, Basel, Boston, Berl<strong>in</strong>, 1994.<br />

[9] Ashyralyev A. and Sobolevskii P.E., New difference schemes for partial differential equations,<br />

Birkhauser Verlag, Basel, Boston, Berl<strong>in</strong>, 2004.<br />

[10] Sobolevskii P.E., The coercive solvability of difference equations, Dokl. Acad. Nauk. SSSR 201(5)<br />

1063–1066, 1980 (Russian).<br />

[11] Alibekov Kh.A., Investigations <strong>in</strong> C and Lp of Difference Schemes of High Order Accuracy for<br />

Apporoximate Solutions of Multidimensional Parabolic boundary value problems, PhD Thesis, Voronezh<br />

State University, Voronezh, 1978 (Russian).<br />

[12] Alibekov Kh.A. and Sobolevskii P.E., Stability of difference schemes for parabolic equations, Dokl.<br />

Acad. Nauk SSSR 232(4) 737–740, 1977 (Russian).<br />

Page 13


[13] Alibekov Kh.A. and Sobolevskii P.E., Stability and convergence of difference schemes of a high<br />

order for parabolic differential equations, Ukra<strong>in</strong>. Math. Zh. 31(6) 627–634, 1979 (Russian).<br />

[14] Ashyralyev A. and Sobolevskii P.E., The l<strong>in</strong>ear operator <strong>in</strong>terpolation <strong>the</strong>ory and <strong>the</strong> stability of<br />

<strong>the</strong> difference schemes, Dokl. Acad. Nauk SSSR 275(6) 1289–1291, 1984 (Russian).<br />

[15] Ashyralyev A., Method of Positive Operators of Investigations of <strong>the</strong> High Order of Accuracy<br />

Difference Schemes for Parabolic and Elliptic Equations, Doctor of Sciences Thesis, Kiev: Inst. of Math.<br />

of Acad. Sci. Kiev, 1992 (Russian).<br />

[16] Simirnitskii Yu.A. and Sobolevskii P.E., Positivity of multidimensional difference operators <strong>in</strong> <strong>the</strong><br />

C−norm, Usp. Mat. Nauk. 36(4) 202–203, 1981 (Russian).<br />

[17] Danelich S.I., Fractional Powers of Positive Difference Operators, PhD Thesis, Voronezh: Voronezh<br />

State University 1989 (Russian).<br />

[18] Ashyralyev A. and N. Yaz, On Structure of Fractional Spaces Generated by Positive Operators<br />

with <strong>the</strong> Nonlocal Boundary Value Conditions, <strong>in</strong> Proceed<strong>in</strong>gs of <strong>the</strong> <strong>Conference</strong> Differential and Differ-<br />

ence Equations and Applications,, H<strong>in</strong>dawi Publish<strong>in</strong>g Corporation, New York, edited by R.F. Agarwal<br />

and K. Perera, 91–101, 2006.<br />

Page 14


On <strong>the</strong> Numerical Solution of Ultra Parabolic Equations with Neumann Condition<br />

A. Ashyralyev and S. Yılmaz<br />

<strong>Abstract</strong><br />

Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey<br />

In this paper, our <strong>in</strong>terest is study<strong>in</strong>g <strong>the</strong> stability of first order difference scheme for <strong>the</strong> approximate<br />

solution of <strong>the</strong> <strong>in</strong>itial boundary value problem for ultra parabolic equations<br />

⎧<br />

∂u(t,s) ∂u(t,s)<br />

⎪⎨ ∂t + ∂s + Au(t, s) = f(t, s), 0 < t, s < T,<br />

u(0, s) = ψ(s), 0 ≤ s ≤ T,<br />

(1)<br />

⎪⎩ u(t, 0) = ϕ(t), 0 ≤ t ≤ T<br />

<strong>in</strong> an arbitrary Banach space E with a strongly positive operator A.We refer to [1, 2] and <strong>the</strong> references<br />

<strong>the</strong>re<strong>in</strong> for a series of papers by <strong>the</strong> authors, deal<strong>in</strong>g with ultra parabolic equations , aris<strong>in</strong>g <strong>in</strong> diffusion<br />

<strong>the</strong>ory, probability and f<strong>in</strong>ance. Some new results about numerical methods for ultra-parabolic equations<br />

are also announced, see [3-5]. For approximately solv<strong>in</strong>g problem (1), <strong>the</strong> first-order of accuracy difference<br />

scheme<br />

⎧<br />

uk,m−uk−1,m<br />

τ<br />

+ uk−1,m−uk−1,m−1<br />

τ<br />

+Auk,m = fk,m ,<br />

⎪⎨ fk,m = f(tk, sm), tk = kτ, sm = mτ, 1 ≤ k, m ≤ N, Nτ = 1,<br />

(2)<br />

u0,m = ψm, ψm = ψ(sm), 0 ≤ m ≤ N,<br />

⎪⎩ uk,0 = ϕk, ϕk = ϕ(tk), 0 ≤ k ≤ N<br />

is presented. The stability estimates and almost coercive stability estimates for <strong>the</strong> solution of difference<br />

schemes (2) is established. In applications, <strong>the</strong> stability <strong>in</strong> maximum norm of difference shemes for mul-<br />

tidimensional ultra parabolic equations with Neumann condition is established. Apply<strong>in</strong>g <strong>the</strong> difference<br />

schemes, <strong>the</strong> numerical methods are proposed for solv<strong>in</strong>g one dimensional ultra parabolic equations.<br />

References<br />

[1] Ashyralyev A. and Yılmaz S., An approximation of ultra-parabolic equations, <strong>Abstract</strong> and Applied<br />

Analysis, Article ID 840621, 13 pages, <strong>2012</strong>.(<strong>in</strong> press)<br />

[2] Lanconelli E., Pascucci A. and Polidoro S, L<strong>in</strong>ear and nonl<strong>in</strong>ear ultraparabolic equations of Kol-<br />

mogorov type aris<strong>in</strong>g <strong>in</strong> diffusion <strong>the</strong>ory and <strong>in</strong> f<strong>in</strong>ance, <strong>in</strong> Proceed<strong>in</strong>gs of <strong>the</strong> International Ma<strong>the</strong>matical<br />

Series <strong>Conference</strong>, Nonl<strong>in</strong>ear Problems <strong>in</strong> Ma<strong>the</strong>matical Physics and Related Topics VOL. II <strong>in</strong> Honor of<br />

Professor O.A. Ladyzhenskya, 243-265, 2002.<br />

[3] Akrivis G., Crouzeix M. and Thom˙ee V., Numerical methods for ultraparabolic equations,Calcolo<br />

31 , 179-190, 1994.<br />

[4] Ashyralyev A. and Yılmaz S., Second Order of Accuracy Difference Schemes for Ultra Parabolic<br />

Equations, <strong>in</strong> Proceed<strong>in</strong>gs of <strong>the</strong> International <strong>Conference</strong> on Numerical Analysis and Applied Ma<strong>the</strong>-<br />

matics, AIP <strong>Conference</strong> Proceed<strong>in</strong>gs, Volume 1389, 601-604, 2011.<br />

[5] Ayati B. P., A variable time step method for an age-dependent population model with nonl<strong>in</strong>ear<br />

diffusion, Sıam J. Numer. Anal., Volume 37(5), 1571-1589, 2000.<br />

Page 15


Existence and Uniqueness of Solutions for Nonl<strong>in</strong>ear Impulsive Differential Equations with Two-po<strong>in</strong>t<br />

<strong>Abstract</strong><br />

and Integral Boundary Conditions<br />

A. Ashyralyev 1 and Y.A. Sharifov 2<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey<br />

2 Baku State University, Institute of Cybernetics of ANAS, Baku, Azerbaijan<br />

The <strong>the</strong>ory of impulsive differential equations is an important branch of differential equations, which<br />

has an extensive physical background. Impulsive differential equations arise frequently <strong>in</strong> <strong>the</strong> model<strong>in</strong>g<br />

many physical systems whose states are subjects to sudden change at certa<strong>in</strong> moments. There has a<br />

significant development <strong>in</strong> impulsive <strong>the</strong>ory especially <strong>in</strong> <strong>the</strong> area of impulsive differential equations with<br />

fixed moments; see for <strong>in</strong>stance <strong>the</strong> monographs [1-4] <strong>the</strong> references <strong>the</strong>re<strong>in</strong>.<br />

In this paper, <strong>the</strong> suffi cient conditions are established for <strong>the</strong> existence of solutions for a class of<br />

two-po<strong>in</strong>t and <strong>in</strong>tegral boundary value problems for impulsive differential equations.<br />

References<br />

[1] M. Benchohra, J. Henderson, S.K. Ntouyas. Impulsive differential equations and <strong>in</strong>clusions. H<strong>in</strong>-<br />

dawi Publish<strong>in</strong>g Corparation, Vol. 2, New York, 2006.<br />

[2] D. D. Ba<strong>in</strong>ov, P. S. Simeonov. Systems with impulsive effect, Horwood. Chichister, 1989.<br />

[3] V. Lakshmikantham, D. D. Ba<strong>in</strong>ov, P. S. Semeonov, Theory of impulsive differential equations.<br />

Worlds Scientific, S<strong>in</strong>gapore, 1989.<br />

1995.<br />

Page 16<br />

[4] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations. Worlds Scientific, S<strong>in</strong>gapore,


<strong>Abstract</strong><br />

Optimal Control Problem for Impulsive Systems with Integral Boundary Conditions<br />

A. Ashyralyev 1 and Y.A. Sharifov 2<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey<br />

2 Baku State University, Institute of Cybernetics of ANAS, Baku, Azerbaijan<br />

Impulsive differential equations have become important <strong>in</strong> recent years as ma<strong>the</strong>matical models of<br />

phenomena <strong>in</strong> both physical and social sciences. There is a significant development <strong>in</strong> impulsive <strong>the</strong>-<br />

ory especially <strong>in</strong> <strong>the</strong> area of impulsive differential equations with fixed moments; see for <strong>in</strong>stance <strong>the</strong><br />

monographs [1-4] and <strong>the</strong> references <strong>the</strong>re<strong>in</strong>.<br />

Many of <strong>the</strong> physical systems can be described better by <strong>in</strong>tegral boundary conditions. Integral<br />

boundary conditions are encountered <strong>in</strong> various applications such as population dynamics, blood flow<br />

models, chemical eng<strong>in</strong>eer<strong>in</strong>g and cellular systems. Moreover, boundary value problems with <strong>in</strong>tegral<br />

conditions constitute a very <strong>in</strong>terest<strong>in</strong>g and important class of problems. They <strong>in</strong>clude two, three, multi<br />

and nonlocal boundary value problems as special cases, (see [5-7]). For boundary value problems with<br />

nonlocal boundary conditions and comments on <strong>the</strong>ir importance, we refer <strong>the</strong> reader to <strong>the</strong> papers [8-10]<br />

and <strong>the</strong> references <strong>the</strong>re<strong>in</strong>.<br />

In this paper <strong>the</strong> optimal control problem is considered, when <strong>the</strong> state of <strong>the</strong> system is described<br />

by <strong>the</strong> impulsive differential equations with <strong>in</strong>tegral boundary conditions. By <strong>the</strong> help of <strong>the</strong> Banach<br />

contraction pr<strong>in</strong>ciple <strong>the</strong> existence and uniqueness of solution is proved for <strong>the</strong> correspond<strong>in</strong>g boundary<br />

problem by <strong>the</strong> fixed admissible control. The first and <strong>the</strong> second variation of <strong>the</strong> functional is calculated.<br />

Various necessary conditions of optimality of <strong>the</strong> first and <strong>the</strong> second order are obta<strong>in</strong>ed by <strong>the</strong> help of<br />

<strong>the</strong> variation of <strong>the</strong> controls.<br />

References<br />

[1] M. Benchohra, J. Henderson, S.K. Ntouyas. Impulsive differential equations and <strong>in</strong>clusions. H<strong>in</strong>-<br />

dawi Publish<strong>in</strong>g Corparation, Vol. 2, New York, 2006.<br />

[2] D. D. Ba<strong>in</strong>ov, P. S. Simeonov. Systems with impulsive effect, Horwood. Chichister, 1989.<br />

[3] V. Lakshmikantham, D. D. Ba<strong>in</strong>ov, P. S. Semeonov, Theory of impulsive differential equations.<br />

Worlds Scientific, S<strong>in</strong>gapore, 1989.<br />

1995.<br />

[4] A. M. Samoilenko, N. A. Perestuk, Impulsive differential equations. Worlds Scientific, S<strong>in</strong>gapore,<br />

[5] N.A.Perestyk, V.A. Plotnikov, A.M. Samoilenko, N.V. Skripnik Differential Equations with impulse<br />

Effect: Multivalued Right-hand Sides with Discont<strong>in</strong>uities, DeGruyter Studies <strong>in</strong> Ma<strong>the</strong>matics 40, Walter<br />

de Gruter Co, Berl<strong>in</strong>, 2011.<br />

[6] M. Benchohra, J.J. Nieto, A. Quahab, Second-order boundary value problem with <strong>in</strong>tegral bound-<br />

ary conditions. Boundary Value Problems, vol. 2011, Article ID 260309, 9 pages, 2011.<br />

[7] B. Ahmad, J. Nieto, Existence results for nonl<strong>in</strong>ear boundary value problems of fractional <strong>in</strong>tegro-<br />

differential equations with <strong>in</strong>tegral boundary conditions. Boundary Value Problems, vol. 2009 (2009),<br />

Article ID 708576, 11 pages.<br />

[8] A. Bouncherif, Second order boundary value problems with <strong>in</strong>tegral boundary conditions, Nonl<strong>in</strong>ear<br />

Analysis, 70, 1 (2009), pp. 368-379.<br />

Page 17


[9] R. A. Khan, Existence and approximation of solutions of nonl<strong>in</strong>ear problems with <strong>in</strong>tegral boundary<br />

conditions, Dynamic Systems and Applications, 14, (2005), pp. 281-296.<br />

[10] A. Belarbi, M. Benchohra, A. Quahab, Multiple positive solutions for nonl<strong>in</strong>ear boundary value<br />

problems with <strong>in</strong>tegral boundary conditions, Archivum Ma<strong>the</strong>maticum, vol. 44, no. 1, pp. 1-7, 2008.<br />

Page 18


On Stability Of Hyperbolic- Elliptic Differential Equations With Nonlocal Integral<br />

Condition<br />

A. Ashyralyev 1,2 , Z. Ödemi¸s Özger 1 and F. Özger1<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey 2 Department of Ma<strong>the</strong>matics, ITT<br />

<strong>Abstract</strong><br />

University 74400, Ashgabat, Turkmenistan<br />

The nonlocal boundary value problem for a hyperbolic-elliptic equation<br />

⎧<br />

utt(t) + Au(t) = f(t), 0 ≤ t ≤ 1,<br />

⎪⎨<br />

−utt(t) + Au(t) = g(t), − 1 ≤ t ≤ 0,<br />

1�<br />

⎪⎩ u(−1) = α(s)u(s)ds + ψ, u(0) = ϕ.<br />

0<br />

<strong>in</strong> a Hilbert space H with <strong>the</strong> self-adjo<strong>in</strong>t positive def<strong>in</strong>ite operator A is considered. The stability<br />

estimates for <strong>the</strong> solution of this problem are established.<br />

References<br />

[1] Ashyralyev A., Judakova G. and Sobolevskii PE., A note on <strong>the</strong> difference schemes for hyperbolic-<br />

elliptic equations, Abstr. Appl. Anal., 1486, 1–13, 2006.<br />

[2] Ashyralyev A. and Sobolevskii P.E., A note on <strong>the</strong> difference schemes for hyperbolic equations,<br />

Abstr. Appl. Anal.,16(2), 63–70, 2001.<br />

[3] Sobolevskii P.E. and Chebotaryeva L.M., Approximate solution by method of l<strong>in</strong>es of <strong>the</strong> Cauchy<br />

problem for abstract hyperbolic equations, Izv. Vyssh. Uchebn. Zaved. Mat., 5, 103–116, 1977 (Russian).<br />

[4] Berdyshev A.S. and Karimov E.T., Some non-local problems for <strong>the</strong> parabolic-hyperbolic type<br />

equation with non-characteristic l<strong>in</strong>e of chang<strong>in</strong>g type, Cent. Eur. J. Math., 4(2), 183–193, 2006.<br />

[5] Ashyralyev A. and Ozdemir Y., On nonlocal boundary value problems for hyperbolic-parabolic<br />

equations, Taiwanese Journal of Ma<strong>the</strong>matics, 11(4), 1075–1089, 2007.<br />

[6] Yamazaki T., Hyperbolic-parabolic s<strong>in</strong>gular perturbation for quasil<strong>in</strong>ear equations of Kirchhoff<br />

type with weak dissipation, Ma<strong>the</strong>matical Methods <strong>in</strong> <strong>the</strong> Applied Sciences,32(15),1893–1918, 2009.<br />

[7] Djuraev T.D., ,Boundary Value Problems for Equations of Mixed and Mixed-Composite Types,<br />

FAN, Tashkent, 1979 (Russian).<br />

[8] Salakhitd<strong>in</strong>ov M.S., Equations of Mixed-Composite Type, FAN, Tashkent, 1974.<br />

[9] Bazarov V. and Soltanov H., Some Local and Nonlocal Boundary Value Problems for Equations<br />

of Mixed and Mixed-Composite Types, Ylym, Ashgabat, 1995 (Russian).<br />

[10] Vragov V.N., Boundary Value Problems for Nonclassical Equations of Ma<strong>the</strong>matical Physics,<br />

Textbook for Universities, NGU, Novosibirsk, 1983 (Russian).<br />

1968.<br />

[11] Kre<strong>in</strong> S.G., L<strong>in</strong>ear Differential Equations <strong>in</strong> a Banach Space, Amer. Math. Soc, Providence RI,<br />

[12] Samarskii A.A. and Nikolaev E.S., Numerical Methods for Grid Equations 2, Iterative Methods,<br />

Birkhauser, Basel, Switzerland, 1989.<br />

[13] Ashyralyev A. and Muradov I., On one difference scheme of a second order of accuracy for<br />

hyperbolic equations, Trudy Instituta Matematiki i Mechaniki Akad.Nauk Turkmenistana Ashgabat, 1,<br />

58–63, 1995(Russian).<br />

Page 19


[14] Ashyralyev A. and Aggez N., A note on <strong>the</strong> difference schemes of <strong>the</strong> nonlocal boundary value<br />

problems for hyperbolic equations, Numer. Funct. Anal. Optim., 25, 439–462, 2004.<br />

[15] Ashyralyev A. and Yildirim O., On multipo<strong>in</strong>t nonlocal boundary value problems for hyperbolic<br />

differential and difference equations, Taiwanese J. Math., 14,165–194, 2010.<br />

[16] Ashyralyev A. and Yurtsever H.A., The stability of difference schemes of second-order of accuracy<br />

for hyperbolic–parabolic equations, Comput. Math. Appl., 52, 259–268, 2006.<br />

[17] Ashyralyev A. and Ozdemir Y., Stability of difference schemes for hyperbolic–parabolic equations,<br />

Comput. Math. Appl., 50, 1443–1476, 2005.<br />

[18] Fattor<strong>in</strong>i H.O., Second Order L<strong>in</strong>ear Differential Equations <strong>in</strong> Banach Space, North-Holland<br />

Ma<strong>the</strong>matics Studies, North-Holland, Amsterdam, 1985.<br />

[19] Piskarev S. and Shaw S.Y., On certa<strong>in</strong> operator families related to cos<strong>in</strong>e operator function,<br />

Taiwanese J. Math., 1(14), 1997.<br />

[20] Ashyralyev A. and Gercek O., Nonlocal boundary value problems for elliptic-parabolic differential<br />

and difference equations, Discrete Dynamics <strong>in</strong> Nature and Society,904824, 1–16, 2008.<br />

[21] Ashyralyev A. and Özger F., The hyperbolic-elliptic equation with <strong>the</strong> nonlocal condition, AIP<br />

Conf. Proc., 1389, 581–584, 2011. DOI: 10.1063/1.3636797.<br />

Page 20


<strong>Abstract</strong><br />

FUZZY CONTINUOUS DYNAMICAL SYSTEM: A<br />

MULTIVARIATE OPTIMIZATION TECHNIQUE<br />

Abhirup Bandyopadhyay 1 and Samarjit Kar 1<br />

1 Department of Ma<strong>the</strong>matics, National Institute of Technology, Durgapur, India<br />

This paper presents a multivariate optimization technique for <strong>the</strong> numerical simulation of cont<strong>in</strong>-<br />

uous dynamical systems whose parameters, functional forms and/or <strong>in</strong>itial conditions are modeled by<br />

fuzzy distributions. Fuzzy differential equation (FDE) is <strong>in</strong>terpreted by us<strong>in</strong>g <strong>the</strong> strongly generalized<br />

differentiability concept and is shown that by this concept any FDE can be transformed to a system of<br />

ord<strong>in</strong>ary differential equations (ODEs). By solv<strong>in</strong>g <strong>the</strong> associate ODEs one can f<strong>in</strong>d solutions for FDE.<br />

This approach has an <strong>in</strong>herited drawback of <strong>in</strong>creas<strong>in</strong>g uncerta<strong>in</strong>ty at each <strong>in</strong>stance of time generally with<br />

nonl<strong>in</strong>ear functional forms. Here we present a methodology to numerically simulate <strong>in</strong>terval calculus and<br />

implements a new approach to <strong>the</strong> numerical <strong>in</strong>tegration of fuzzy dynamical systems, where <strong>the</strong> propa-<br />

gation of imprecision as a fuzzy distribution <strong>in</strong> <strong>the</strong> phase space is solved by a constra<strong>in</strong>ed multivariate<br />

optimization technique. Numerical simulations of some fuzzy dynamical systems (viz. Lotka Volterra<br />

model, Lorenz model) are also reported. F<strong>in</strong>ally ecological degradation <strong>in</strong> wetlands of India is modeled<br />

by fuzzy <strong>in</strong>itial value problem and some susta<strong>in</strong>able solution is proposed.<br />

References<br />

1. S. Abbasbandy, T. Allahv<strong>in</strong>loo, Numerical solutions of fuzzy differential equations by Taylor<br />

method, Journal of Computational Methods <strong>in</strong> applied Ma<strong>the</strong>matics 2, 113-124, 2002.<br />

2. S. Abbasbandy, T. Allahv<strong>in</strong>loo, O. Lopez-Pouso, J.J Nieto, Numerical methods for fuzzy differential<br />

<strong>in</strong>clusions, Journal of Computer and Ma<strong>the</strong>matics with Applications 48, 1633-1641, 2004.<br />

3. T. Allahv<strong>in</strong>loo, N. Ahmadi, E. Ahmadi, Numerical solution of fuzzy differential equations by<br />

predictor-corrector method, Information Sciences 177, 1633-1647, 2007.<br />

4. B. Bede, Note on “Numerical solutions of fuzzy differential equations by predictor-corrector<br />

method”, Information Sciences, 178, 1917-1922, 2008.<br />

5. B. Bede., S.G Gal, Almost periodic fuzzy-number-valued functions, Fuzzy Sets and Systems 147,<br />

385-403, 2004.<br />

6. B. Bede., S.G Gal S.G., Generalizations of <strong>the</strong> differentiability of fuzzy-number-valued functions<br />

with applications to fuzzy differential equations, Fuzzy Sets and Systems 151, 581-599, 2005.<br />

7. J.C. Butcher, Numerical methods for ord<strong>in</strong>ary differential equations, John Wiley & Sons, Great<br />

Brita<strong>in</strong>, 2003.<br />

8. Y. Chalco-Cano, H. Roman-Flores, On new solutions of fuzzy differential equations,Chaos, Solitons<br />

and Fractals 38, 112-119, 2008.<br />

9. S.L Chang, L.A. Zadeh, On fuzzy mapp<strong>in</strong>g and control, IEEE Trans, Systems Man Cybernet. 2,<br />

30-34, 1972.<br />

10. P. Diamond, Stability and periodicity <strong>in</strong> fuzzy differential equations, IEEE Trans. Fuzzy Systems<br />

8, 583-590, 2000.<br />

Page 21


<strong>Abstract</strong><br />

Analysis of Dynamical Complex Network of Ecological<br />

Stability Diversity and Persistence<br />

Abhirup Bandyopadhyay 1 and Samarjit Kar 1<br />

1 Department of Ma<strong>the</strong>matics, National Institute of Technology, Durgapur, India<br />

Explorations of ecological networks have led a long l<strong>in</strong>e of scientists to debate <strong>the</strong> <strong>in</strong>fluence of diversity<br />

(number of nodes) <strong>in</strong> terms of species richness and complexity <strong>in</strong> terms of <strong>the</strong> number and structure of<br />

<strong>in</strong>teractions. This research on how vast numbers of <strong>in</strong>teract<strong>in</strong>g species manage to coexist <strong>in</strong> nature<br />

reveals a deep disparity between <strong>the</strong> ubiquity of complex ecosystems <strong>in</strong> nature and <strong>the</strong>ir ma<strong>the</strong>matical<br />

improbability <strong>in</strong> <strong>the</strong>ory. In this paper ecological networks are assumed to be complex dynamical network.<br />

Population dynamics is simulated over ecological complex network and species migration and chang<strong>in</strong>g<br />

food habits are found to be two keystones to species persistence on <strong>the</strong> earth. Also a comparative study<br />

on stability, complexity and persistence over complex dynamical network is shown. Here, we show how<br />

<strong>in</strong>tegrat<strong>in</strong>g models of food-web structure and nonl<strong>in</strong>ear bioenergetic dynamics bridges this disparity and<br />

helps elucidate <strong>the</strong> mechanics of ecological complexity. Structural constra<strong>in</strong>ts of <strong>the</strong>se networks <strong>in</strong>clud<strong>in</strong>g<br />

<strong>the</strong> trophic hierarchy, contiguity, and loop<strong>in</strong>g formalized by <strong>the</strong> “niche model” are shown to greatly<br />

<strong>in</strong>crease persistence <strong>in</strong> complex model ecosystems. We explore <strong>the</strong> <strong>in</strong>terplay of structure and nonl<strong>in</strong>ear<br />

dynamics by systematically vary<strong>in</strong>g diversity, complexity, and function <strong>in</strong> order to “elucidate <strong>the</strong> devious<br />

strategies which make for stability <strong>in</strong> endur<strong>in</strong>g natural systems.” ([19]). Our exploration expands on<br />

previously proposed strategies and shows how recently discovered structural and functional properties of<br />

ecological networks appear to promote stability and persistence <strong>in</strong> large complex ecosystems.<br />

References<br />

[1] J.E. Cohen, F. Briand, and C.M. Newman, (1990). Community food webs: data and <strong>the</strong>ory.<br />

Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>.<br />

[2] A.R. Solow, and A.R. Beet, (1998). On lump<strong>in</strong>g species <strong>in</strong> food webs. Ecology. 79, 2013-2018.<br />

[3] R.J. Williams, and N.D. Mart<strong>in</strong>ez, (2000). Simple rules yield complex food webs. Nature. 404,<br />

180-183.<br />

[4] P. Yodzis, and S. Innes, (1992). Body-size and consumer-resource dynamics. American Naturalist.<br />

139, 1151-1173.<br />

[5] K. McCann, and P. Yodzis, (1995). Biological conditions for chaos <strong>in</strong> a three species food cha<strong>in</strong>.<br />

Ecology. 75, 561-564.<br />

[6] K. McCann, and A. Hast<strong>in</strong>gs, (1997). Re-evaluat<strong>in</strong>g <strong>the</strong> omnivory-stability relationship <strong>in</strong> food<br />

webs. Proc R Soc Lond. B. 264, 1249-1254.<br />

[7] K. McCann, A. Hast<strong>in</strong>gs, and G.R. Huxel, (1998). Weak trophic <strong>in</strong>teractions and <strong>the</strong> balance of<br />

nature. Nature. 395, 794-798.<br />

[8] G.F. Fussman, and G. Heber, (2002). Food web complexity and chaotic population dynamics.<br />

Ecology Letters. 5, 394-401.<br />

[9] C.S. Holl<strong>in</strong>g, (1959b). Some characteristics of simple types of predation and parasitism. Can.<br />

Entom. 91, 385-399.<br />

Page 22


[10] D.L. DeAngelis, R.A. Goldste<strong>in</strong>,and R.V. O’Neill, (1975). A model for trophic <strong>in</strong>teraction. Ecol-<br />

ogy. 56, 881-892.<br />

[11] G.T. Skalski, and J.F. Gilliam, (2001). Functional responses with predator <strong>in</strong>terference: viable<br />

alternatives to <strong>the</strong> Holl<strong>in</strong>g type II model. Ecology. 82, 3083- 3092.<br />

[12] L.A. Real, (1977). The k<strong>in</strong>etics of functional response. American Naturalist. 111, 289-300.<br />

[13] L.A. Real, (1978). Ecological determ<strong>in</strong>ants of functional response. Ecology. 60, 481-485.<br />

[14] C.S. Holl<strong>in</strong>g, (1959a). The components of predation as revealed by a study of small-mammal<br />

predation of <strong>the</strong> European p<strong>in</strong>e sawfly. Can. Entom. 91, 293-320.<br />

[15] D.M. Post, M.E. Conners, and D.S. Goldberg, (2000). Prey preference by a top predator and <strong>the</strong><br />

stability of l<strong>in</strong>ked food cha<strong>in</strong>s. Ecology. 81, 8-14.<br />

1-131.<br />

[16] W.W. Murdoch, and A. Oaten, (1975). Predation and population stability. Adv. Ecol. Res. 9,<br />

[17] M.P. Hassell, (1978). The dynamics of arthropod predator-prey systems. Pr<strong>in</strong>ceton University<br />

Press, Pr<strong>in</strong>ceton.<br />

[18] R.J. Williams, and N.D. Mart<strong>in</strong>ez, (2004b). Stabilization of chaotic and nonpermanent food web<br />

dynamics. European Physics Journal B.<br />

ton.<br />

Page 23<br />

[19] R.M. May, (1973). Stability and Complexity <strong>in</strong> Model Ecosystems. Pr<strong>in</strong>ceton Univ Press, Pr<strong>in</strong>ce


Analytical solution for <strong>the</strong> recovery tests after constant-discharge<br />

tests <strong>in</strong> conf<strong>in</strong>ed aquifers<br />

<strong>Abstract</strong><br />

ABDON ATANGANA<br />

Institute for Groundwater Study, Faculty of Natural and Agricultural Sciences,<br />

University of The Free State, Bloemfonte<strong>in</strong>, 9301, South Africa<br />

abdonatangana@yahoo.fr<br />

In this paper we provide a new analytical solution for residual drawdown dur<strong>in</strong>g <strong>the</strong> recovery<br />

period after constant rate pump<strong>in</strong>g test. We first compare <strong>the</strong> proposed solution with <strong>the</strong> exist<strong>in</strong>g<br />

solution, secondary we compare <strong>the</strong> solution with experimental data from field observation. The<br />

analytical solution is <strong>in</strong> perfect agreement with <strong>the</strong> experimental data for than Cooper<br />

Jacob solution. We derive a new analytical solution for determ<strong>in</strong>ation of <strong>the</strong> sk<strong>in</strong> factor without<br />

any restriction on <strong>the</strong> variables t and t , . We present an analytical solution for <strong>the</strong> drawdown<br />

response <strong>in</strong> a conf<strong>in</strong>ed aquifer that is pumped step-wise or <strong>in</strong>termittently at different discharge<br />

rate on basis of this solution we derive an analytical solution to analyse <strong>the</strong> residual drawdown<br />

data after pump<strong>in</strong>g test with step-wise or <strong>in</strong>termittently chang<strong>in</strong>g discharge rates.<br />

Keywords: Recovery equations, residual drawdown, sk<strong>in</strong> factor, Variable discharges<br />

Page 24<br />

1- G.P. Kruseman and N.A. de Ridder. (1994) Analysis and Evaluation of Pump<strong>in</strong>gTest Data<br />

2- Theis, C.V. 1935. The relation between <strong>the</strong> lower<strong>in</strong>g of <strong>the</strong> piezometric surface and <strong>the</strong> rate and<br />

duration of discharge of well us<strong>in</strong>g groundwater storage. Trans. Amer. Geophys. Union, Vol. 16, pp. 5 19-<br />

524.<br />

3-Jacob, C.E. 1940. On <strong>the</strong> flow of water <strong>in</strong> an elastic artesian aquifer. Trans. Amer. Geophys. Union,<br />

Vol.21, Part 2, pp. 574-586.<br />

4-Jacob, C.E. 1944. Notes on determ<strong>in</strong><strong>in</strong>g permeability by pump<strong>in</strong>g tests under water table conditions.<br />

U.S.Geol. Surv. open. file rept.<br />

5-Jacob, C.E. 1947. Drawdown test to determ<strong>in</strong>e effective radius of artesian well. Trans. Amer. Soc. of<br />

Civil. Engrs., Vol. 112, Paper 2321, pp. 1047-1064.<br />

6- A. Atangana and E. Alabaraoye (<strong>2012</strong>) Groundwater flow described by prolate spheroid coord<strong>in</strong>ates<br />

and new analytical solution for flow model <strong>in</strong> a conf<strong>in</strong>ed aquifer under Theis conditions. Paper accepted<br />

for publication <strong>in</strong> AMMS<br />

7-Ramey, H. J. (1982) Well loss function and <strong>the</strong> sk<strong>in</strong> effect: A review. In: Narasimhan, T.N., (ed) Recent<br />

trends <strong>in</strong> hydrogeology, Geol. Sos. Am, Special paper 189, 265-271<br />

8- De Marsily G. (1986) Quantitative hydrogeology. Academic Press, London, 440<br />

9- Mat<strong>the</strong>ws, C.S and D. G. Russell. (1967) Pressure build up and flow tests <strong>in</strong> wells. Soc. Petrol. Engrs. Of<br />

Am. Inst. M<strong>in</strong>. Met. Engrs., Monograph 1, 67<br />

10- Birsoy V. K. And Summer W. K, (1980) Determ<strong>in</strong>ation of aquifer parameters from step tests and<br />

<strong>in</strong>termittent pump<strong>in</strong>g data. Groundwater


Bright and dark soliton solutions for <strong>the</strong> variable<br />

coe¢ cient generalizations of <strong>the</strong> KP equation<br />

Ahmet Bekir a , Özkan Güner a , Adem Cengiz Çevikel b<br />

a Eskisehir Osmangazi University, Art-Science Faculty,<br />

Department of Ma<strong>the</strong>matics and Computer Science,<br />

Eskisehir-TURKEY<br />

b Yildiz Technical University, Faculty of Education,<br />

Department of Ma<strong>the</strong>matics Education,<br />

Istanbul-TURKEY,<br />

Email : abekir@ogu.edu.tr; ozkanguner@hotmail.com; acevikel@yildiz.edu.tr<br />

July 12, <strong>2012</strong><br />

<strong>Abstract</strong><br />

In this paper, by us<strong>in</strong>g a solitary wave ansatz <strong>in</strong> <strong>the</strong> form of sech p and tanh p<br />

functions, we obta<strong>in</strong> <strong>the</strong> exact bright (non-topological) and dark (topological)<br />

soliton solutions for <strong>the</strong> variable coe¢ cient generalizations of <strong>the</strong> KP (GVCKP)<br />

equation, respectively. Note that, it is always useful and desirable to construct<br />

exact analytical solutions especially soliton-type envelope for <strong>the</strong> understand<strong>in</strong>g<br />

of most nonl<strong>in</strong>ear physical phenomena. The physical parameters <strong>in</strong> <strong>the</strong> soliton<br />

solutions are obta<strong>in</strong>ed as functions of <strong>the</strong> dependent coe¢ cients.<br />

Keywords: Solitons, bright and dark soliton, variable-coe¢ cient general-<br />

izations of <strong>the</strong> KP (GVCKP) equation<br />

References<br />

PACS (2006) : 02.30 Jr, 02.70 Wz, 05.45 Yv, 94.05 Fg.<br />

[1] M.J., Ablowitz, H., Segur, Solitons and <strong>in</strong>verse scatter<strong>in</strong>g transform, SIAM,<br />

Philadelphia, (1981).<br />

[2] W., Mal‡iet, W., Hereman, The tanh method. I: Exact solutions of nonl<strong>in</strong>ear<br />

evolution and wave equations, Physica Scripta, 54 (1996) 563-568.<br />

[3] A.M.,Wazwaz, The tanh method for travell<strong>in</strong>g wave solutions of nonl<strong>in</strong>ear equations,<br />

Applied Ma<strong>the</strong>matics and Computation, 154, 3 (2004) 713-723.<br />

[4] S.A., El-Wakil, M.A., Abdou, New exact travell<strong>in</strong>g wave solutions us<strong>in</strong>g modi…ed<br />

extended tanh-function method, Chaos, Solitons & Fractals, 31, 4, (2007) 840-<br />

852.<br />

Correspond<strong>in</strong>g Author. Tel.: +90 222 2393750; Fax: +90 222 2393578. E-mail address:<br />

abekir@ogu.edu.tr (A.Bekir)<br />

1<br />

Page 25


[5] A.M, Wazwaz, The extended tanh method for new soliton solutions for many<br />

forms of <strong>the</strong> …fth-order KdV equations, Applied Ma<strong>the</strong>matics and Computation,<br />

184, 2 (2007) 1002-1014.<br />

[6] A.M.,Wazwaz, A s<strong>in</strong>e-cos<strong>in</strong>e method for handl<strong>in</strong>g nonl<strong>in</strong>ear wave equations,<br />

Ma<strong>the</strong>matical and Computer Modell<strong>in</strong>g, 40, (2004) 499-508.<br />

[7] A., Bekir, New solitons and periodic wave solutions for some nonl<strong>in</strong>ear physical<br />

models by us<strong>in</strong>g <strong>the</strong> s<strong>in</strong>e–cos<strong>in</strong>e method, Physica Scripta, 77, 4 (2008) 501-504.<br />

[8] E., Fan, H., Zhang A note on <strong>the</strong> homogeneous balance method, Phys. Lett. A,<br />

246, (1998) 403-406.<br />

[9] M.L., Wang, Exact solutions for a compound KdV-Burgers equation, Phys. Lett.<br />

A, 213, (1996) 279-287.<br />

[10] Z.S., Feng,The …rst <strong>in</strong>tegral method to study <strong>the</strong> Burgers-KdV equation, J. Phys.<br />

A: Math. Gen. 35 (2002) 343-349.<br />

[11] N., Taghizadeh, M., Mirzazadeh, The …rst <strong>in</strong>tegral method to some complex<br />

nonl<strong>in</strong>ear partial di¤erential equations, Journal of Computational and Applied<br />

Ma<strong>the</strong>matics, 235, 16 (2011) 4871.<br />

[12] E., Fan, J., Zhang, Applications of <strong>the</strong> Jacobi elliptic function method to specialtype<br />

nonl<strong>in</strong>ear equations, Phys. Lett. A, 305, (2002) 383-392.<br />

[13] S., Liu, Z., Fu, S., Liu, Q., Zhao, Jacobi elliptic function expansion method and<br />

periodic wave solutions of nonl<strong>in</strong>ear wave equations, Phys. Lett. A, 289, (2001)<br />

69-74.<br />

[14] M.L., Wang, X., J., Li Zhang, The G0<br />

G -expansion method and travell<strong>in</strong>g wave<br />

solutions of nonl<strong>in</strong>ear evolution equations <strong>in</strong> ma<strong>the</strong>matical physics, Physics Letters<br />

A, 372, 4 (2008) 417-423.<br />

[15] A., Bekir, Application of <strong>the</strong> G0<br />

G -expansion method for nonl<strong>in</strong>ear evolution<br />

equations, Physics Letters A, 372, 19 (2008) 3400-3406.<br />

[16] M.A., Abdou, The extended F-expansion method and its application for a class<br />

of nonl<strong>in</strong>ear evolution equations, Chaos, Solitons and Fractals, 31 (2007) 95-104.<br />

[17] J.L., Zhang, M.L., Wang, Y.M., Wang, Z.D., Fang, The improved F-expansion<br />

method and its applications, Phys. Lett. A, 350, (2006) 103-109.<br />

[18] Z., Lü, F., Xie, Explicit bi-soliton-like solutions for a generalized KP equation<br />

with variable coe¢ cients, Ma<strong>the</strong>matical and Computer Modell<strong>in</strong>g 52 (2010) 1423<br />

1427<br />

[19] Y., Liang, G., Wei, X., Li, Transformations and multi-solitonic solutions for a<br />

generalized variable-coe¢ cient Kadomtsev–Petviashvili equation, Computers and<br />

Ma<strong>the</strong>matics with Applications 61 (2011) 3268–3277<br />

[20] Z.N., Zhu, Soliton-like solutions of generalized KdV equation with external force<br />

term, Acta Phys. S<strong>in</strong>ica 41 (1992) 1561–1566<br />

[21] J.J., Mao, J.R., Yang, A new method of new exact solutions and solitary wave-like<br />

solutions for <strong>the</strong> generalized variable coe¢ cients Kadomtsev–Petviashvili equation,<br />

Ch<strong>in</strong>. Phys. 15 (2006) 2804–2808.<br />

2<br />

Page 26


[22] H., Triki, A.M.,Wazwaz, Bright and dark soliton solutions for a K(m,n) equation<br />

with t-dependent coe¢ cients. Phys. Lett. A 373, (2009) 2162–2165.<br />

[23] H., Triki, A.M.,Wazwaz, A one-soliton solution of <strong>the</strong> ZK(m, n, k) equation with<br />

generalized evolution and time-dependent coe¢ cients, Nonl<strong>in</strong>ear Analysis: Real<br />

World Applications 12 (2011) 2822–2825<br />

[24] H., Triki, M.S., Ismail, Soliton solutions of a BBM(m, n) equation with generalized<br />

evolution, Applied Ma<strong>the</strong>matics and Computation, 217, 1 (2010) 48-54.<br />

[25] H., Triki, A.M.,Wazwaz, Dark solitons for a comb<strong>in</strong>ed potential KdV and<br />

Schwarzian KdV equations with t-dependent coe¢ cients and forc<strong>in</strong>g term, Applied<br />

Ma<strong>the</strong>matics and Computation, 217 (2011) 8846–8851.<br />

[26] A., Biswas, 1-soliton solution of <strong>the</strong> K(m, n) equation with generalized evolution,<br />

Phys. Lett. A 372 (2008) 4601-4602.<br />

[27] A., Biswas, H., Triki, M., Labidi, Bright and Dark Solitons of <strong>the</strong> Rosenau-<br />

Kawahara Equation with Power Law Nonl<strong>in</strong>earity, Physics of Wave Phenomena,19,<br />

1 (2011) 24–29.<br />

3<br />

Page 27


A Characterization of Compactness <strong>in</strong> Banach Spaces with Cont<strong>in</strong>uous L<strong>in</strong>ear<br />

<strong>Abstract</strong><br />

Representations of <strong>the</strong> Rotation Group of a Circle.<br />

Abdullah Çavu¸s and Mehmet Kunt<br />

cavus@ktu.edu.tr, mkunt@ktu.edu.tr<br />

Department of Ma<strong>the</strong>matics, Karadeniz Technical University, Trabzon, Turkey<br />

Let H be a complex Banach space, T be <strong>the</strong> unit circle {z ∈ C : |z| = 1}, SO(2) be <strong>the</strong> group of all<br />

rotations of T, GL(H) be group of all <strong>in</strong>vertible bounded l<strong>in</strong>ear operators on H, α : SO(2) → GL(H) be<br />

a cont<strong>in</strong>uous l<strong>in</strong>ear representation, x ∈ H. For all n ∈ Z, n-th Fourier coefficient of x with respect to <strong>the</strong><br />

α is def<strong>in</strong>ed by<br />

Pn(x) = 1<br />

�<br />

e<br />

2π T<br />

−<strong>in</strong>t α(t)(x)dt<br />

and <strong>the</strong> Fourier series of x with respect to <strong>the</strong> α is def<strong>in</strong>ed by<br />

+∞�<br />

n=−∞<br />

Pn(x). (1)<br />

The convergence of this series and some properties of Pn(x) are <strong>in</strong>vestigated <strong>in</strong> [5]. In this work, a<br />

characterization of compactness <strong>in</strong> Banach space H is given by means of Fourier coefficients Pn(x). One<br />

of <strong>the</strong> ma<strong>in</strong> results is as follows:<br />

Theorem :Suppose that dimHn < +∞ for all n ∈ Z. Then a closed subset A ⊂ H is compact if and<br />

only if for any ε > 0 <strong>the</strong>re exists a natural number N(ε) such that� n<br />

n+1 σn(x) − x� < ε for all x ∈ A and<br />

n ≥ N(ε).<br />

Where, for all n ∈ N ∪ {0}, σn(.) : H → H is a l<strong>in</strong>ear bounded operator which is def<strong>in</strong>ed by<br />

σn(x) = 1<br />

n + 1<br />

n�<br />

Sk(x)<br />

for all x ∈ H, Sk(x) is <strong>the</strong> k-th partial sum of (1) for all k ∈ N ∪ {0} and<br />

for all n ∈ Z.<br />

References<br />

k=0<br />

Hn := {x ∈ H : α(t)(x) = e <strong>in</strong>t x, ∀t ∈ T}<br />

[1] Edwards R. E., Fourier Series : A Modern Introduction, Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>/Heydelberg/New<br />

York, 1982.<br />

[2] Kislyakov S. V., Classical <strong>the</strong>mes of Fourier analysis, Commutative harmonic analysis I, General<br />

survey, Classical aspects, Encycl. Math. Sci., 15, 113-165 1991.<br />

[3] Schechter M., Pr<strong>in</strong>ciples of Functional Analysis, Graduate Studies <strong>in</strong> Ma<strong>the</strong>matics, vol. 36, Prov-<br />

idence, R. I. American Ma<strong>the</strong>matical Society, (AMS), 2001.<br />

[4] Khadjiev Dj., Çavu¸s A., The imbedd<strong>in</strong>g <strong>the</strong>orem for cont<strong>in</strong>uous l<strong>in</strong>ear representation of <strong>the</strong> rotation<br />

group of a circle <strong>in</strong> Banach spaces, Dokl. Acad. Nauk of Uzbekistan, N 7, 8-11, 2000.<br />

Page 28


[5] Khadjiev Dj., Çavu¸s A., Fourier series <strong>in</strong> Banach spaces, Inverse and Ill-Posed Problems Series,<br />

Ill-Posed and Non-Classical Problems of Ma<strong>the</strong>matical Physics and Analysis, Proceed<strong>in</strong>gs of <strong>the</strong> Inter-<br />

national <strong>Conference</strong>, Samarcand, Uzbekistan, Editor-<strong>in</strong>-Chief : M. M. Lavrent’ev, VSP, Utrecht-Boston,<br />

71-80, 2003.<br />

[6] Khadjiev Dj., The widest cont<strong>in</strong>uous <strong>in</strong>tegral, J. Math. Anal. Appl. 326, 1101-1115, 2007.<br />

Acknowledgement. This work was supported by <strong>the</strong> Commission of Scientific Research Projects of Karadeniz Tech-<br />

nical University, Project number: 2010.111.3.1.<br />

Page 29


The approximate solutions of l<strong>in</strong>ear Goursat Problems via Homotopy Analysis Method<br />

Aytek<strong>in</strong> Ery¬lmaz 1 , Musa Ba¸sbük 2 ; Hüsey<strong>in</strong>Tuna 3<br />

<strong>Abstract</strong><br />

1;2 Department of Ma<strong>the</strong>matics, Nevsehir University, Nevsehir Turkey<br />

3 Department of Ma<strong>the</strong>matics, Mehmet Akif University, Burdur, Turkey<br />

In this study we <strong>in</strong>vestigate <strong>the</strong> l<strong>in</strong>ear Goursat problems that arise <strong>in</strong> l<strong>in</strong>ear partial di¤erential equa-<br />

tions with mixed derivatives. The standart form of Goursat Problem is given by<br />

uxt = f(x; t; u; ux; ut); 0 6 x 6 a; 0 6 t 6 b;<br />

u (x; 0) = g(x); u(0; t) = h(t);<br />

u(0; 0) = g(0) = h(0):<br />

The aim of this work is to present an e¢ cient numerical procedure, namely Homotopy Analysis Method,<br />

for solv<strong>in</strong>g homogeneous and <strong>in</strong>homogeneous l<strong>in</strong>ear Goursat problems. The reliability and e¢ ciency of<br />

<strong>the</strong> proposed method are demonstrated by some numerical examples and performed on <strong>the</strong> computer<br />

algebraic system Ma<strong>the</strong>matica 7.<br />

References<br />

[1] Wazwaz, A., The variational iteration method for a reliable treatment of <strong>the</strong> l<strong>in</strong>ear and <strong>the</strong> non-<br />

l<strong>in</strong>ear Goursat problem, Applied Ma<strong>the</strong>matics and Computation, 193 (2007), 455–462.<br />

[2] Wazwaz, A., Partial Di¤erential Equations and Solitary Waves Theory, Higher Education Press,<br />

Beij<strong>in</strong>g and Spr<strong>in</strong>ger-Verlag Berl<strong>in</strong> Heidelberg, 2009.<br />

[3] Liao, SJ., Beyond Perturbation: Introduction to <strong>the</strong> Homotopy Analysis Method, CRC Press,<br />

Boca Raton, Chapman and Hall, 2003.<br />

[4] Y¬ld¬r¬m, A., Odaba¸s¬, M., The homotopy perturbation method for solv<strong>in</strong>g <strong>the</strong> l<strong>in</strong>ear and <strong>the</strong><br />

nonl<strong>in</strong>ear Goursat problems, International Journal For Numerical Methods In Biomedical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

27 (2011), 1139–1148.<br />

Page 30


Paths of M<strong>in</strong>imal Length on Suborbital Graphs with Recurrence Relations<br />

A.H. Deger 1 , M. Besenk 1 and B.O. Guler 1<br />

<strong>Abstract</strong><br />

1 Department of Ma<strong>the</strong>matics, Karadeniz Technical University, Trabzon, Turkey<br />

In this paper, we study suborbital graphs for congruence subgroup Γ0 (N) of <strong>the</strong> modular group Γ to<br />

have vertices of <strong>the</strong> graph Fu,N and hyperbolic paths of m<strong>in</strong>imal length with recurrence relations give<br />

rise to a special cont<strong>in</strong>ued fraction.<br />

References<br />

[1] Jones G.A., S<strong>in</strong>german D. and Wicks K., The Modular Group and Generalized Farey Graphs,<br />

London Math. Soc. Lecture Note Ser., 316-338, 1991.<br />

[2] Deger A.H., Besenk M. and Guler B.O., On Suborbital Graphs and Related Cont<strong>in</strong>ued Fractions,<br />

Appl. Math. and Comp., 746-750, 2011.<br />

[3] Sims C.C., Graphs and F<strong>in</strong>ite Permutation Groups, Math. Zeitschr., 76-86, 1967.<br />

[4] Akbas M., On Suborbital Graphs for <strong>the</strong> Modular Group, Bull. Lond. Math. Soc., 647-652, 2001.<br />

[5] Neumann P.M., F<strong>in</strong>ite Permutation Groups, Edge-Coloured Graphs and Matrices, Topics <strong>in</strong> Group<br />

Theory and Computation, Academic Press, New York, 1977.<br />

[6] Tsukuzu T., F<strong>in</strong>ite Groups and F<strong>in</strong>ite Geometries, Cambridge University Press, Cambridge, 1982.<br />

[7] Biggs N.L. and White A.T., Permutation Groups and Comb<strong>in</strong>atorial Structures, London Math.<br />

Soc. Lecture Note Ser., Cambridge, 33. CUP, Cambridge, 1982.<br />

[8] Cuyt A., Petersen V.B., Verdonk B., Waadeland H. and Jones W.B., Handbook of Cont<strong>in</strong>ued<br />

Fractions for Special Functions, Spr<strong>in</strong>ger Science + Bus<strong>in</strong>ess Media B.V., 2008.<br />

Page 31


Riesz Basis Property of Eigenfunctions of One Boundary-Value Transmission Problem<br />

<strong>Abstract</strong><br />

A. Hayati OL ¯GAR 1 and O. Sh. MUKHTAROV 2<br />

1 Department of Ma<strong>the</strong>matics, Gaziosmanpasa University, Tokat, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Gaziosmanpasa University, Tokat, Turkey<br />

We consider a Sturm-Liouville equation toge<strong>the</strong>r with eigendependent boundary conditions and two<br />

supplementary transmission condition at <strong>the</strong> one <strong>in</strong>ner po<strong>in</strong>t. Note that some special cases of <strong>the</strong> con-<br />

sidered problem arise after an application of <strong>the</strong> method of separation of variables to <strong>the</strong> heat transfer<br />

problems, <strong>in</strong> vibrat<strong>in</strong>g str<strong>in</strong>g problems when <strong>the</strong> str<strong>in</strong>g is loaded additionally with po<strong>in</strong>t masses, <strong>in</strong> dif-<br />

fraction problems etc. We <strong>in</strong>troduce a new <strong>in</strong>ner product <strong>in</strong> <strong>the</strong> Sobolev Spaces W 1 2 (a, b) and show that<br />

eigenfunctions of our problem form a Riesz basis of this modified space.<br />

References<br />

[1] Gohberg, I. C. and Kre<strong>in</strong>, M. G. , Introduction to <strong>the</strong> Theory of L<strong>in</strong>ear Non-Selfadjo<strong>in</strong>t Operators,<br />

Translations of Ma<strong>the</strong>matical Monographs, vol.18, American Ma<strong>the</strong>matical Society, Providence, Rhode<br />

Island, 1969.<br />

[2] Ladyzhenskaia, O. A. , The Boundary Value Problems of Ma<strong>the</strong>matical Physics, Spr<strong>in</strong>ger-Verlag<br />

New York, 1985.<br />

[3] Muhtarov, O. ., Discont<strong>in</strong>uous Boundary Value Problem with Spectral Parameter <strong>in</strong> Boundary<br />

Condition,Tr.J. of Ma<strong>the</strong>matics,18,183-192, 1994.<br />

1989.<br />

[4] Rodman, L., An Introduction to Operator Polynomials, Birkhauser Verlag, Boston, Massachusetts,<br />

[5] Titchmars, E.C. , Eigenfunctions Expansion Associated with Second Order Differential Equations<br />

I, second edn. Oxford Univ. press, London (1962).<br />

[6] Walter, J. , Regular eigenvalue problems with eigenvalue parameter <strong>in</strong> <strong>the</strong> boundary condition.<br />

Math. Z., 133:301-312, 1973.<br />

Page 32


On A SUBCLASS OF UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS<br />

ABDUL RAHMAN S. JUMA 1 and HAZHA ZIRAR 2<br />

1 Department of Ma<strong>the</strong>matics, Alanbar University, Ramadi, Iraq 2 Department of Ma<strong>the</strong>matics ,<br />

<strong>Abstract</strong><br />

University of Salahadd<strong>in</strong>, Erbil, Kurdistan, Iraq.<br />

In this paper, we have <strong>in</strong>troduced <strong>the</strong> subclass of univalent functions def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> open unit disc<br />

and derived some <strong>in</strong>terest<strong>in</strong>g properties like coefficient estimates, distortion <strong>the</strong>orem, extreme po<strong>in</strong>ts and<br />

radii of close- to- convexity , starlikness and convexity.<br />

References<br />

[1] Aouf, M. K. and Salagean ,G. S. , Generalization of certa<strong>in</strong> subclass of convex functions and<br />

correspond<strong>in</strong>g subclass of starlike functions with negative coeffictients, Ma<strong>the</strong>matica, 50(73), (2008),<br />

119-138.<br />

[2] Flett,T. M. , The dual of an <strong>in</strong>equalities of Hardy and Littlewood and some related <strong>in</strong>equalities,<br />

S. Math. Anal. Appl. 38(1972), 746- 765.<br />

[3] Kanas,S. and Wis<strong>in</strong>iowska,A., Conic regions and stanlike functions, Rev. Roum. Math. Pures<br />

Appl. Math. Soc. 45(2000), 647- 657.<br />

[4] Ronn<strong>in</strong>g,F. , On starlike functions associated with parabolic region, Ann. Univ Mariae Curie<br />

Sklodowska Sect. Aus (1991), 117- 122.<br />

Page 33


F<strong>in</strong>e spectra of upper triangular triple-band matrices over <strong>the</strong> sequence space ℓp,<br />

(0 < p < ∞)<br />

Ali KARASA<br />

Department of Ma<strong>the</strong>matics, Necmett<strong>in</strong> Erbakan, Konya, Turkey<br />

<strong>Abstract</strong> The operator A(r, s, t) on sequence space on ℓp is def<strong>in</strong>ed A(r, s, t)x = (rxk−1 + sxk +<br />

txk+1) ∞ k=0 where x = (xk) ∈ ℓp, with (0 < p < 1). The ma<strong>in</strong> purpose of this paper is to determ<strong>in</strong>e <strong>the</strong><br />

f<strong>in</strong>e spectrum with respect to <strong>the</strong> Goldberg’s classification of <strong>the</strong> operator A(r, s, t) def<strong>in</strong>ed by a triple<br />

sequential band matrix over <strong>the</strong> sequence space ℓp. Additionally, we give <strong>the</strong> approximate po<strong>in</strong>t spectrum,<br />

defect spectrum and compression spectrum of <strong>the</strong> matrix operator A(r, s, t) over <strong>the</strong> space ℓp.<br />

References<br />

[1] A.M. Akhmedov, F. Ba¸sar, On <strong>the</strong> f<strong>in</strong>e spectrum of <strong>the</strong> Cesàro operator <strong>in</strong> c0, Math. J. Ibaraki Univ.<br />

36(2004), 25–32.<br />

[2] F. Ba¸sar, B. Altay, On <strong>the</strong> space of sequences of p-bounded variation and related matrix mapp<strong>in</strong>gs,<br />

Ukra<strong>in</strong>ian Math. J. 55(1)(2003), 136–147.<br />

[3] H. Bilgiç, H. Furkan, On <strong>the</strong> f<strong>in</strong>e spectrum of <strong>the</strong> operator B(r, s, t) over <strong>the</strong> sequence spaces ℓ1 and<br />

bv, Math. Comput. Modell<strong>in</strong>g 45(2007), 883–891.<br />

H. Furkan, H. Bilgiç, F. Ba¸sar, On <strong>the</strong> f<strong>in</strong>e spectrum of <strong>the</strong> operator B(r, s, t) over <strong>the</strong> sequence<br />

spaces ℓp and bvp, (1 < p < ∞), Comput. Math. Appl. 60(7)(2010), 2141–2152.<br />

[4] S. Goldberg, Unbounded L<strong>in</strong>ear Operators, Dover Publications, Inc. New York, 1985.<br />

[5] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons Inc. New York<br />

· Chichester · Brisbane · Toronto, 1978.<br />

[6] J.I. Okutoyi, On <strong>the</strong> spectrum of C1 as an operator on bv, Commun. Fac. Sci. Univ. Ank. Ser. A1.<br />

41(1992), 197–207.<br />

[7] J.B. Reade, On <strong>the</strong> spectrum of <strong>the</strong> Cesaro operator, Bull. Lond. Math. Soc. 17(1985), 263–267.<br />

[8] B.E. Rhoades, The f<strong>in</strong>e spectra for weighted mean operators, Pacific J.<br />

[9] P.D. Srivastava, S. Kumar, F<strong>in</strong>e spectrum of <strong>the</strong> generalized difference operator ∆uv on sequence<br />

space l1, Appl. Math. Comput. <strong>in</strong> press.<br />

[10] R.B. Wenger,<br />

[11] M. Yıldırım, On <strong>the</strong> f<strong>in</strong>e spectrum of <strong>the</strong> Rhaly operators on ℓp, East Asian Math. J. 20(2004),<br />

153–160.<br />

Page 34


Approximation by Certa<strong>in</strong> L<strong>in</strong>ear Positive Operators of Two Variables<br />

A.K. Gazanfer 1 and ·I. Büyükyaz¬c¬ 2<br />

1 Department of Ma<strong>the</strong>matics, Bülent Ecevit University, Zonguldak, Turkey 2 Department of<br />

<strong>Abstract</strong><br />

Ma<strong>the</strong>matics, Ankara University, Ankara, Turkey<br />

In this study, we <strong>in</strong>troduce positive l<strong>in</strong>ear positive operators which are comb<strong>in</strong>ed <strong>the</strong> Chlodowsky<br />

and Szász type operators and study some approximation properties of <strong>the</strong>se operators <strong>in</strong> <strong>the</strong> space of<br />

cont<strong>in</strong>uous functions of two variables on a compact set. The rate of convergence of this operators are<br />

obta<strong>in</strong>ed by means of <strong>the</strong> modulus of cont<strong>in</strong>uity. And we also obta<strong>in</strong> weighted approximation properties<br />

for <strong>the</strong>se positive l<strong>in</strong>ear operators <strong>in</strong> a weighted space of functions of two variables and …nd <strong>the</strong> rate of<br />

<strong>the</strong> convergence for this operators by us<strong>in</strong>g weighted modulus of cont<strong>in</strong>uity.<br />

References<br />

[1] A.D. Gadjiev, R.O. Efendiev and E. Ibikli, Generalized Bernste<strong>in</strong>-Chlodowsky polynomials, Rocky<br />

Mounta<strong>in</strong> J. Math. 28 (1998).<br />

[2] A.D. Gadjiev, L<strong>in</strong>ear positive operators <strong>in</strong> weighted space of functions of several variables, Izvestiya<br />

Acad. of Sciences of Azerbaijan, N4, 1980.<br />

[3] A.D. Gadjiev, H. Hac¬saliho¼glu, Convergence of <strong>the</strong> sequences of l<strong>in</strong>ear positive operators., Ankara,<br />

1995 (<strong>in</strong> Turkish).<br />

[4] E.A. Gadjieva and E. Ibikli, On generalization of Bernste<strong>in</strong>-Chlodowsky polynomials, Hacettepe<br />

Bull. Natur. Sci. Engrg. 24 (1995), 31 40.<br />

[5] N.·Ispir, Ç.Atakut, Approximation by modi…ed Szász–Mirakjan operators on weighted spaces, Proc.<br />

Indian Acad. Sci. (Math. Sci.), 12(4) (2002) 571–578.<br />

[6] F. Ta¸sdelen, A. Olgun, G. B. Tunca, Approximation of functions of two variables by certa<strong>in</strong> l<strong>in</strong>ear<br />

positive operators, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 117, No. 3, August 2007, pp. 387–399.<br />

[7] V. I. Volkov , On <strong>the</strong> convergence of sequences of l<strong>in</strong>ear positive operators <strong>in</strong> <strong>the</strong> space of cont<strong>in</strong>uous<br />

functions of two variable, Math. Sb. N. S 43(85) (1957) 504 (Russian).<br />

[8] Z. Walczak, On certa<strong>in</strong> modi…ed Szász–Mirakjan operators for functions of two variable, Demon-<br />

stratio Math. 33(1) (2000) 92–100.<br />

Page 35


Impulsive differential equations with variable<br />

times<br />

A.Lakmeche (1) and F.Berrabah (2)<br />

(1) Djillali Liabes University, Sidi Bel Abbes, Algeria, lakmeche@yahoo.fr<br />

(2) Djillali Liabes University, Sidi Bel Abbes, Algeria, berrabah f@yahoo.fr<br />

<strong>Abstract</strong><br />

In this paper, Schauder-Tychonoff’s fixed po<strong>in</strong>t <strong>the</strong>orem and <strong>the</strong> notion of<br />

upper and lower solutions are used to <strong>in</strong>vestigate <strong>the</strong> existence of solutions for<br />

first order impulsive equations.<br />

Keywords:Impulsive equations; upper and lower solutions; fixed po<strong>in</strong>t.<br />

References<br />

[1] J. Dugundji and A, Granas, Fixed po<strong>in</strong>t Theory, Spr<strong>in</strong>ger-Verlag, New York, 2003<br />

[2] V. Lakshmikantham, D.D. Ba<strong>in</strong>ov and P.S.Simeonov, Theory of impulsive Differential<br />

Equations, World Scientific, S<strong>in</strong>gapore, 1989<br />

Page 36


PARABOLIC PROBLEMS WITH PARAMETER OCCURING IN<br />

ENVIRONMENTAL ENGINEERING<br />

AIDA SAHMUROVA<br />

Okan University, Department of Adm<strong>in</strong>stration of Health, Ak…rat, Tuzla<br />

34959 Istanbul, Turkey, E-mail: aida.sahmurova@okan.edu.tr<br />

VELI B. SHAKHMUROV<br />

Okan University, Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Ak…rat, Tuzla 34959<br />

Istanbul, Turkey, E-mail: veli.sahmurov@okan.edu.tr<br />

<strong>Abstract</strong><br />

In this work, <strong>the</strong> uniform well possedenes of s<strong>in</strong>gular perturbation problems<br />

for parameter dependent parabolic di¤erential-operator equations are obta<strong>in</strong>ed.<br />

These problems occur <strong>in</strong> phytoremediation modell<strong>in</strong>g.<br />

Key Word: S<strong>in</strong>gular perturbation, Initial value problems; Di¤erentialoperator<br />

equations; <strong>Abstract</strong> parabolic equation; Interpolation of Banach spaces;<br />

Semigroups of operators; phytoremidation modell<strong>in</strong>g<br />

AMS: 34G10, 35J25, 35J70<br />

1. Introduction<br />

Remediation techniques have been based on ei<strong>the</strong>r immobilization, extraction<br />

by physick-chemical methods, landhold<strong>in</strong>g, or burial. These method often<br />

have some shortcom<strong>in</strong>g: requir<strong>in</strong>g special equipment, expensive, can remove<br />

biological activity from <strong>the</strong> soil, and can important a¤ect <strong>the</strong> soil physical properties.<br />

The model describ<strong>in</strong>g <strong>in</strong> this projet is developed <strong>in</strong> three parts. First, <strong>the</strong><br />

dynamic portion will be developed us<strong>in</strong>g a a reaction-di¤usion systems. Next,<br />

<strong>the</strong> cost function will <strong>in</strong>volve <strong>the</strong> dynamic state variables and …nally <strong>the</strong> desired<br />

EPA target will be de…ned as ma<strong>the</strong>matical property. Assume u1 (t; x) ;<br />

u2 (t; x) ; u3 (t; x) are amount of heavy metal <strong>in</strong> <strong>the</strong> environment <strong>in</strong> <strong>the</strong> roots and<br />

<strong>in</strong> <strong>the</strong> shoots at t months on x = (x1; x2; x3) place, respectively. S<strong>in</strong>ce <strong>the</strong> plant<br />

toxicant <strong>in</strong>teraction dynamic occurs dur<strong>in</strong>g a harvest season, we need to describe<br />

<strong>the</strong> process one harvest cycle. The <strong>in</strong>itial amount of metal <strong>in</strong> di¤erent harvest<br />

cycle depends on what is rema<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> soil at <strong>the</strong> end of <strong>the</strong> cycle. The<br />

ma<strong>the</strong>matical description of this process can be obta<strong>in</strong>ed as <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>itial<br />

value problem (IVP) for systems of delay parabolic equation with parameter<br />

s @ui<br />

@t +<br />

3X<br />

bj (s; t) uj (t j; x) = fi (t; x) , 0 < t T;<br />

j=1<br />

ui (t; x) = gi (t; x) ; j t 0; x 2 [a; b] ; i; j = 1; 2; 3:<br />

1<br />

Page 37


ON DARBOUX HELICES IN MINKOWSKI SPACE R 3 1<br />

A. ¸Senol 1 , E. Z¬plar 2 and Y. Yayl¬ 2<br />

1 Department of Ma<strong>the</strong>matics, Çank¬r¬Karatek<strong>in</strong> University, Çank¬r¬, Turkey 2 Department of<br />

<strong>Abstract</strong><br />

Ma<strong>the</strong>matics, Ankara University,Ankara, Turkey<br />

In <strong>the</strong> present study, we give <strong>the</strong> conditions for a curve <strong>in</strong> <strong>the</strong> M<strong>in</strong>kowski space to be a Darboux<br />

helix. We show that is a Darboux helix if <strong>the</strong>re exists a …xed direction d <strong>in</strong> R 3 1 such that <strong>the</strong> function<br />

hW (s); di is constant. We give <strong>the</strong> relation between slant helice and Darboux helice. As a particular case,<br />

if we take kwk =constant, <strong>the</strong> curves are constant precession. Some more particular cases of constant<br />

precession curves are studied.<br />

References<br />

[1] Ahmad T. Ali and Lopez R., Slant Helices <strong>in</strong> M<strong>in</strong>kowski space R 3 1, J. Korean Math. Soc., 48 , No.<br />

1, 159-167, 2011.<br />

[2] M. do Carmo, Di¤erential Geometry of Curves and Surfaces, Prentice Hall, 1976.<br />

[3] Izumiya, S and Tkeuchi, N., New special curves and developable surfaces, Turk J. Math., 28,<br />

153-163, 2004.<br />

2008.<br />

[4] Sco…eld, P.D. Curves of constant precession. Am. Math. Montly 102 (1995), 531-537<br />

[5]W. Kuhnel, Di¤erential Geometry: Curves, Surfaces, Manifolds, Weisbaden: Braunschwe<strong>in</strong>g, 1999.<br />

[6]R. Lopez, Di¤erential geometry of curves and surfaces <strong>in</strong> Lorentz-M<strong>in</strong>kowski space,arXiv:0810.3351v1,<br />

[7]Kula, L and Yayl¬Y. 2005 On slant helix and its spherical <strong>in</strong>dicatrix. Applied Ma<strong>the</strong>matics and<br />

computation 169, 600-607.<br />

[8]J. Walrave, Curves and surfaces <strong>in</strong> M<strong>in</strong>kowski space, Doctoral Thesis, K.U. Leuven, Fac. Sci.,<br />

Leuven, 1995.<br />

[9]Z¬plar E, Senol A,Yayl¬Y., On Darboux Helices <strong>in</strong> Euclidean 3-space, submitted.<br />

[10]Yayl¬Y, Hac¬saliho¼glu H.H, Closed curves <strong>in</strong> <strong>the</strong> m<strong>in</strong>kowski 3-spaceHadronic journal 23, 259-272<br />

(2000).<br />

Page 38


On <strong>the</strong> Numerical Solution of a Diffusion Equation Aris<strong>in</strong>g <strong>in</strong> Two-phase Fluid Flow<br />

A.S. Erdogan and A.U. Sazaklioglu<br />

<strong>Abstract</strong><br />

Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey<br />

Many applied problems <strong>in</strong> fluid mechanics and ma<strong>the</strong>matical biology were formulated as <strong>the</strong> math-<br />

ematical model of partial differential equations. Fluid flow <strong>in</strong>side capillaries were also considered with<br />

ma<strong>the</strong>matical models [1]-[3]. But it is known that due to <strong>the</strong> lack of some data and/or coeffi cients, many<br />

real-life problems are modeled as <strong>in</strong>verse problems [4]-[5]. In this paper, specific model<strong>in</strong>g of <strong>the</strong> fluid<br />

flow for an unknown pressure is modeled as a two-phase flow equation. The unknown pressure act<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> model can be identified by us<strong>in</strong>g <strong>the</strong> overdeterm<strong>in</strong>ed condition. Difference schemes are constructed<br />

for obta<strong>in</strong><strong>in</strong>g approximate solutions of this <strong>in</strong>verse problem. Stability estimates for <strong>the</strong> solution of <strong>the</strong>se<br />

difference schemes are established.<br />

References<br />

[1] F. Loth, P.F. Fischer, N. Arslan, C.D. Bertram, S.E. Lee, T.J. Royston, W.E. Shaalan and H.S.<br />

Bassiouny, Transitional flow at <strong>the</strong> venous anastomosis of an arteriovenous graft: Potential activation of<br />

<strong>the</strong> ERK1/2 mechanotransduction pathway, Journal of Biomechanical Eng<strong>in</strong>eer<strong>in</strong>g , 125, 49-61, 2003.<br />

[2] N. Arslan, A.S. Erdogan, A. Ashyralyev, Computational fluid flow solution over endo<strong>the</strong>lial cells<br />

<strong>in</strong>side <strong>the</strong> capillary vascular system, International Journal for Numerical Methods <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g, 74(11),<br />

1679-1689, 2008.<br />

[3] A.S.Erdogan, A note on <strong>the</strong> right-hand side identification problem aris<strong>in</strong>g <strong>in</strong> biofluid mechanics,<br />

<strong>Abstract</strong> and Applied Analysis, <strong>2012</strong>.<br />

[4] V.T. Borukhov, P.N. Vabishchevich, Numerical solution of <strong>the</strong> <strong>in</strong>verse problem of reconstruct<strong>in</strong>g<br />

a distributed right-hand side of a parabolic equation, Computer Physics Communications, 126, 32-36,<br />

2000.<br />

[5] A. Ashyralyev, A.S. Erdogan, On <strong>the</strong> numerical solution of a parabolic <strong>in</strong>verse problem with <strong>the</strong><br />

Dirichlet condition, International Journal of Ma<strong>the</strong>matics and Computation, 11(J11), 73-81, 2011.<br />

Page 39


On <strong>the</strong> Solution of a Three Dimensional Convection Diffusion Problem<br />

Abdullah Said Erdogan ve Mustafa Alp<br />

Department of Ma<strong>the</strong>matics, Fatih University, 34500, Buyukcekmece,<br />

Istanbul, Turkey<br />

Department of Ma<strong>the</strong>matics, Faculty of Arts and Sciences, Duzce University<br />

81620, Duzce, Turkey,<br />

<strong>Abstract</strong><br />

In this paper, <strong>the</strong> Ro<strong>the</strong> difference scheme and <strong>the</strong> Adomian Decomposition<br />

method are presented for obta<strong>in</strong><strong>in</strong>g <strong>the</strong> approximate solution of<br />

three dimensional convection-diffusion problem. Stability estimates for<br />

<strong>the</strong> difference problem is presented.<br />

Keywords: F<strong>in</strong>ite difference method, Adomian Decomposition Method,<br />

Convection-diffusion equation<br />

1 Introduction<br />

In many important applications <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g such as transport of air and<br />

water pollutants, convection-diffusion problems arises. An example of this k<strong>in</strong>d<br />

of problem is a forced heat transfer. Several numerical methods are proposed<br />

for solv<strong>in</strong>g three dimensional convection diffusion problem (see [1]-[11] and <strong>the</strong><br />

references <strong>the</strong>re<strong>in</strong>). In this paper, we focus on <strong>the</strong> follow<strong>in</strong>g mixed problem for<br />

<strong>the</strong> three dimensional convection-diffusion equation<br />

⎧ ∂u<br />

∂t ⎪⎨<br />

⎪⎩<br />

+ b1 (x, y, z) ∂u<br />

∂x + b2 (x, y, z) ∂u<br />

∂y + b3 (x, y, z) ∂u<br />

�<br />

∂z<br />

− a1 ∂2u ∂x2 + a2 ∂2u ∂y2 + a3 ∂2u ∂z2 �<br />

= f (t, x, y, z) , <strong>in</strong> Ω × P,<br />

(1)<br />

u (x, y, z, t) = 0, on ∂Ω × P ,<br />

u (x, y, z, 0) = g (x, y, z) , <strong>in</strong> Ω,<br />

where Ω = (0, 1)×(0, 1)×(0, 1) , P = (0, T ), b1(x, y, z), b2(x, y, z), b3(x, y, z), g (x, y, z)<br />

are suffi ciently smooth functions and a1, a2,a3 are positive constants. Here,<br />

b1 (x, y, z) , b2 (x, y, z), b3 (x, y, z) , a1, a2 and a3 are velocity components of <strong>the</strong><br />

fluid <strong>in</strong> <strong>the</strong> directions of <strong>the</strong> axes at <strong>the</strong> po<strong>in</strong>t (x, y, z) at time t.<br />

References<br />

[1] M. M. Gupta, and J. Zhang, Applied Ma<strong>the</strong>matics and Computation 113,<br />

249-274 (2000).<br />

[2] V. John, and E. Schmeyer, Comput. Methods Appl. Mech. Engrg 198, 475—<br />

494 (2008).<br />

1<br />

Page 40


[3] Y. Ma, and Y. Ge, Applied Ma<strong>the</strong>matics and Computation 215, 3408—<br />

3417(2010)<br />

[4] J. Zhang, L. Gea, and J. Kouatchou, Ma<strong>the</strong>matics and Computers <strong>in</strong> Simulation<br />

54, 65—80(2000)<br />

[5] P. Theeraek, S. Phongthanapanich, and P. DechaumphaiMa<strong>the</strong>matics and<br />

Computers <strong>in</strong> Simulation 82, 220—233(2011)<br />

[6] Xue-Hong Wu, Zhi-Juan Chang, Yan-Li Lu, Wen-Quan Tao, and Sheng-<br />

P<strong>in</strong>g Shen Eng<strong>in</strong>eer<strong>in</strong>g Analysis with Boundary Elements 36, 1040—1048<br />

(<strong>2012</strong>).<br />

[7] Hans-Görg Roos, and H. Zar<strong>in</strong>, Journal of Computational and Applied<br />

Ma<strong>the</strong>matics 150, 109—128 (2003).<br />

[8] K.J. <strong>in</strong>’t Hout, and B.D. Welfert, Applied Numerical Ma<strong>the</strong>matics 57, 19—<br />

35(2007).<br />

[9] F.S.V. Bazan, Applied Ma<strong>the</strong>matics and Computation200, 537—546 (2008).<br />

[10] M. Dehghan, Ma<strong>the</strong>matical Problems <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g 2005(1), 61—74<br />

(2005).<br />

[11] Y.Tanaka, T.Honma and I. Kaji, Appl. Math. Modell<strong>in</strong>g 10, 170-175 (1986).<br />

[12] P.E. Sobolevski, Dokl. Akad. Nauk. SSSR 201(5), 1063-1066 (1971).<br />

[13] Kh. A. Alibekov, and P. E. Sobolevskii, Ukra<strong>in</strong>. Math. Zh. 31(6), 627—634<br />

(1979).<br />

[14] A. Ashyralyev, and P.E. Sobolevskii, Well-Posedness of Parabolic Difference<br />

Equations, Basel, Boston, Berl<strong>in</strong>: Birkhäuser Verlag, 1994.<br />

[15] http://www.fatih.edu.tr/~aserdogan/AA/cdp.m<br />

[16] S. Momani, Turk J Math 32, 51-60 (2008).<br />

[17] G. Adomian, Solv<strong>in</strong>g Frontier problems of Physics: The decomposition<br />

method, Kluwer Academic Publishers, 1994.<br />

2<br />

Page 41


A Fuzzy Max-M<strong>in</strong> Approach to Multi Objective, Multi Echelon Closed Loop Supply Cha<strong>in</strong><br />

B. Ahlatcioglu Ozkok 1 , E. Budak 1 and S. Ercan 2<br />

1 Department of Ma<strong>the</strong>matics, Yildiz Technical University, Istanbul, Turkey 2 Department of<br />

<strong>Abstract</strong><br />

Ma<strong>the</strong>matics, Firat University, Elazig, Turkey<br />

In today’s competitive markets, optimiz<strong>in</strong>g <strong>the</strong> process of deliver<strong>in</strong>g products from suppliers of raw<br />

materials to <strong>the</strong> customers for <strong>the</strong> firms formalizes an important problem <strong>in</strong> <strong>the</strong> literature. Increas<strong>in</strong>gly<br />

contam<strong>in</strong>ated world and limited sources of energy <strong>in</strong> recent years are regarded, it is <strong>in</strong>evitable for <strong>the</strong><br />

ma<strong>the</strong>matical models of any supply cha<strong>in</strong> to have an environmentalist perspective. Hence, closed loop<br />

supply cha<strong>in</strong> method has an <strong>in</strong>creas<strong>in</strong>g importance. In this study, a multi-objective l<strong>in</strong>ear model is given<br />

for <strong>the</strong> multi-echelon closed loop supply cha<strong>in</strong> and <strong>the</strong> solution is obta<strong>in</strong>ed by utiliz<strong>in</strong>g Zimmermann’s<br />

”m<strong>in</strong>” operator with a fuzzy approach <strong>in</strong> which <strong>the</strong> m<strong>in</strong>imum satisfactions of objectives are maximized.<br />

The model is to determ<strong>in</strong>e <strong>the</strong> locations of facilities and distribution quantity on <strong>the</strong> network regard<strong>in</strong>g<br />

three objective functions, which are; m<strong>in</strong>imiz<strong>in</strong>g time and cost, maximiz<strong>in</strong>g rat<strong>in</strong>g.<br />

References<br />

[1] Wei, J., Zhao, J., Pric<strong>in</strong>g decisions with retail competition <strong>in</strong> a fuzzy closed-loop supply cha<strong>in</strong>,<br />

Expert Systems with Applications, Vol. 38, pp. 11209-11216, 2011.<br />

[2] Pishvaee. M.S., Razmi, J., Environmental supply cha<strong>in</strong> network design us<strong>in</strong>g multi-objective fuzzy<br />

ma<strong>the</strong>matical programm<strong>in</strong>g, In Press, Corrected Proof, Available onl<strong>in</strong>e 20 October 2011.<br />

[3] Zimmerman, H.J., Fuzzy Set Theory and its applications, Kluwer Academic Publishers, Boston/<br />

Dordrecht/ London, 1992.<br />

Page 42


A Fuzzy Approach to Multi Objective Multi Echelon Supply Cha<strong>in</strong><br />

B. Ahlatcioglu Ozkok 1 , S. Ercan 2 and E. Budak 1<br />

1 Department of Ma<strong>the</strong>matics, Yildiz Technical University, Istanbul, Turkey 2 Department of<br />

<strong>Abstract</strong><br />

Ma<strong>the</strong>matics, Firat University, Elazig, Turkey<br />

Recent times, companies are be<strong>in</strong>g forced by hard market<strong>in</strong>g conditions to make significant and<br />

strategic decisions on <strong>the</strong>ir supply cha<strong>in</strong>s. In this context, companies are try<strong>in</strong>g to optimize supply<br />

cha<strong>in</strong>s towards customer demands and try<strong>in</strong>g to prevent costs that caused by number of <strong>in</strong>active facilities.<br />

In this study, by us<strong>in</strong>g AHP we make decision about potential establishment of a number of potential<br />

warehouses and distributions centers at regions to be selected from a set of possible candidates with<br />

certa<strong>in</strong> possibilities of customer demands <strong>in</strong> <strong>the</strong> supply cha<strong>in</strong> network of a company that is import<strong>in</strong>g<br />

and export<strong>in</strong>g clean<strong>in</strong>g materials. The proposed model attempts to simultaneously m<strong>in</strong>imize total cost<br />

and maximiz<strong>in</strong>g rat<strong>in</strong>g candidate locations us<strong>in</strong>g mixed <strong>in</strong>teger l<strong>in</strong>ear programm<strong>in</strong>g. To obta<strong>in</strong> solution<br />

fuzzy decision mak<strong>in</strong>g method is used and numerical example is illustrated.<br />

References<br />

[1] Tsiakis, P., Shah, N., Pantelides, C.C., Design of multi-echelon supply cha<strong>in</strong> network under demand<br />

uncerta<strong>in</strong>ty, Ind. Eng. Chem. Res., 40, 3585-3604, 2001.<br />

[2] Amid, A., Ghodsypour, S.H., O’Brien, C., Fuzzy multi objective l<strong>in</strong>ear model for supplier selection<br />

<strong>in</strong> a supply cha<strong>in</strong>, Int. J. Production Economics, 104, 394-407, 2006.<br />

[3] Zimmerman, H.J., Fuzzy Set Theory and its applications, Kluwer Academic Publishers, Boston/<br />

Dordrecht/London, 1992.<br />

Page 43<br />

[4] Kokangul, A., Susuz, Z., Integrated analytical hierarch process and ma<strong>the</strong>matical programm<strong>in</strong>g to<br />

supplier selection problem with quantity discount, Applied Ma<strong>the</strong>matical Model<strong>in</strong>g, 33, 1417-1429, 2009.


Model<strong>in</strong>g Vot<strong>in</strong>g Behavior <strong>in</strong> <strong>the</strong> Eurovision Song Contest<br />

B. Dogru 1<br />

1 Department of Economics, <strong>Gumushane</strong> University, <strong>Gumushane</strong>, Turkey<br />

<strong>Abstract</strong><br />

Model<strong>in</strong>g vot<strong>in</strong>g behavior or determ<strong>in</strong>ants of vot<strong>in</strong>g <strong>in</strong> a popular music competition such as<br />

Queen Elizabeth Piano Contest and Eurovision Song Contest have been grow<strong>in</strong>g tremendously after<br />

2000s. (See [1], [4], [5], [9]). The aim of this study is also to model , vot<strong>in</strong>g behavior of juries<br />

and public op<strong>in</strong>ion (via televot<strong>in</strong>g system) of country <strong>in</strong> evaluat<strong>in</strong>g <strong>the</strong> s<strong>in</strong>ger of country<br />

( where is <strong>the</strong> total number of participants <strong>in</strong> <strong>the</strong> Eurovision Song Contest (ESC). We<br />

modeled vot<strong>in</strong>g behavior tak<strong>in</strong>g <strong>in</strong>to consideration <strong>the</strong> <strong>in</strong>dividual characteristic of performer and<br />

voter, as well as quality of song. Characteristic properties of performer and<br />

characteristics of voter toge<strong>the</strong>r affect votes given to a performer, as well as<br />

exchange of votes between two countries. Vot<strong>in</strong>g equation can be improved with <strong>the</strong>se factors as<br />

below:<br />

Where are parameters to be estimated. The last two parameters of right-hand<br />

side of <strong>the</strong> equation (1) are aff<strong>in</strong>ity and objective quality of song. These two parameters toge<strong>the</strong>r<br />

<strong>in</strong>dicate some <strong>in</strong>dividual characteristics of s<strong>in</strong>ger and voter such as gender (male, female and duet),<br />

<strong>the</strong> “language” <strong>in</strong> which song is performed (English, English +national language, French, National<br />

language), <strong>the</strong> order of “appearance” <strong>in</strong> <strong>the</strong> contest, whe<strong>the</strong>r <strong>the</strong> song is performed “alone” or <strong>in</strong> a<br />

“group”, a dummy for “host” country ( if s<strong>in</strong>ger represents <strong>the</strong> host country, <strong>the</strong> variable takes 1 and<br />

0 for o<strong>the</strong>r), and a dummy variable to capture “cultural block” ties’ effect on vot<strong>in</strong>g (Western,<br />

Scand<strong>in</strong>avia, Former Yugoslavia, Former Socialist and Independents). Geographic effect<br />

and quality of a song are computed as below<br />

Page 44<br />

Estimation result of <strong>the</strong> l<strong>in</strong>ear vot<strong>in</strong>g equation 4 (<strong>in</strong>clud<strong>in</strong>g neighborhood and quality<br />

variable) shows that not only quality of <strong>the</strong> song is an important part of vot<strong>in</strong>g but also aff<strong>in</strong>ity<br />

variables are very crucial determ<strong>in</strong>ants of vot<strong>in</strong>g equation. Estimation result also <strong>in</strong>dicates that order<br />

of appearance <strong>in</strong> <strong>the</strong> contest, <strong>the</strong> language of <strong>the</strong> song and <strong>the</strong> gender of <strong>the</strong> perform<strong>in</strong>g artist turn<br />

out to be quite important parameters <strong>in</strong> expla<strong>in</strong><strong>in</strong>g vot<strong>in</strong>g behavior.<br />

References<br />

[1] Dekker, A. (2007). The Eurovision Song Contest as a ‘Friendship’ Network.<br />

Connectıons, 27(3), 53-58.<br />

[4] G<strong>in</strong>sburgh, V., & Noury, A. (2004). Cultural Vot<strong>in</strong>g The Eurovision Song<br />

Contest. Discussion Papers: http://www. core. ucl.<br />

[5] Haan, M., Dijkstra, S. G., & Dijkstra, P. T. (2005). Expert Judgment Versus<br />

Public Op<strong>in</strong>ion – Evidence from <strong>the</strong> Eurovision Song Contest. Journal of Cultural<br />

Economics(29), 59-78.<br />

[9] Yair, G., & Maman, D. (1996). The Persisitent Structure of Hegomony <strong>in</strong> <strong>the</strong><br />

Eurovision Song Contest. Acta Sociologica, 39, 309-325.


Derivation and numerical study of relativistic Burgers<br />

equations posed on Schwarzschild spacetime<br />

Baver Okutmustur<br />

Middle East Technical University (METU)<br />

baver@metu.edu.tr<br />

We consider nonl<strong>in</strong>ear hyperbolic balance laws posed on a curved spacetime<br />

endowed with a volume form and identify a unique (up to normalization) hyperbolic<br />

balance law that enjoys <strong>the</strong> Lorentz <strong>in</strong>variance property also shared<br />

by <strong>the</strong> Euler equations of relativistic compressible fluids. The proposed model<br />

can be viewed as a relativistic version of Burgers equation and provides us with<br />

a simplified model on which numerical methods for hyperbolic equations can<br />

be developed and analyzed. This model is also compared with a second model<br />

derived directly from <strong>the</strong> relativistic Euler equations. We <strong>the</strong>n <strong>in</strong>troduce a f<strong>in</strong>ite<br />

volume scheme for <strong>the</strong> approximation of discont<strong>in</strong>uous solutions to <strong>the</strong> Burgerstype<br />

model when <strong>the</strong> background is chosen to be (a subset of) <strong>the</strong> Schwarzschild<br />

spacetime. Our scheme is formulated geometrically and is consistent with <strong>the</strong><br />

natural divergence form of <strong>the</strong> balance law and applies to weak solutions conta<strong>in</strong><strong>in</strong>g<br />

shock waves. Most importantly, our scheme is well-balanced <strong>in</strong> <strong>the</strong> sense<br />

that it preserves static equilibrium solutions. Numerical experiments demonstrate<br />

<strong>the</strong> convergence of <strong>the</strong> proposed f<strong>in</strong>ite volume scheme and its relevance<br />

for comput<strong>in</strong>g late-time asymptotics of (possibly) discont<strong>in</strong>uous solutions on a<br />

curved background.<br />

This presentation is based on <strong>the</strong> jo<strong>in</strong>t paper [2].<br />

References<br />

[1] P. Amorim, P.G. LeFloch, and B. Okutmustur, F<strong>in</strong>ite volume schemes on<br />

Lorentzian manifolds, Comm. Math. Sc., 6. (2008), pp. 1059–1086.<br />

[2] P.G. LeFloch, H. Makhlof, and B. Okutmustur, Relativistic Burgers equations<br />

on a curved spacetime. Derivation and f<strong>in</strong>ite volume approximation,<br />

SIAM J. NUMER. ANAL.,Vol. 50, No. 4, (<strong>2012</strong>), pp. 21362158.<br />

[3] P.G. LeFloch and B. Okutmustur, Hyperbolic conservation laws on spacetimes.<br />

A f<strong>in</strong>ite volume scheme based on differential forms, Far East J.<br />

Math. Sci. 31. (2008), pp. 49–83.<br />

[4] G. Russo and A. Khe, High–order well–balanced schemes for systems of<br />

balance laws, <strong>in</strong> “ Hyperbolic problems: <strong>the</strong>ory, numerics and applications”,<br />

Proc. Sympos. Appl. Math., Vol. 67, Part 2, Amer. Math. Soc.<br />

(2009), pp. 919–928.<br />

Jo<strong>in</strong>t work with: Philippe LeFloch and Hasan Makhlof (Université Pierre et Marie<br />

Curie)<br />

Page 45


Newton-Pade Approximations for Univariate and Multivariate Functions<br />

C. Akal 1 , A. Lukashov 2<br />

1;2 Department of Ma<strong>the</strong>matics, Faculty of Arts and Science, Fatih University, Istanbul, Turkey<br />

<strong>Abstract</strong><br />

The Newton-Padé approximants are a particular case of <strong>the</strong> multipo<strong>in</strong>t Padé approximants, corre-<br />

spond<strong>in</strong>g to <strong>the</strong> situation when <strong>the</strong> sets of <strong>in</strong>terpolation po<strong>in</strong>ts are nested.<br />

One may consult papers [1-11] for <strong>the</strong> <strong>the</strong>ory of those approximations for univariate functions. Re-<br />

cently, <strong>the</strong> authors [13] found a new form for <strong>the</strong> Newton-Padé approximations and used it <strong>in</strong> <strong>the</strong>ir<br />

convergence study. In [12] a multivariate generalization of <strong>the</strong> Newton-Padé approximations was <strong>in</strong>tro-<br />

duced.<br />

The goal of this note is two-fold. Firstly, we will give short extract from our forthcom<strong>in</strong>g paper [13].<br />

Next, we present generalizations of ma<strong>in</strong> lemmas for <strong>the</strong> case of multivariate functions. For <strong>the</strong> sake of<br />

simplicity we restrict ourselves to <strong>the</strong> case of two variables because <strong>the</strong> generalization to more than two<br />

variables is straightforward.<br />

References<br />

[1] H. E. Salzer, An osculatory extension of Cauchy’s rational <strong>in</strong>terpolation formula, Zamm-Z. Angew.<br />

Math. Mech. 64(1) (1984) 45-50.<br />

[2] J. Me<strong>in</strong>guet, On <strong>the</strong> solubility of <strong>the</strong> Cauchy <strong>in</strong>terpolation problem, Approximation Theory, ed.<br />

Talbot, A., Academic Press, London 1970, 535-600.<br />

[3] M. H. Gutknecht, The multipo<strong>in</strong>t Padé table and general recurrences for rational <strong>in</strong>terpolation, Acta<br />

Appl. Math. 33 (1993) 165-194.<br />

[4] S. Tang, L. Zou, C. Li, Block based Newton-like blend<strong>in</strong>g osculatory rational <strong>in</strong>terpolation, Anal.<br />

Theory Appl. 26(3) (2010) 201–214.<br />

[5] Q. Zhao, J. Tan, Block-based Thiele-like blend<strong>in</strong>g rational <strong>in</strong>terpolation, J. Comput. Appl. Math.<br />

195 (2006) 312–325.<br />

[6] A. M. Fu, A. Lascoux, A Newton type rational <strong>in</strong>terpolation formula, Adv. Appl. Math. 41 (2008)<br />

452-458.<br />

[7] M.A. Gallucci, W.B. Jones, Rational approximations correspond<strong>in</strong>g to Newton series (Newton- Padé<br />

approximants), J. Approx. Theory 17 (1976) 366-392.<br />

[8] G. Claessens, The rational Hermite <strong>in</strong>terpolation problem and some related recurrence formulas,<br />

Comput. Math. Appl. 2 (1976) 117-123.<br />

[9] A. Draux, Formal orthogonal polynomials and Newton-Padé approximants, Numer. Alg. 29 (2002)<br />

67-74.<br />

[10] D. D. Warner, Hermite <strong>in</strong>terpolation with rational functions, Ph.D. Thesis, Univ. of California<br />

(1974).<br />

Page 46


[11] G.A. Baker, P. Graves-Morris, Pade approximants, vol.2 1981.<br />

[12] A. Cuyt, B. Verdonk, General Order Newton-Padé Approximants for Multivariate Functions, Nu-<br />

merische Ma<strong>the</strong>matik, 43 (1984) 293-307.<br />

[13] A. Lukashov, C. Akal, Determ<strong>in</strong>ant form and a test of convergence for Newton-Padé approximations,<br />

Journal of Computational Analysis and Applications, (to be appear) January 2013.<br />

Page 47


F<strong>in</strong>ite Difference Method for The Reverse Parabolic Problem<br />

with Neumann Condition<br />

Charyyar Ashyralyyev∗,†, Ayfer Dural∗∗ and Yasar Sozen‡<br />

∗Department of Computer Technology of <strong>the</strong> Turkmen Agricultural University, 74400,<br />

Gerogly Street, Ashgabat,Turkmenistan, E-mail: charyar@gmail.com<br />

†Department of Ma<strong>the</strong>matical Eng<strong>in</strong>eer<strong>in</strong>g, <strong>Gumushane</strong> University, 29100,<br />

<strong>Gumushane</strong>,Turkey<br />

∗∗Gaziosmanpasa Lisesi, 34245, Istanbul, Turkey, E-mail:ayfer_drl@hotmail.com<br />

‡Department of Ma<strong>the</strong>matics, Fatih University, 34500, Istanbul, Turkey,<br />

Email:ysozen@fatih.edu.tr<br />

<strong>Abstract</strong>. A f<strong>in</strong>ite difference method for <strong>the</strong> approximate solution of <strong>the</strong> reverse multidimensional parabolic differential<br />

equation with a multipo<strong>in</strong>t boundary condition and Neumann condition is applied. Stability, almost coercive stability, and<br />

coercive stability estimates for <strong>the</strong> solution of <strong>the</strong> first and second orders of accuracy difference schemes are obta<strong>in</strong>ed. The<br />

<strong>the</strong>oretical statements are supported by <strong>the</strong> numerical example.<br />

The present paper considers <strong>the</strong> multipo<strong>in</strong>t nonlocal boundary value problem for <strong>the</strong>n multidimensional parabolic equation<br />

with Neumann condition<br />

n<br />

�<br />

�ut<br />

( t, x) �� �ar ( x) ux � x ( , ), ( 1,...,<br />

) , 0 1,<br />

r r � f x t x � x xn �� �t� r�1<br />

�<br />

p �<br />

�u(1,<br />

x) � � �iu( �i, x) �� ( x), x ��, 0 � �1��2�... �� P�1,<br />

�1� �<br />

i�1<br />

��u(<br />

x, t)<br />

� � 0, x � S, 0 � t �1<br />

� �n<br />

under <strong>the</strong> condition<br />

p<br />

�<br />

k �1<br />

� �1.<br />

Here, ar(x), (x∈Ω), � ( x)<br />

(x∈ � ), f(t,x) (t∈(0,1),x∈Ω) are given smooth functions and ar(x)≥a>0, Ω=(0,1)×⋯×(0,1) is <strong>the</strong><br />

unit open cube <strong>in</strong> <strong>the</strong> n-dimensional Euclidean space with boundary S, � =Ω∪S, and n is <strong>the</strong> normal vector to Ω.<br />

The first and second order of accuracy <strong>in</strong> t and <strong>the</strong> second order of accuracy <strong>in</strong> space variables for <strong>the</strong> approximate solution<br />

of problem (1) are presented. The stability, almost coercive stability, and coercive stability estimates for <strong>the</strong> solution of <strong>the</strong>se<br />

difference schemes are obta<strong>in</strong>ed. The modified Gauss elim<strong>in</strong>ation method for solv<strong>in</strong>g <strong>the</strong>se difference schemes <strong>in</strong> <strong>the</strong> case of<br />

one-dimensional parabolic partial differential equations is used.<br />

REFERENCES<br />

1. O.A. Ladyzhenskaya, V.A. Solonnikov, and N.N. Ural’tseva, L<strong>in</strong>ear and Quasil<strong>in</strong>ear Equations of Parabolic Type, Transl<br />

Math Monogr, Providence, 1968.<br />

2. O.A. Ladyzhenskaya, and N.N. Ural’tseva, L<strong>in</strong>ear and Quasil<strong>in</strong>ear Elliptic Equations, Academic Press, London, New<br />

York,1968.<br />

3. M.L. Vishik, A.D. Myshkis, and O.A. Ole<strong>in</strong>ik, Partial Differential Equations, <strong>in</strong> Ma<strong>the</strong>matics <strong>in</strong> USSR <strong>in</strong> <strong>the</strong> Last 40<br />

Years, 1917-1957, Fizmatgiz, Moscow, 1959, pp. 563 (Russian).<br />

4. A. Ashyralyev, Nonlocal boundary value problems for partial differential equations: well-posedness, <strong>in</strong> AIP <strong>Conference</strong><br />

Proceed<strong>in</strong>gs Global Analysis and Applied Ma<strong>the</strong>matics, edited by K. Tas, D. Baleanu, O. Krupková, and D. Krupka<br />

International Workshop on Global Analysis, 2004, pp. 325.<br />

5. A. Ashyralyev, J. Evol Equ 6, 1–28 (2006).<br />

6. A. Ashyralyev, A. Hanalyev, and P.E. Sobolevskii, Abstr. Appl. Anal. 6, 53–61(2001).<br />

7. A. Ashyralyev, A. Dural, and Y. Sözen, Vestnik of Odessa National University: Math and Mech 13, 1–12 (2009).<br />

8. A. Ashyralyev, A. Dural, and Y. Sözen, Iran J. Optim. 1, 1–25 (2009).<br />

9. A. Ashyralyev, A. Dural, and Y. Sözen, Abst. Appl. Anal. accepted.<br />

10. A. Ashyralyev, and P.E. Sobolevskii, Well-Posedness of Parabolic Difference Equations, Birkhäuser, Basel,<br />

Switzerland, 1994.<br />

11. Ph. Clement, and S. Guerre-Delabrire, Atti Accad. Naz. L<strong>in</strong>cei Cl. Sci. Fis. Mat. Natur. Rend. L<strong>in</strong>cei 9, 245–266 (1999).<br />

12. A.V. Gul<strong>in</strong>, N.I. Ionk<strong>in</strong>, and V.A. Morozova, Differ. Equ. 37, 970–978 (2001) (Russian).<br />

13. X.Z. Liu, X. Cui, and J.G. Sun, J. Comput. Appl. Math. 186, 432–449 (2006).<br />

14. J. Mart<strong>in</strong>-Vaquero, Chaos Solitons Fractals 42, 2364–2372 (2009). .<br />

15. J. Mart<strong>in</strong>-Vaquero, and J. Vigo-Aguiar, Appl. Numer. Math. 59, 2507–2514 (2009).<br />

16. M. Sapagovas, J. Comput. Appl. Math. 88, 89–98 (2003).<br />

17. M. Sapagovas, J. Comput. Appl. Math. 92, 77–90 (2005).<br />

k<br />

Page 48


Three Models based Fusion Approach <strong>in</strong> <strong>the</strong> Fuzzy Logic Context for <strong>the</strong><br />

Segmentation of MR Images : A Study and an Evaluation<br />

<strong>Abstract</strong><br />

C. Lamiche 1 and A. Moussaoui 2<br />

1 Department of Computer Science, M'sila University, M'sila, Algeria<br />

2 Department of Computer Science, Setif University, Setif, Algeria<br />

In this work we present a study and an evaluation of three models based fusion approach <strong>in</strong> <strong>the</strong><br />

fuzzy logic context for <strong>the</strong> segmentation of MR images. The process of fusion consists of three<br />

parts : (1) <strong>in</strong>formation extraction, (2) <strong>in</strong>formation comb<strong>in</strong>ation, and (3) decision step.<br />

Information provided by T1-weighted,T2-weighted and PD-weighted images is extracted and<br />

modeled separately <strong>in</strong> each one us<strong>in</strong>g FPCM (Fuzzy Possibilistic C-Means) algorithm, fuzzy<br />

maps obta<strong>in</strong>ed are comb<strong>in</strong>ed with an operator of fusion which can manag<strong>in</strong>g <strong>the</strong> uncerta<strong>in</strong>ty and<br />

ambiguity <strong>in</strong> <strong>the</strong> images and <strong>the</strong> f<strong>in</strong>al segmented image is constructed <strong>in</strong> decision step. Some<br />

results are presented and discussed.<br />

References<br />

Page 49<br />

[1] Gonzalez R. C. and Woods R. E., Digital Image Process<strong>in</strong>g. Massachusetts: Addison-<br />

Wesley, 1992.<br />

[2] Hata Y., Kobashi S. and Hirano S., Automated segmentation of human bra<strong>in</strong> MR images<br />

aided by fuzzy <strong>in</strong>formation granulation and fuzzy <strong>in</strong>ference”, IEEE Trans. SMC, Part C, 30, pp.<br />

381-395, 2000.<br />

[3] Van Leemput K., Maes F., Vandermeulen D. and Suetens P., Automated model-based<br />

tissue classification of MR images of <strong>the</strong> bra<strong>in</strong>, IEEE Trans. Medical Imag<strong>in</strong>g, 18, pp. 897-908,<br />

1999.<br />

[4] Wang Y., Adali T., Xuan J. and Szabo Z., Magnetic resonance image analysis by<br />

<strong>in</strong>formation <strong>the</strong>oretic criteria and stochastic models, IEEE Trans, Information Technology <strong>in</strong><br />

Biomedic<strong>in</strong>e, 5, pp. 150-158, 2001.<br />

[5] Bloch I. and Maitre H., Data Fusion <strong>in</strong> 2D and 3D Image Process<strong>in</strong>g: An overview,” <strong>in</strong><br />

Proceed<strong>in</strong>gs of X Brazilian Symposium on Computer Graphics and Image Process<strong>in</strong>g, Brazil, pp.<br />

127-134, 1997.<br />

[6] Dou W., Ruan S., Chen Y., Bloyet D. and Constans J. M., A framwork of fuzzy <strong>in</strong>formation<br />

fusion for <strong>the</strong> segmentation of bra<strong>in</strong> tumor tissues on MR images,” Image and vision<br />

Comput<strong>in</strong>g, 25, pp. 164-171, 2007


Approximate Solutions of The Cauchy Problem for The Heat Equations<br />

<strong>Abstract</strong><br />

Deniz A˘gırseven 1<br />

1 Department of Ma<strong>the</strong>matics, Trakya University, 22030, Edirne, TURKEY<br />

Homotopy Analysis Method (HAM) [1-2] is applied to <strong>the</strong> problem of <strong>the</strong> one-dimensional heat equa-<br />

tions with a non-l<strong>in</strong>ear heat source subject to <strong>the</strong> temperature and <strong>the</strong> heat flux given at a s<strong>in</strong>gle boundary<br />

to obta<strong>in</strong> <strong>the</strong> analytical solutions. Solutions obta<strong>in</strong>ed take an important place for one-dimensional heat<br />

flow as applied to a few regular geometries such as slabs, cyl<strong>in</strong>ders and spheres. Some of <strong>the</strong> test problems<br />

are presented to show <strong>the</strong> efficiency of HAM.<br />

References<br />

[1 ]Liao S.J., The proposed homotopy analysis techniques for <strong>the</strong> solution of nonl<strong>in</strong>ear problems, Ph.D.<br />

Thesis, Shanghai Jiao Tong University, 1992.<br />

[2] Liao S.J., Beyond perturbation: <strong>in</strong>trouction to <strong>the</strong> Homotopy Analysis Method, Boca Raton:Chapman<br />

Hall/CRC Press, 2003.<br />

[3] Abbasbandy S., Homotopy analysis method for heat radiation equations, Int.Commun. Heat Mass<br />

Transfer, , 34, 380-387, 2007.<br />

[4] Lesnic D., Decomposition methods for non-l<strong>in</strong>ear, non-characteristic Cauchy heat problems Com-<br />

munications <strong>in</strong> Nonl<strong>in</strong>ear Science and Numerical Simulation, 10, 581-596, 2005.<br />

[5] Adomian G., Rach R. , Noise terms <strong>in</strong> decomposition series solution, Comput. Math. Appl., 24,<br />

61-64, 1992.<br />

[6]Wazwaz A.M., A new algorithm for solv<strong>in</strong>g differential equations of Lane-Emden type, Appl. Math.<br />

Comput., 118, 287-310, 2001.<br />

[7] Iqbal S., Javed A., Application of optimal asymptotic method for <strong>the</strong> analytic solution of s<strong>in</strong>gular<br />

Lane Emden type equation, Appl. Math. Comput, 217, 7753-7761, 2011.<br />

[8] Ashyralyev A., Erdogan A.S:, Arslan N., On <strong>the</strong> numerical solution of <strong>the</strong> diffusion equation with<br />

variable space operator, Appl. Math. Comput., 189 , 682-689, 2007.<br />

[9] Agirseven D., Ozis T., An analytical study for Fisher type equations by us<strong>in</strong>g homotopy pertur-<br />

bation method, Computers and Ma<strong>the</strong>matics with Application, 60 , 602-609, 2010.<br />

[10] Sami Bata<strong>in</strong>eh A., Noorani M.S.M., Hashim I., Solutions of time dependent Emden- Fowler type<br />

equations by homotopy analysis method, Physics Letters A, 371, 72-82, 2007.<br />

[11] Ozis T., Agirseven D., He’s homotopy perturbation method for solv<strong>in</strong>g heat-like and wavelike<br />

equations with variable coefficients , Physics Letters A, 372 , 5944-5950, 2008.<br />

[12] Shidfar A., Karamali G.R., Damirchi J, An <strong>in</strong>verse heat conduction problem with a nonl<strong>in</strong>ear<br />

source term, Nonl<strong>in</strong>ear Analysis, 65, 615-621, 2006.<br />

[13] Shidfar A., Molabahrami A., A weighted algorithm based on <strong>the</strong> homotopy analysis method:<br />

Application to <strong>in</strong>verse heat conduction problems, Communications <strong>in</strong> Nonl<strong>in</strong>ear Science and Numerical<br />

Simulation, 15, 2908-2915, 2010.<br />

Page 50


The normal <strong>in</strong>verse Gaussian distribution: exposition and applications to model<strong>in</strong>g asset,<br />

<strong>Abstract</strong><br />

<strong>in</strong>dex and foreign exchange clos<strong>in</strong>g prices<br />

D. Teneng 1 and K. Pärna 2<br />

1 Institute of Ma<strong>the</strong>matical Statistics, University of Tartu, Tartu, Estonia<br />

2 Institute of Ma<strong>the</strong>matical Statistics, University of Tartu, Tartu, Estonia<br />

We expose <strong>the</strong> unique properties of <strong>the</strong> normal <strong>in</strong>verse Gaussian distribution (NIG) useful for mod-<br />

el<strong>in</strong>g asset, <strong>in</strong>dex and foreign exchange clos<strong>in</strong>g prices. We fur<strong>the</strong>r demonstrate that traditional beliefs<br />

<strong>in</strong> asset, <strong>in</strong>dex, and foreign exchange clos<strong>in</strong>g prices not be<strong>in</strong>g <strong>in</strong>dependently identically distributed ran-<br />

dom variables are fundamentally flawed. Best models are selected us<strong>in</strong>g a novel model selection strategy<br />

proposed by Käärik and Umbleja (2011). Our results show that clos<strong>in</strong>g prices of Baltika and Ekpress<br />

Grupp (companies trad<strong>in</strong>g on Tall<strong>in</strong>n stock exchange), FTSE100, GSPC and STI (major world <strong>in</strong>dexes),<br />

CHF/JPY, USD/EUR, EUR/GBP, SAR/CHF, QAR/CHF and EGP/CHF (Foreign Exchange rates) can<br />

be modeled by NIG distribution. This means <strong>the</strong>ir underly<strong>in</strong>g stochastic properties can fully be captured<br />

by NIG; very useful for predict<strong>in</strong>g price movements, pric<strong>in</strong>g models, underwrit<strong>in</strong>g and trad<strong>in</strong>g derivatives<br />

etc<br />

Acknowledgement Research supported by Estonian Science foundation grant number 8802 and Esto-<br />

nian Doctoral School <strong>in</strong> Ma<strong>the</strong>matics and Statistics.<br />

References<br />

[1] Barndorff-Nielsen O. E., Processes of normal <strong>in</strong>verse Gaussian type, Systems & F<strong>in</strong>ance and<br />

Stochastics, 2, (1998), 42-68.<br />

[2] Figueroa-López J. E., Jump diffusion models driven by Lévy Processes, Spr<strong>in</strong>ger Handbooks of<br />

Computational Statistics, (<strong>2012</strong>), 61-88.<br />

[3] Käärik M., Umbleja M., On claim size fitt<strong>in</strong>g and rough estimation of risk premiums based on<br />

Estonian traffic example, International Journal of Ma<strong>the</strong>matical Models and Methods <strong>in</strong> Applied Sciences,<br />

Issue 1, vol. 5, 17-24, (2011).<br />

[4] Lo A. W. and Mack<strong>in</strong>lay A. C., Stock market prices do not follow random walks: Evidence from<br />

a simple specification test, Review of F<strong>in</strong>ancial studies, Vol. 1, 41-66, (1998).<br />

[4] Necula C., Modell<strong>in</strong>g heavy-tailed stock <strong>in</strong>dex returns us<strong>in</strong>g <strong>the</strong> generalized hyperbolic distribution,<br />

Romanian Journal of Economic Forecast<strong>in</strong>g,Vol. 6(2), 610-615, (2009)<br />

[5] Schoutens W., Lévy Processes <strong>in</strong> F<strong>in</strong>ance, John Wiley & Sons Inc., New York, (2003).<br />

[6] Teneng D., NIG-Levy process <strong>in</strong> asset price modell<strong>in</strong>g: case of Estonian companies, Proc. 30 th<br />

International <strong>Conference</strong> on Ma<strong>the</strong>matical Methods <strong>in</strong> Economics - MME <strong>2012</strong>,Karv<strong>in</strong>a, 1-3 Sept. <strong>2012</strong>,<br />

to appear.<br />

[7]Rydberg T. H., The Normal Inverse Gaussian Levy Process : Simulation and approximation, Comm.<br />

Stat.: Stoch. Models, Vol. 13 (4), 887-910, (1997).<br />

Page 51


Radial Basis Functions Method for determ<strong>in</strong><strong>in</strong>g of unknown coe¢ cient <strong>in</strong> parabolic<br />

<strong>Abstract</strong><br />

equation<br />

E. Can<br />

Department of Physics, Kocaeli University, Kocaeli 41380, Turkey<br />

Electro Optic Systems Eng<strong>in</strong>eer<strong>in</strong>g, Kocaeli University, Kocaeli 41380, Turkey<br />

In this paper, we consider an <strong>in</strong>verse problem of …nd<strong>in</strong>g unknown source parameterp(t) and u(x; t)<br />

satisfy equation<br />

with <strong>the</strong> <strong>in</strong>itial-boundary conditions<br />

ut = uxx + p(t)u + f (t; x) ; 0 6 x 6 1; 0 < t 6 T; (1)<br />

subject to <strong>the</strong> overspeci…cation over <strong>the</strong> spatial doma<strong>in</strong><br />

u(x; 0) = '(x); 0 6 x 6 1 (2)<br />

(0; t) = 1(t); 0 < t 6 T (3)<br />

u(1; t) = 2(t); 0 < t 6 T (4)<br />

u(x ; t) = E(t); 0 < x 6 1; 0 < t 6 T (5)<br />

where f(x; t); '(x); 1(t); 2(t) and E(t) 6= 0 are known functions, x is a …xed prescribed <strong>in</strong>terior po<strong>in</strong>t <strong>in</strong><br />

(0,1). If p (t) is known <strong>the</strong>n direct <strong>in</strong>itial boundary value problem (1) (4) has a unique smooth solution<br />

u (x; t) [1]: If u represent a temperature distribution, <strong>the</strong>n (1) (4) can be <strong>in</strong>terpreted as a control<br />

problem with source parameter. Based on <strong>the</strong> idea of <strong>the</strong> radial basis functions (RBF) approximation ,<br />

a fast and highly accurate meshless method is developed for solv<strong>in</strong>g an <strong>in</strong>verse problem with a control<br />

parameter [2]. Some numerical examples us<strong>in</strong>g <strong>the</strong> proposed algorithm are presented.<br />

References<br />

[1] Isakov V., Inverse Problems for Partial Di¤erential Equations, Applied Ma<strong>the</strong>matical Sciences,<br />

Spr<strong>in</strong>ger-Verlag, vol. 127, 1997.<br />

[2] Lim<strong>in</strong> Ma and Zongm<strong>in</strong> Wu, Radial Basis functions method for parabolic <strong>in</strong>verse problem, Int. J.<br />

of Computer Math., 88(2), 383-395, 2011.<br />

Page 52


Compact and Fredholm Operators on Matrix Doma<strong>in</strong>s of Triangles <strong>in</strong> <strong>the</strong> Space of Null<br />

Sequences<br />

E. Malkowsky<br />

Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey<br />

Department of Ma<strong>the</strong>matics, University of Giessen, Giessen, Germany<br />

<strong>Abstract</strong> The matrix doma<strong>in</strong> XA of an <strong>in</strong>f<strong>in</strong>ite matrix A = (ank) ∞ n,k=0<br />

subset X of <strong>the</strong> set ω of all complex sequences is <strong>the</strong> set of all x = (xk) ∞ k=0<br />

of complex numbers <strong>in</strong> a<br />

∈ ω for which <strong>the</strong> series<br />

Anx = � ∞<br />

k=0 ankxk converge for all n and Ax = (Anx) ∞ n=0 ∈ X. Also, if X and Y are subsets of ω<br />

<strong>the</strong>n (X, Y ) denotes <strong>the</strong> set of all <strong>in</strong>f<strong>in</strong>ite matrices that map X <strong>in</strong>to Y , that is, A ∈ (X, Y ) if and only<br />

if X ⊂ YA. Let c0 denote <strong>the</strong> set sequences x ∈ ω that converge to zero, and T = (tnk) ∞ n,k=0 and<br />

˜T = (˜tnk) ∞ k,k=0 be triangles, that is, tnk = ˜tnk = 0 for k > n and tnn = ˜tnn �= 0 (n = 0, 1, . . . ). We<br />

characterise <strong>the</strong> class ((c0)T , (c0) ˜ T ). Fur<strong>the</strong>rmore we obta<strong>in</strong> an explicit formula for <strong>the</strong> Hausdorff measure<br />

of noncompactness of operators LA given by a matrix A ∈ (c0)T , (c0) ˜ T ), that is, for which LA(x) = Ax<br />

for all x ∈ (c0)T . From this result, we obta<strong>in</strong> a characterisation <strong>the</strong> class of compact operators given by<br />

matrices <strong>in</strong> ((c0)T , (c0) ˜ T ). F<strong>in</strong>ally we give a sufficient condition for an operator given by a matrix to be<br />

a Fredholm operator on (c0)T .<br />

References<br />

[1] Djolović I. and Malkowsky E., A note on compact operators on matrix doma<strong>in</strong>s, Journal of Math-<br />

ematical Analysis and Applications, 340(1), 291–303, 2008<br />

[2] Djolović I. and E. Malkowsky, Matrix transformations and compact operators on some new m th<br />

order difference sequences, Applied Ma<strong>the</strong>matics and Computations, 198(2), 700–714, 2008<br />

[3] de Malafosse B. and Rakočević V., Application of measure of noncompactness <strong>in</strong> operators on <strong>the</strong><br />

spaces sα, s 0 α, s c α, ℓ p α, Journal of Ma<strong>the</strong>matical Analysis and Applications, 323(1), 131–145, 2006<br />

[4] Malkowsky E. and Rakočević V., An Introduction <strong>in</strong>to <strong>the</strong> Theory of Sequence Spaces and Measures<br />

of Noncompactness, Zbornik radova, Matematički <strong>in</strong>stitut SANU, Belgrade, 9(17), 143–234, 2000<br />

[5] Malkowsky E. and Rakočević V., On matrix doma<strong>in</strong>s of triangles, Applied Ma<strong>the</strong>matics and<br />

Computations, 189(2), 2007, 1146–1163<br />

[6] M.Schechter, Pr<strong>in</strong>ciples of Functional Analysis, Academic Press, New York and London, 1973<br />

[7] A. Wilansky, Summability through Functional Analysis, North–Holland Ma<strong>the</strong>matics Studies No.<br />

85, North–Holland, Amsterdam, New York, Oxford, 1984<br />

Page 53


Compact Operators on Spaces of Sequences of Weighted Means<br />

E. Malkowsky 1;2 , F. Özger 1<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey<br />

2 Ma<strong>the</strong>matisches Institut, Universität Giessen, Arndstrasse 2, D–35392, Giessen Germany<br />

<strong>Abstract</strong><br />

We reduce <strong>the</strong> spaces a r 0, a r c, a r 0( ) and a r c( ) and simplify <strong>the</strong>ir dual spaces and <strong>the</strong> characterisations<br />

of matrix transformations on <strong>the</strong>m <strong>in</strong> [3]. We also obta<strong>in</strong> an estimate and a formula for <strong>the</strong> Hausdor¤<br />

measure of noncompactness of some matrix operators on <strong>the</strong> spaces a r 0 and a r c, and <strong>the</strong> correspond<strong>in</strong>g<br />

characterisations of compact matrix operators.<br />

References<br />

[1] C. Ayd¬n, and F. Ba¸sar, Hokkaido Ma<strong>the</strong>matical Journal 33, 383–398 (2004)<br />

[2] C. Ayd¬n, and F. Ba¸sar, Applied Ma<strong>the</strong>matics and Computation 157, 677–693 (2004)<br />

[3] E. Malkowsky, and F. Özger, Filomat 26 (3), 511–518 (<strong>2012</strong>)<br />

[4] I. Djolović, J. Math. Anal. Appl. 318, 658–666 (2006)<br />

[5] I. Djolović, and E. Malkowsky, J. Math. Anal. Appl. 340, 291–303 (2008)<br />

[6] B. de Malafosse, and V. Rakoµcević, J. Math. Anal. Appl. 323 (1), 131–145 (2006)<br />

[7] E. Malkowsky, Rendi. Circ. Mat. Palermo II, Suppl. 68, 641–655 (2002)<br />

[8] E. Malkowsky, and V. Rakoµcević, Applied Ma<strong>the</strong>matics and Computation 189, 1148–1163 (2007)<br />

[9] A. Wilansky, Summability through Functional Analysis, North–Holland Ma<strong>the</strong>matics Studies No. 85,<br />

North–Holland, Amsterdam, New York, Oxford, 1984<br />

Page 54


<strong>Abstract</strong><br />

Extended Eigenvalues of Direct Integral of Operators<br />

E. Otkun Çevik 1 and Z.I. Ismailov 2<br />

1 Institute of Natural Sciences, Karadeniz Technical University, Trabzon, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Karadeniz Technical University, Trabzon, Turkey<br />

In this work, a connection between extended eigenvalues of direct <strong>in</strong>tegral of operators <strong>in</strong> <strong>the</strong> direct<br />

<strong>in</strong>tegral of Hilbert spaces and <strong>the</strong>ir coord<strong>in</strong>ate operators has been <strong>in</strong>vestigated.<br />

References<br />

[1] Biswas A., Lambert A. and Petrovic S., Extended eigenvalues and <strong>the</strong> Volterra operator, Glasgow<br />

Math. J., 44, 521-534, 2002.<br />

2004.<br />

[2] Lambert A., Hyper<strong>in</strong>variant subspaces and extended eigenvalues, New York J. Math., 10, 83-88,<br />

[3] Karaev M. T., Invariant subspaces, cyclic vectors, commutant and extended eigenvectors of some<br />

convolution operators, Methods Func. Anal. Topology, 11, 48-59, 2005.<br />

[4] Karaev M. T., On extended eigenvalues and extended eigenvectors of some operator classes, Proc.<br />

Amer. Math. Soc., 134(8), 2883-2392, 2006.<br />

[5] Biswas A. and Petrovic S., On extended eigenvalues of operators, Int. equat. oper. <strong>the</strong>ory, 55,<br />

233-248, 2006.<br />

[6] Petrovic S., On <strong>the</strong> extended eigenvalues of some Volterra operators, Int. equat. oper. <strong>the</strong>ory, 57,<br />

593-598, 2007.<br />

2007.<br />

Page 55<br />

[7] Shkar<strong>in</strong> S., Compact operators without extended eigenvalues, J. Math. Anal. Appl., 332, 455-462,


Exponential decay and blow up of a solution for a system of nonl<strong>in</strong>ear higher-order wave<br />

<strong>Abstract</strong><br />

equations<br />

E. Pi¸sk<strong>in</strong> and N. Polat<br />

Department of Ma<strong>the</strong>matics, Dicle University, Diyarbakir, Turkey<br />

This work studies a <strong>in</strong>itial-boundary value problem of <strong>the</strong> weak damped nonl<strong>in</strong>ear higher-order wave<br />

equations. Under suitable conditions on <strong>the</strong> <strong>in</strong>itial datum, we prove that <strong>the</strong> solution decays exponentially<br />

and blows up with negative <strong>in</strong>itial energy.<br />

References<br />

[1] Adams R. A. and Fournier J. J. F., Sobolev Spaces, Academic Press, 2003.<br />

[2] Georgiev V. and TodorovaG., Existence of a solution of <strong>the</strong> wave equation with nonl<strong>in</strong>ear damp<strong>in</strong>g<br />

and source terms, J. Di¤erential Equations, 109 (2), 295–308, 1994.<br />

[3] Zhou Y., Global existence and nonexistence for a nonliear wave equation with damp<strong>in</strong>g and source<br />

terms, Math. Nacht, 278, 1341-1358, 2005.<br />

[4] Messaoudi S. A. and Said-Houari B., Global nonexistence of positive <strong>in</strong>itial-energy solutions of a<br />

system of nonl<strong>in</strong>ear viscoelastic wave equations with damp<strong>in</strong>g and source terms, J. Math. Anal. Appl.<br />

365, 277–287, 2010.<br />

Page 56


A New General Inequality for double <strong>in</strong>tegrals<br />

Erhan Set 1 , Mehmet Zeki Sarıkaya 1 and Ahmet Ocak Akdemir 2<br />

1 Department of Ma<strong>the</strong>matics, Faculty of Science and Arts, Düzce University, Düzce, Turkey<br />

2 A˘grı ˙ Ibrahim Çeçen University, Faculty of Science and Letters, Department of Ma<strong>the</strong>matics, 04100,<br />

<strong>Abstract</strong><br />

A˘grı, Turkey<br />

The <strong>in</strong>equality of Ostrowski gives us an estimate for <strong>the</strong> deviation of <strong>the</strong> values of a smooth function<br />

from its mean value. More precisely, if f : [a, b] → R is a differentiable function with bounded derivative,<br />

<strong>the</strong>n �<br />

�����<br />

f(x) − 1<br />

∫b<br />

b − a<br />

a<br />

�<br />

�<br />

�<br />

f(t)dt�<br />

�<br />

� ≤<br />

[<br />

1<br />

4<br />

a+b (x − 2 + )2<br />

(b − a) 2<br />

]<br />

(b − a) ∥f ′ ∥∞ for every x ∈ [a, b]. Moreover <strong>the</strong> constant 1/4 is <strong>the</strong> best possible. Inequality (1) has wide applications<br />

<strong>in</strong> numerical analysis and <strong>in</strong> <strong>the</strong> <strong>the</strong>ory of some special means; estimat<strong>in</strong>g error bounds for some special<br />

means, some mid-po<strong>in</strong>t, trapezoid and Simpson rules and quadrature rules, etc. Hence <strong>in</strong>equality (1)<br />

has attracted considerable attention and <strong>in</strong>terest from ma<strong>the</strong>maticans and researchers. Due to this, over<br />

<strong>the</strong> years, <strong>the</strong> <strong>in</strong>terested reader is also refered to ([1]-[9]) for <strong>in</strong>tegral <strong>in</strong>equalities <strong>in</strong> several <strong>in</strong>dependent<br />

variables. In addition, <strong>the</strong> current approach of obta<strong>in</strong><strong>in</strong>g <strong>the</strong> bounds, for a particular quadrature rule,<br />

have depended on <strong>the</strong> use of peano kernel. The general approach <strong>in</strong> <strong>the</strong> past has <strong>in</strong>volved <strong>the</strong> assumption<br />

of bounded derivatives of degree greater than one.<br />

In this paper, we obta<strong>in</strong> a new general <strong>in</strong>equality <strong>in</strong>volv<strong>in</strong>g functions of two <strong>in</strong>dependent variables by<br />

def<strong>in</strong><strong>in</strong>g <strong>the</strong> peano kernel K(x, y; s, t) as <strong>the</strong> follow<strong>in</strong>g:<br />

⎧ (<br />

b − a<br />

t − (a + λ<br />

6<br />

⎪⎨<br />

K(x, y; t, s) =<br />

⎪⎩<br />

)<br />

) ( ( ))<br />

d − c<br />

s − c + λ for a ≤ t ≤ x, c ≤ s ≤ y,<br />

(<br />

6<br />

b − a<br />

t − (a + λ<br />

6 )<br />

) ( ( ))<br />

d − c<br />

s − d − λ for a ≤ t ≤ x, y ≤ s ≤ d,<br />

(<br />

6<br />

b − a<br />

t − (b − λ<br />

6 )<br />

) ( ( ))<br />

d − c<br />

s − c + λ for x ≤ t ≤ b, c ≤ s ≤ y,<br />

(<br />

6<br />

b − a<br />

t − (b − λ<br />

6 )<br />

) ( ( ))<br />

d − c<br />

s − d − λ for x ≤ t ≤ b, y ≤ s ≤ d.<br />

6<br />

This <strong>in</strong>equality is a new generalization of <strong>the</strong> <strong>in</strong>equalities of Simpson and Ostrowski type obta<strong>in</strong>ed by<br />

Zhongxue <strong>in</strong> [9].<br />

References<br />

[1] N. S. Barnett and S. S. Dragomir, An Ostrowski type <strong>in</strong>equality for double <strong>in</strong>tegrals and applica-<br />

tions for cubature formulae, Soochow J. Math., 27(1), (2001), 109-114.<br />

[2] M.E. Özdemir, H. Kavurmacı and E. Set, Ostrowski’s type <strong>in</strong>equalities for (α, m)−convex functions,<br />

Kyungpook Math. J., 50 (2010), 371-378.<br />

[3] B. G. Pachpatte, On a new Ostrowski type <strong>in</strong>equality <strong>in</strong> two <strong>in</strong>dependent variables, Tamkang J.<br />

Math., 32(1), (2001), 45-49.<br />

[4] M. Z. Sarikaya, On <strong>the</strong> Ostrowski type <strong>in</strong>tegral <strong>in</strong>equality, Acta Math. Univ. Comenianae, Vol.<br />

LXXIX, 1(2010), pp. 129-134.<br />

[5] M.Z. Sarıkaya, E. Set and M.E.<br />

Özdemir, On new <strong>in</strong>equalities of Simpson’s type for s-convex<br />

functions, Computers & Ma<strong>the</strong>matics with Applications, 60 (2010), 2191-2199.<br />

Page 57<br />

(1)


[6] E. Set, New <strong>in</strong>equalities of Ostrowski type for mapp<strong>in</strong>gs whose derivatives are s-convex <strong>in</strong> <strong>the</strong> second<br />

sense via fractional <strong>in</strong>tegrals, Computers and Ma<strong>the</strong>matics with Applications, 63(7), (<strong>2012</strong>), 1147-1154.<br />

[7] E. Set and M.Z. Sarıkaya, On The Generalization Of Ostrowski And Grüss Type Discrete Inequal-<br />

ities, Computers & Ma<strong>the</strong>matics with Applications, 62, (2011), 455–461.<br />

[8] N. Ujević, Sharp <strong>in</strong>equalities of Simpson type and Ostrowski type, Computers & Ma<strong>the</strong>matics<br />

with Applications, 48 (2004) 145-151.<br />

[9] L. Zhongxue, On sharp <strong>in</strong>equalities of Simpson type and Ostrowski type <strong>in</strong> two <strong>in</strong>dependent<br />

variables, Computers & Ma<strong>the</strong>matics with Applications, 56 (2008) 2043-2047.<br />

Page 58


Exact Solutions of <strong>the</strong> Schröd<strong>in</strong>ger Equation with Position Dependent Mass<br />

for <strong>the</strong> solvable Potentials<br />

<strong>Abstract</strong><br />

F. Aricak 1 and M.Sezg<strong>in</strong> 2<br />

1 Department of Physics, Trakya University, Edirne, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Trakya University, Edirne, Turkey<br />

In this work <strong>the</strong> <strong>in</strong>f<strong>in</strong>itesimal operators of <strong>the</strong> regular representations of <strong>the</strong> group SL(2,R) are<br />

considered. Accord<strong>in</strong>g to <strong>the</strong>se <strong>in</strong>f<strong>in</strong>itesimal operators <strong>the</strong> Casimir operator is expressed. The<br />

Hamiltonian H is related to Casimir operator C of <strong>the</strong> group. The energy eigenvalues and <strong>the</strong><br />

correspond<strong>in</strong>g eigenfunctions are given for <strong>the</strong> solvable potentials<br />

References<br />

Page 59<br />

[1] Kerimov G A., J. Phys. A: Math. Theor. 42 , 445210, 2009<br />

[2] Yahiaoui S. A. , Bentaiba M. , Int. J. Theor . Phys. , 48, 315-322, 2009,<br />

[3] Aktaş M., Sever R., J. Math. Chemistry, Vol. 43. No .1 , 2008<br />

[4] Tezcan C. , Sever R. , Int. J. Theor . Phys. , 47, 1471-1478, 2008<br />

[5] Jiang Yu , Shi-Hai Dong, Guo-Hua Sun, Phy. Letters A, 322, 290-297,2004<br />

[6] Chun-Sheng Jia, Liang-Zhong Yi, Sun Yu, J. Math. Chemistry, Vol. 43. No .2, 2008<br />

[7] Oldwig Von R., Phys. Rev. Vol 27, 1983<br />

[8] Ben Daniel D. J. , Duke C. B., Phys. Rev. Vol 152, No. 2, 1966<br />

[9] Bagchi B. , Gora<strong>in</strong> P. , Quesne C. , Roychoudhury R., Europhys. Lett. 72, 2005<br />

[10] Gönül B. , Özer O, Gönül B., Üzgün F. , Mod. Phys. Lett. A .17, 2002<br />

[11] Koç R., Koca M., J. Phys. A: Math. Gen. 36, 2003<br />

[12] Roy B., Roy P.,J. Phys. A:Math. Gen. 35, 2002<br />

[13] Plast<strong>in</strong>o A. R., Rigo A., Casas M., Garcias F., Plast<strong>in</strong>o A., Phys. Rev. A 60, 1999<br />

[14] Quesne C., Tkachuk V. M., J. Phys A: Math.. Gen., Vol. 37, N. 14 , 2004<br />

[15] Ghirardi G. C. , Nuovo Cimento, 10 A, 1972<br />

[16] Pöschl G., Teller E. , Zeit. Phys. , 83, 1933, 149<br />

[17] Mann<strong>in</strong>g M. F. , Rosen N., Phys. Rev. 44, 953, 1933<br />

[18] Morse P.M., Phys. Rev. 34, 1929<br />

[19] Kratzer A., Z. Phys. 3, 289, 1920<br />

[20] Wei Gao-Feng, Donh Shi-Hai, Phys. Lett. A. 373, 2009<br />

[21] Wu J., Alhassid Y., Gürsey F., Ann. Phys., 196,163-181, 1989<br />

[22] Levai G., J. Phys. A: Math. Gen. 27, 3809-3828,1994<br />

[23] Flügge S., Practical Quantum Mechanics , Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 1974<br />

[24] Wei Gao-Feng, Donh Shi-Hai, Phys. Lett. A. 373, 2009<br />

[25] Vilenk<strong>in</strong> N. Ja, Klimyk A. U., Representation of Lie Groups and Special Functions,<br />

Volume I,II, Kluwer Academic Publishers , 1993


<strong>Abstract</strong><br />

Sturm Liouville Problem with Discont<strong>in</strong>uity Conditions at Several Po<strong>in</strong>ts<br />

F.H¬ra 1 and N. Alt¬n¬¸s¬k 2<br />

1;2 Department of Ma<strong>the</strong>matics, Ondokuz May¬s University, Samsun,Turkey<br />

In this paper we deal with <strong>the</strong> computation of <strong>the</strong> eigenvalues of Sturm Liouville problem with<br />

several discont<strong>in</strong>uity conditions (transmission conditions) <strong>in</strong>side a …nite <strong>in</strong>terval and parameter dependent<br />

boundary conditons.By us<strong>in</strong>g an operator <strong>the</strong>oretic <strong>in</strong>terpretation we extend some classic results for<br />

regular Sturm Liouville problems.A symmetric l<strong>in</strong>ear operator A is de…ned <strong>in</strong> an appropriate Hilbert<br />

space such that <strong>the</strong> eigenvalues of such a problem co<strong>in</strong>cide with those of A. Also,we obta<strong>in</strong>ed asymptotic<br />

formulaes for <strong>the</strong> eigenvalues and correspond<strong>in</strong>g eigenfunctions.<br />

Consider <strong>the</strong> follow<strong>in</strong>g Sturm Liouville problem with discont<strong>in</strong>uity conditions at several po<strong>in</strong>ts <strong>in</strong>side<br />

a …nite <strong>in</strong>terval,<br />

Tk (u) :=<br />

(u) := u 00 + q (x) u = u; x 2 (x0; x1) (1)<br />

B2 (u) := ( 0 1u (x1)<br />

0<br />

1<br />

B1 (u) := 1u (x0) + 2u 0 (x0) = 0 (2)<br />

@ u ( k + 0)<br />

u 0 ( k + 0)<br />

0<br />

2u 0 (x1)) + 1u (x1) 2u 0 (x1) = 0 (3)<br />

A Dk<br />

0<br />

@ u ( k<br />

u 0 ( k<br />

0)<br />

0)<br />

1<br />

A = 0; k = 1; m (4)<br />

where x0 = 0 < 1 < ::: < m < m+1 = x1; q 2 L2 (x0; x1) ; is a complex spectral parameter.<br />

2<br />

We shall assume that 1 + 2 2<br />

2 6= 0; 1 + 2 8<br />

0<br />

< 1 , if 1 +<br />

2 6= 0; > 0;where =<br />

:<br />

0<br />

2 = 0<br />

and<br />

0<br />

0<br />

1 2 2 1 , o<strong>the</strong>rwise<br />

0 1<br />

Dk =<br />

@<br />

1k 2k<br />

3k 4k<br />

References<br />

A ; ik 2 R; i = 1; 4; jDkj > 0 for k = 1; m: Let D0 be <strong>the</strong> 2 2 identity matrix.<br />

[1] Alt¬n¬¸s¬k N., Kadakal M., Mukhtarov O. Sh., Eigenvalues and eigenfunctions of discont<strong>in</strong>uous<br />

Sturm Liouville problems with eigenparameter dependent boundary conditions, Acta Math. Hung., 102<br />

(1-2), 159-175, 2004.<br />

[2] Buschmann D., Stolz G., Weidmann J., One-dimensional Schröd<strong>in</strong>ger operators with local po<strong>in</strong>t<br />

<strong>in</strong>teractions, J. Re<strong>in</strong>e Angew, Math, 467: 169-186,1995.<br />

2007.<br />

[3] Chanane B., Sturm Liouville problems with impulse e¤ects, Appl. Math.Comput. 190, 610-626,<br />

[4] Fulton C.T, Two-po<strong>in</strong>t boundary value problems with eigenvalues parameter conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong><br />

boundary conditions, Proc. Roy. Soc. Ed<strong>in</strong>., 77A, 293-308,1977.<br />

[5] H<strong>in</strong>ton B. D., An expansion <strong>the</strong>orem for an eigenvalue problem with eigenvalue parameter <strong>in</strong> <strong>the</strong><br />

boundary conditions, Quart. J. Math. Oxford, 30, 33-42,1979.<br />

[6] Kadakal M, Mukhtarov O. Sh, Sturm–Liouville problems with discont<strong>in</strong>uities at two po<strong>in</strong>ts, Com-<br />

puters and Ma<strong>the</strong>matics with Applications 54, 1367–1379, 2007.<br />

[7] Kobayashi M., Eigenfunction expansions: A discont<strong>in</strong>uous version, SIAM J. Appl. Math. 50 (3),<br />

910-917, 1990.<br />

[8] Titchmarsh E. C., Eigenfunctions Expansion Associated with Second Order Di¤erential Equations<br />

I; 2 nd end, Oxford Univ. Press, London, 1962.<br />

Page 60


[9] Titeux I., Yakubov Y., Completeness of root functions for <strong>the</strong>rmal conduction <strong>in</strong> a strip with<br />

piecewise cont<strong>in</strong>uous coe¢ cients, Math. Models Methods Appl. Sc., 7:7, 1035–1050, 1997.<br />

[10] Walter J., Regular eigenvalue problems with eigenvalue parameter <strong>in</strong> <strong>the</strong> boundary conditions,<br />

Math. Z., 133, 301-312, 1973.<br />

[11] Wang A., Sun J., Hao X., Yao S., Completeness of eigenfunctions of Sturm Liouville problems<br />

with transmission conditions, Methods and Applications of Analysis,16 (3) 299-312, 2009.<br />

Page 61


Characterization of Three Dimensional Cellular Automata over Zm<br />

Ferhat S¸ah 1 , I. S¸iap 2 and H. Akın 3<br />

1 Department of Ma<strong>the</strong>matical Eng<strong>in</strong>eer<strong>in</strong>g, Yildiz Technical University,Istanbul, Turkey<br />

<strong>Abstract</strong><br />

2 Department of Ma<strong>the</strong>matics, Yildiz Technical University, Istanbul, Turkey<br />

3 Department of Ma<strong>the</strong>matics, Education Faculty, Zirve University, Gaziantep, Turkey<br />

Three dimensional cellular automata wasn’t much studied by researches. Tsalides et al. characterized<br />

three dimensional cellular automata <strong>in</strong> [1] and <strong>the</strong>n Hemm<strong>in</strong>gsson <strong>in</strong>vestigated quasi periodic behavior<br />

of three dimensional cellular automata <strong>in</strong> [2]. In this work we study <strong>the</strong> algebraic behavior of three<br />

dimensional l<strong>in</strong>ear cellular automata over Zm. we provide necessary and sufficient conditions for a three<br />

dimensional l<strong>in</strong>ear cellular automata over <strong>the</strong> r<strong>in</strong>g Zm to be reversible or irreversible. As a consequence of<br />

our result we characterize three dimensional l<strong>in</strong>ear cellular automata under <strong>the</strong> null boundary conditions.<br />

Acknowledgements: The work is supported by T ÜB˙ ITAK (Project Number: 110T713).<br />

References<br />

[1] P. Tsalides, P. J. Hicks, and T.A. York, Three-Dimensional Cellular Automata and VLSI Appli-<br />

cations, IEE Proceed<strong>in</strong>gs, 136 (6), 490-495 (1989).<br />

[2] J. A. Hemm<strong>in</strong>gsson, Totalistic Three-Dimensional Cellular Automaton with Quasiperiodic Be-<br />

haviour, Physica A, 183 (3), 255-261, (1992).<br />

Page 62


Positivity of Elliptic Difference Operators and its Applications<br />

G.E. Semenova, semgalya@mail.ru<br />

Department of Differential Equations, Institute of Ma<strong>the</strong>matics and Informatics of <strong>the</strong> North-Eastern<br />

Federal University, Russia<br />

As is well-known that <strong>the</strong> <strong>in</strong>vestigation of well-posedness of various types of parabolic and elliptic<br />

differential and difference equations is based on <strong>the</strong> positivity of elliptic differential and difference<br />

operators <strong>in</strong> various Banach spaces and on <strong>the</strong> structure of <strong>the</strong> fractional spaces generated by <strong>the</strong>se<br />

positive operators. An excellent survey of works <strong>in</strong> <strong>the</strong> <strong>the</strong>ory of fractional spaces generated by positive<br />

multidimensional difference operators <strong>in</strong> <strong>the</strong> space and its applications to partial differential equations<br />

was given <strong>in</strong> [1]-[2]. In a number of works (see, e.g., [3]-[11], and <strong>the</strong> references <strong>the</strong>re<strong>in</strong>) difference<br />

schemes were treated as operator equations <strong>in</strong> a Banach space and <strong>the</strong> <strong>in</strong>vestigation was based on <strong>the</strong><br />

positivity property of <strong>the</strong> operator coeffi cient.<br />

In <strong>the</strong> present paper, we consider <strong>the</strong> difference operator<br />

(−1) n ∂ 2n<br />

hp + Ah,<br />

where Ah is <strong>the</strong> self-adjo<strong>in</strong>t positive def<strong>in</strong>ite operator <strong>in</strong> L2h. Apply<strong>in</strong>g <strong>the</strong> method of paper [3] <strong>the</strong><br />

positivity of this difference operator <strong>in</strong> <strong>the</strong> Holder spaces is established. In applications, <strong>the</strong> wellposedness<br />

of <strong>the</strong> Cauchy problem for parabolic differential and difference equations is <strong>in</strong>vestigated.<br />

References<br />

[1] A. Ashyralyev, and P. E. Sobolevskii, Well-Posedness of Parabolic Difference Equations,<br />

Birkhäuser Verlag, Basel, Boston, Berl<strong>in</strong>, 1994.<br />

[2] A. Ashyralyev, and P. E. Sobolevskii, New Difference Schemes for Partial Differential Equations,<br />

Birkhäuser Verlag, Basel, Boston, Berl<strong>in</strong>, 2004.<br />

[3] P. E. Sobolevskii, The Coercive Solvability of Difference Equations, Dokl. Acad. Nauk. SSSR<br />

201(5), 1063—1066 (1971) (Russian).<br />

[4] Kh. A. Alibekov, Investigations <strong>in</strong> C and Lp of Difference Schemes of High Order Accuracy for<br />

Apporoximate Solutions of Multidimensional Parabolic Boundary Value Problems, Ph.D. <strong>the</strong>sis,<br />

Voronezh State University, Voronezh, 394006 (1978) (Russian).<br />

[5] Kh. A. Alibekov, and P. E. Sobolevskii, Stability and Convergence of Difference Schemes of a High<br />

Order for Parabolic Differential Equations, Ukra<strong>in</strong>. Math. Zh. 31(6), 627—634 (1979) (Russian).<br />

[6] A. Ashyralyev, and P. E. Sobolevskii, The L<strong>in</strong>ear Operator Interpolation Theory and <strong>the</strong> Stability<br />

of <strong>the</strong> Difference Schemes, Dokl. Acad. Nauk SSSR 275(6), 1289—1291 (1984) (Russian).<br />

[7] A. Ashyralyev, Method of Positive Operators of Investigations of <strong>the</strong> High Order of Accuracy<br />

Difference Schemes for Parabolic and Elliptic Equations, Doctor of Sciences Thesis, Inst. of Math.<br />

of Acad. Sci. Kiev, Kiev, 01601 (1992) (Russian).<br />

[8] B. A. Neg<strong>in</strong>skii, and P. E. Sobolevskii, Difference Analogue of Theorem on Inclosure an Interpolation<br />

Inequalities, <strong>in</strong> Proceed<strong>in</strong>gs of Faculty of Ma<strong>the</strong>matics, Voronezh State University, Voronezh,<br />

1970, pp. 72—81.<br />

[9] Yu. A. Simirnitskii, and P. E. Sobolevskii, Positivity of Multidimensional Difference Operators <strong>in</strong><br />

<strong>the</strong> C−norm, Usp. Mat. Nauk. 36(4), 202—203 (1981) (Russian).<br />

[10] S. I. Danelich, Fractional Powers of Positive Difference Operators, Ph.D. <strong>the</strong>sis, Voronezh State<br />

University, Voronezh, 394006 (1989) (Russian).<br />

[11] A. Ashyralyev, and B. Kendirli, Positivity <strong>in</strong> Ch of One Dimensional Difference Operators with<br />

Nonlocal Boundary Conditions, <strong>in</strong> Some Problems of Applied Ma<strong>the</strong>matics, edited by A. Ashyralyev,<br />

and H. A. Yurtsever, Fatih University, Istanbul, Turkey, 2000, pp. 45—60.<br />

1<br />

Page 63


On (α, β)-derivations <strong>in</strong> BCI-algebras<br />

G. Muhiudd<strong>in</strong><br />

Department of Ma<strong>the</strong>matics, University of Tabuk, P. O. Box 741, Tabuk 71491, Saudi Arabia<br />

<strong>Abstract</strong><br />

The notion of (regular) (α, β)-derivations of a BCI-algebra X is <strong>in</strong>troduced, some<br />

useful examples are discussed, and related properties are <strong>in</strong>vestigated. Condition for<br />

a (α, β)-derivation to be regular is provided. The concepts of a d(α,β)-<strong>in</strong>variant (α, β)-<br />

derivation and α-ideal are <strong>in</strong>troduced, and <strong>the</strong>ir relations are discussed. F<strong>in</strong>ally, some<br />

results on regular (α, β)-derivations are obta<strong>in</strong>ed.<br />

References<br />

[1] H.A.S. Abujabal and N.O. Al-Shehri, On Left Derivations of BCI-algebras, Soochow<br />

J. Math. 33(3) (2007), 435—444.<br />

[2] M. Aslam and A.B. Thaheem : A note on p-semisimple BCI-algebras, Math. Japon.<br />

36 (1991), 39-45.<br />

[3] N. Ayd<strong>in</strong> and A. Kaya: Some generalization <strong>in</strong> prime r<strong>in</strong>gs with (σ, τ)-derivation,<br />

Doga Turk. J. Math. 16 (1992), 169-176.<br />

[4] G. Mudiudd<strong>in</strong> and A. M. Al-roqi, On t-derivations of BCI-algebras, <strong>Abstract</strong> and<br />

Applied Analysis, (In Press) (<strong>2012</strong>).<br />

[5] M. A. Ozturk, Y. Ceven and Y. B. Jun : Generalized Derivations of BCI-algebras,<br />

Honam Math. J. 31 (4) (2009), 601-609.<br />

[6] J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, Int. J. Math. Math. Sci.<br />

2005(11) (2005), 1675—1684.<br />

Page 64


Transient and Cycle Structure of Elementary Rule 150 with Reflective Boundary<br />

<strong>Abstract</strong><br />

H. Akın 1 , I. S¸iap 2 and M.E. Koro˘glu 2<br />

1 Department of Ma<strong>the</strong>matics, Faculty of Education, Zirve University, Istanbul, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Yildiz Technical University, Istanbul, Turkey<br />

Cellular automata are simple ma<strong>the</strong>matical representation of complex dynamical systems. Therefore<br />

<strong>the</strong>re are several applications of cellular automata <strong>in</strong> many areas such as cod<strong>in</strong>g, cryptography, VLSI<br />

design etc. [1,2]. In this study, a recurrence relation for computation m<strong>in</strong>imal polynomial of transition<br />

matrix of l<strong>in</strong>ear elementary rule 150 with reflective boundary condition [3] was obta<strong>in</strong>ed. Then, <strong>the</strong><br />

maximum transient and cycle lengths of this rule were calculated by algorithm <strong>in</strong> [4].<br />

Acknowledgements: The work is supported by T ÜB˙ ITAK (Project Number: 110T713).<br />

References<br />

[1] P.P. Chaudhuri, D.R. Choudhury, S. Nandi and S. Chattopadhyay, Additive Cellular Automata<br />

Theory and Applications, Vol.1, (IEEE Computer Society Press, 1997 Los Alamitos).<br />

[2] J. L. Schiff, Cellular Automata: A Discrete View of <strong>the</strong> World (Wiley Sons, Inc., 2008 Hoboken,<br />

New Jersey).<br />

[3] H. Akın, F. S¸ah, I. S¸iap, On 1D reversible cellular automata with reflective boundary over <strong>the</strong><br />

prime field of order p, International Journal of Modern Physics C, 23 (1), pp. 1-13, (<strong>2012</strong>)<br />

[4] J. Stevens, R. Rosensweig, A. Cerkanowicz, Transient and cyclic behavior of cellular automata<br />

with null boundary conditions, J. Statist. Phys. 73, 159.174 (1993).<br />

Page 65


Numerical Solution of a lam<strong>in</strong>ar viscous flow boundary layer equation us<strong>in</strong>g Haar Wavelet<br />

Quasil<strong>in</strong>earization Method<br />

Harpreet Kaur 1 , R.C. Mittal 2 and V<strong>in</strong>od Mishra 1<br />

1 Department of Ma<strong>the</strong>matics, Sant Longowal Institute of Eng<strong>in</strong>eer<strong>in</strong>g and<br />

Technology,Longowal-148106(Punjab), India<br />

2 Department of Ma<strong>the</strong>matics, Indian Institute of Technology, Roorkee-247667(Uttrakhand), India<br />

<strong>Abstract</strong><br />

In this paper,we propose a wavelet method to solve <strong>the</strong> well known Blasius equation. The method<br />

is based on <strong>the</strong> Haar wavelet operational matrix def<strong>in</strong>ed over <strong>the</strong> <strong>in</strong>terval [0, 1]. In this method,we have<br />

used <strong>the</strong> coord<strong>in</strong>ate transformation for convert<strong>in</strong>g <strong>the</strong> problem on a fixed computational doma<strong>in</strong>. The<br />

generalized Blasius equation arises <strong>in</strong> <strong>the</strong> various boundary layer problems of hydrodynamics and <strong>in</strong> fluid<br />

mechanics of lam<strong>in</strong>ar viscous flows. Comparison is made with exist<strong>in</strong>g solutions <strong>in</strong> literature. Haar<br />

Wavelet Quasil<strong>in</strong>earization Method is of high accuracy even <strong>in</strong> <strong>the</strong> case of a small number of grid po<strong>in</strong>ts<br />

and without any iteration.<br />

References<br />

[1] C. Cattani, Haar wavelet spl<strong>in</strong>e, J. Inter. Math. 35-47,4(2001).<br />

[2] S. Abbasbandy, A Numerical Solution of Blasius Equation by Adomian’s Decomposition Method<br />

and Comparison with Homotopy Perturbation Method, Chaos, Solitons and Fractals, 257-260, 31(2007).<br />

[3] C.H. Hsiao, State analysis of l<strong>in</strong>ear time delayed system via Haar wavelets, Math. Comput. Simu.<br />

457-470, 44(1997).<br />

[4] G Hariharan, K. Kannan and K. R. Sharma, Haar wavelet method for solv<strong>in</strong>g Fisher’s equation,<br />

Appl, Math. Compu. 284-292, 211(2009).<br />

[5] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math.909-<br />

996,41(1998).<br />

[6] S. J. Liao, A An Explicit, Totally Analytical Approximate Solution for Blasius Viscous Flow<br />

Problem, International Journal of Non-L<strong>in</strong>ear Mechanics, 34(1999).<br />

[7] A.I. Ranas<strong>in</strong>ghe and F. B. Majid, Solution of Blasius Equation by Decomposition, Applied Math-<br />

ematical Sciences, 605-611, 3(2009).<br />

Page 66


<strong>Abstract</strong><br />

Characterizations of Slant Helices Accord<strong>in</strong>g to Quaternionic Frame<br />

H. Kocayi¼git, M. Önder and B. B. Pekacar<br />

Department of Ma<strong>the</strong>matics, Celal Bayar University, Manisa, Turkey<br />

In this study, we give <strong>the</strong> characterizations of slant helices accord<strong>in</strong>g to quaternionic frame <strong>in</strong> 3- and<br />

4-dimensional Euclidean spaces. Fur<strong>the</strong>rmore, we obta<strong>in</strong> some necessary and su¢ cient conditions for a<br />

space curve to be a slant helix accord<strong>in</strong>g to quaternionic frame.<br />

References<br />

[1] Ali, A., López, R., “On Slant Helices <strong>in</strong> M<strong>in</strong>kowski Space E 3 1”, arXiv:0810.1464v1 [math.DG], 8<br />

Oct 2008.<br />

[2] Ali, A., Turgut, M., “Some Characterizations of Slant Helices <strong>in</strong> <strong>the</strong> Euclidean Space E n ”,<br />

arXiv:0904.1187v1 [math.DG], 7 Apr 2009.<br />

[3] Gök, ·I., Okuyucu, O. Z., Kahraman, F., Hac¬saliho¼glu, H. H., "On <strong>the</strong> Quaternionic B2 Slant<br />

Helices <strong>in</strong> <strong>the</strong> Euclidean Space E 4 ", Adv. Appl. Cli¤ord Algebras 21, 707-719, 2011.<br />

[4] Bharath¬, K., Nagaraj, M., “Quaternion Valued Function of a Real Variable Serret-Frenet For-<br />

mulea”, Indian J. Pure appl. Math., 18(6): 507-511, June 1987.<br />

Page 67


Some Characterizations of Constant Breadth Tımelıke Curves <strong>in</strong> M<strong>in</strong>kowskı 4-space<br />

Hüsey<strong>in</strong> Kocayiğit, Mehmet Önder,Zennure Çiçek<br />

Celal Bayar University,Manisa,TURKEY<br />

<strong>Abstract</strong><br />

In this study, <strong>the</strong> differential equation characterizations of timelike curves of constant breadth<br />

4<br />

are given <strong>in</strong> M<strong>in</strong>kowskı 4-space E . Fur<strong>the</strong>rmore, a criterion for a curve to be <strong>the</strong> timelike<br />

4<br />

curve of constant breadth <strong>in</strong> E is <strong>in</strong>troduced. As an example, <strong>the</strong> obta<strong>in</strong>ed results are applied<br />

to <strong>the</strong> case that <strong>the</strong> curvatures k1, k2, k 3 and are discussed.<br />

References<br />

[1] Ball, N. H., On Ovals, American Ma<strong>the</strong>matical Monthly, 27 (1930), 348-353.<br />

[2] Barbier, E., Note sur le probleme de l'aiguille et le jeu du po<strong>in</strong>t couvert. J. Math. Pures<br />

Appl., II. Ser. 5, 273–286 (1860).<br />

[3] Blaschke, W., Konvexe bereichee gegebener konstanter breite und kle<strong>in</strong>sten <strong>in</strong>halt, Math.<br />

Annalen, B. 76 (1915), 504-513.<br />

[4] Blaschke, W., E<strong>in</strong>ige Bemerkungen über Kurven und Flächen konstanter Breite. Ber.<br />

Verh. sächs. Akad. Leipzig, 67, 290-297 (1915).<br />

[5] Breuer, S., and Gottlieb, D., The Reduction of L<strong>in</strong>ear Ord<strong>in</strong>ary Differential Equations to<br />

Equations with Constant Coefficients, J. Math. Anal. Appl., 32 (1970), no. 1, 62-76.<br />

[6] Chung, H.C., A Differential-Geometric Criterion for a Space Curve to be Closed, Proc.<br />

Amer. Math. Soc. 83 (1981), no. 2, 357-361.<br />

[7] Euler, L., De Curvis Triangularibus, Acta Acad. Prtropol., (1778), (1780), 3-30.<br />

[8] Fujivara, M., On space curves of constant breadth, Tohoku Math., J., 5 (1914), 179-784,.<br />

[9] Kazaz, M., Önder, M., Kocayiğit H., Spacelike curves of constant breadth <strong>in</strong> M<strong>in</strong>kowski<br />

4-space, Int. Journal of Math. Analysis, 2 (2008), no. 22, 1061 – 1068.<br />

[10] Kocayiğit, H., Önder, M., Spacelike curves of constant breadth <strong>in</strong> M<strong>in</strong>kowski<br />

3-space, Annali di Matematica, DOI 10.1007/s10231-011-0247-5.<br />

[11] Köse, Ö., On space curves of constant breadth, DOĞA Tr. J. Math., 10 (1986), no. 1, 11-<br />

14.<br />

[12] Mağden A., Köse, Ö., On <strong>the</strong> curves of constant breadth <strong>in</strong><br />

Page 68<br />

4<br />

E<br />

4<br />

E space, Turkish J. Math.,<br />

21 (1997), no. 3, 277-284.<br />

[13] Mellish, A. P., Notes on Differential Geometry, Annals of Math. J., 5 (1914), 179-184.<br />

[14] O’Neil, B. Semi Riemannian Geometry with Applications to Relativity, Academic Press,<br />

New York, (1983).<br />

[15] Önder, M., Kocayiğit, H., Candan, E., Differential Equations Characteriz<strong>in</strong>g Timelike<br />

and Spacelike Curves of Constant Breadth <strong>in</strong> M<strong>in</strong>kowski 3-spaceJ. Korean Math. So c. 48<br />

(2011), No. 4, pp. 849-866.<br />

[16] Reuleaux, F., The K<strong>in</strong>ematics of Mach<strong>in</strong>ery, Trans. By A.B.W. Kennedy, Dover, Pub.<br />

Nex York, (1963).<br />

[17] Ross, S.L., Differential Equations, John Wiley and Sons, Inc., New York, (1974), 440-<br />

468.<br />

[18] Sezer, M., Differential equations characteriz<strong>in</strong>g space curves of constant breadth and a<br />

criterion for <strong>the</strong>se curves, Turkish, J. of Math. 13 (1989), no. 2, 70-78.<br />

[19] Smakal, S., Curves of constant breadth, Czechoslovak Ma<strong>the</strong>matical Journal, 23 (1973),<br />

no. 1, 86–94.


Page 69<br />

[20] Struik, D. J., Differential Geometry <strong>in</strong> <strong>the</strong> Large, Bullet<strong>in</strong> Amer. Ma<strong>the</strong>m. Soc., 37<br />

(1931), 49-62.<br />

[21] Tanaka, H., K<strong>in</strong>ematics Design of Com Follower Systems, Doctoral Thesis, Columbia<br />

Univ., (1976).<br />

[22] Walrave, J., Curves and surfaces <strong>in</strong> M<strong>in</strong>kowski space. PhD. <strong>the</strong>sis, K. U. Leuven, Fac. of<br />

Science, Leuven (1995).<br />

[23] Yılmaz, S., Turgut, M., On <strong>the</strong> Time-like Curves of Constant Breadth, Math. Comb<strong>in</strong>.<br />

Vol.3 (2008), 34–39.


Us<strong>in</strong>g Inverse Laplace Transform for <strong>the</strong> solution of a Flood Rout<strong>in</strong>g Problem<br />

H. Saboorkazeran 1 and M.F. Maghrebi 1,2<br />

1 Department of Civil Eng<strong>in</strong>eer<strong>in</strong>g, Ferdowsi University of Mashhad, Mashhad, Iran<br />

2 Member of Iranian Structural Eng<strong>in</strong>eer<strong>in</strong>g Organization Prov<strong>in</strong>ce of Khorasan Razavi<br />

<strong>Abstract</strong><br />

The <strong>in</strong>verse Laplace transform is of significant importance <strong>in</strong> ma<strong>the</strong>matical sciences when an<br />

analytical solution exists <strong>in</strong> Laplace doma<strong>in</strong>. So, a new solution of <strong>the</strong> l<strong>in</strong>earized St. Venant<br />

equations (LSVE) has been obta<strong>in</strong>ed for flood rout<strong>in</strong>g <strong>in</strong> open channels. The LSVE has been<br />

previously used by many researchers [1] and <strong>in</strong> Laplace doma<strong>in</strong> are <strong>in</strong> <strong>the</strong> matrix form<br />

��<br />

��<br />

� A � B�<br />

� 0<br />

�t<br />

�x<br />

where � is transfer matrix <strong>in</strong>cludes deviations of discharge q ( x,<br />

t)<br />

and depth y ( x,<br />

t)<br />

around <strong>the</strong><br />

reference values ( 0 , 0 ) Y Q . In this new formulation, <strong>the</strong> Mann<strong>in</strong>g formula is l<strong>in</strong>earized as boundary<br />

condition besides <strong>the</strong> St. Venant equations to get a Laplace transformable, simplified set of<br />

equations <strong>in</strong> Laplace doma<strong>in</strong> as follows<br />

where<br />

k v<br />

�Q<br />

�Y<br />

ˆ( L,<br />

s)<br />

� k yˆ<br />

( L,<br />

s)<br />

(2)<br />

q v<br />

� . A method for Laplace <strong>in</strong>version, which provides a great convergence, very<br />

accurate response for flood rout<strong>in</strong>g problem is used here. As previously this method has been<br />

used for difuusion waves model [2, 3], <strong>the</strong> results show <strong>the</strong> improved De Hoog algorithm [4]<br />

provide a solution with zero error for discharge, and very small percent of error for depth.<br />

Apply<strong>in</strong>g <strong>the</strong> well-known Preissmann implicit scheme on <strong>the</strong> LSVE for equal condition shows<br />

that <strong>the</strong> De Hoog algorithm is <strong>in</strong> complete agreement with <strong>the</strong> numerical solution of <strong>the</strong> LSVE.<br />

References<br />

Page 70<br />

[1] Litrico X. and Fromion V., Frequency model<strong>in</strong>g of open-channel flow, Journal of<br />

Hydraulic Eng<strong>in</strong>eer<strong>in</strong>g, 130, 806-815, 2004.<br />

[2] Kazezyılmaz-Alhan C.M., An improved solution for diffusion waves to overland flow,<br />

Applied Ma<strong>the</strong>matical Modell<strong>in</strong>g (<strong>in</strong> press), 2011.<br />

[3] Ahsan M., Numerical solution of <strong>the</strong> advection diffusion equation us<strong>in</strong>g Laplace transform<br />

f<strong>in</strong>ite analytical method, 3rd International <strong>Conference</strong> on Manag<strong>in</strong>g Rivers <strong>in</strong> <strong>the</strong> 21st Century:<br />

Susta<strong>in</strong>able Solutions for Global Crisis of Flood<strong>in</strong>g, 204-215, 2011.<br />

[4] De Hoog F.R., Knight J.H. and Stokes A.N., An improved method for numerical <strong>in</strong>version<br />

of Laplace transforms, SIAM, Journal of scientific and statistical comput<strong>in</strong>g, 3, 357-366, 1982.<br />

(1)


Applied Ma<strong>the</strong>matics Analysis of <strong>the</strong> Multibody Systems<br />

H. Sah<strong>in</strong> 1 , A. Kerim Kar 2 and E. Tacg<strong>in</strong> 2<br />

1 Istanbul Ulasim A.S., Istanbul, Turkey<br />

2 Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Faculty of Eng<strong>in</strong>eer<strong>in</strong>g, Marmara University, Istanbul,<br />

Turkey<br />

<strong>Abstract</strong><br />

In this work, A methodology is developed for <strong>the</strong> analysis of <strong>the</strong> multibody systems that is<br />

applied on <strong>the</strong> vehicle as a case study. The previous study is emphasized on <strong>the</strong> derivation of <strong>the</strong><br />

multibody dynamics equations of motion for bogie [see 2]. In this work, we have developed a<br />

guide-way for <strong>the</strong> analysis of <strong>the</strong> dynamics behavior of <strong>the</strong> multibody systems for ma<strong>in</strong>ly<br />

validation, verification of <strong>the</strong> realistic ma<strong>the</strong>matical model and partly for <strong>the</strong> design of <strong>the</strong><br />

alternative optimum vehicle parameters .<br />

Derivation of <strong>the</strong> DAEs<br />

Lagrange method is used with trajectory coord<strong>in</strong>ate system as seen by equation 1. to derive<br />

generalized equation of motion for <strong>the</strong> differential algebraic equations [see 4]. These generalized<br />

equations programmed <strong>in</strong> <strong>the</strong> Matlab’s Symbolic Ma<strong>the</strong>matics Toolbox. The size of <strong>the</strong> DAE’s<br />

are 44 for <strong>the</strong> bogie and about 156 for <strong>the</strong> whole railway vehicle.<br />

A methodology is developed for applied ma<strong>the</strong>matics analysis of <strong>the</strong> multibody systems.<br />

This methodology can be used to compare with <strong>the</strong> symbolically derived DAEs of <strong>the</strong> motions<br />

with <strong>the</strong> previous studies for validation or <strong>the</strong> optimization of <strong>the</strong> vehicle dynamical parameters<br />

[see 1 and 3]. Case studies of <strong>the</strong> railway vehicle multibody ma<strong>the</strong>matical model is tested for<br />

this methodology with a success. Although <strong>the</strong> most critical and <strong>in</strong>fluential symbolically varied<br />

parameter of <strong>the</strong> velocity is picked for <strong>the</strong> case study one can pick <strong>the</strong> rest of <strong>the</strong> o<strong>the</strong>r<br />

parameters such as mass, <strong>in</strong>ertia or dimensions of <strong>the</strong> vehicle to design vehicle or mechatronic<br />

system for purposes such as stability (critical velocity for railway case) and comfort criteria.<br />

Keywords: Computational differential-algebraic equations (CDAEs), Multibody dynamics<br />

(MBD), Eigenvalue analysis, Lagrange dynamics, Railway vehicles.<br />

(1)<br />

Page 71


ACKNOWLEDGEMENTS<br />

Authors would like to acknowledge <strong>the</strong> f<strong>in</strong>ancial support of <strong>the</strong> TUBITAK with <strong>the</strong> project<br />

numbered 110M561. Authors are grateful to <strong>the</strong> BTE Department of <strong>the</strong> TUBITAK MAM<br />

Research Institute for <strong>the</strong> permition to have <strong>the</strong> real and simulated data from <strong>the</strong> TRENSIM<br />

project completed for <strong>the</strong> Turkish State Railways (TCDD) for <strong>the</strong> E43000 Locomotive<br />

Simulator.<br />

References<br />

1. C. Smitke and P. Goossens, “Symbolic Computation Techniques for Multibody Model<br />

Development and Code Generation” <strong>in</strong> ECCOMAS Thematic <strong>Conference</strong> on Multibody<br />

Dynamics, Brussels, Belgium, 4-7 July 2011.<br />

2. H. Sah<strong>in</strong> , A. Kar, and E. Tacg<strong>in</strong>, "Analysis of <strong>the</strong> Differential-Algebraic Equations<br />

(DAEs) for Multibody Dynamics", Proceed<strong>in</strong>gs of <strong>the</strong> International <strong>Conference</strong> on Applied<br />

Analysis and Algebra, Istanbul, Turkiye, June 20-24, <strong>2012</strong>.<br />

3. T. Kurz, P. Eberhard., & S. C. Henn<strong>in</strong>ger, From Neweul to Neweul-M2: symbolic<br />

equations of motion for multibody system analysis and syn<strong>the</strong>sis. Multibody System Dynamics ,<br />

2010, 25-41.<br />

4. Greenwood, D. T. Advanced Dynamics. Cambridge University (2003).<br />

Page 72


Multibody Railway Vehicle Dynamics Us<strong>in</strong>g Symbolic Ma<strong>the</strong>matics<br />

H. Sah<strong>in</strong> 1 , A. Kerim Kar 2 and E. Tacg<strong>in</strong> 2<br />

1 Istanbul Ulasim A.S., Istanbul, Turkey<br />

2 Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Faculty of Eng<strong>in</strong>eer<strong>in</strong>g, Marmara University, Istanbul,<br />

Turkey<br />

<strong>Abstract</strong><br />

In this work, <strong>the</strong> Equations of Motion (EOMs) of <strong>the</strong> Multibody Dynamics is derived for a<br />

railway vehicle. The previous work of <strong>the</strong> authors is related to derive <strong>the</strong> Multibody Dynamics<br />

model of <strong>the</strong> bogie with 44 DAEs (see [1]). Lagrange dynamics is used as common approach <strong>in</strong><br />

applied ma<strong>the</strong>matics and mechanics for computational differential-algebraic equations (CDAEs).<br />

Differential equations of motions are formulized as <strong>in</strong> <strong>the</strong> generalized symbolic ma<strong>the</strong>matics and<br />

applied <strong>in</strong> <strong>the</strong> Matlab’s MuPad Symbolic Math Toolbox.<br />

The size of <strong>the</strong> railway vehicle’s DAEs is about 156. F<strong>in</strong>ally, <strong>the</strong> results are compared us<strong>in</strong>g<br />

eigenvalues with previous studies <strong>in</strong> <strong>the</strong> same area with a success. The symbolic ma<strong>the</strong>matics is<br />

currently used for derivation of <strong>the</strong> multibody dynamics EOMs (see [2] and [4]). Langrange<br />

dynamics for <strong>the</strong> trajectory coord<strong>in</strong>ate is applied to derive generalized EOMs for <strong>the</strong> multibody<br />

dynamics. Follow<strong>in</strong>g Equation 1 is one of <strong>the</strong> generalized equation used to derive <strong>the</strong> state space<br />

representation of <strong>the</strong> EOMs for <strong>the</strong> railway vehicle (see [3]).<br />

Keywords: Computational differential-algebraic equations (CDAEs), Multibody dynamics (MBD),<br />

Eigenvalue analysis, Lagrange dynamics, Railway vehicles.<br />

ACKNOWLEDGEMENTS<br />

Authors would like to acknowledge <strong>the</strong> f<strong>in</strong>ancial support of <strong>the</strong> TUBITAK with <strong>the</strong> project<br />

numbered 110M561. Authors are grateful to <strong>the</strong> BTE Department of <strong>the</strong> TUBITAK MAM<br />

Research Institute for <strong>the</strong> permition to have <strong>the</strong> real and simulated data from <strong>the</strong> TRENSIM<br />

project completed for <strong>the</strong> Turkish State Railways (TCDD) for <strong>the</strong> E43000 Locomotive<br />

Simulator.<br />

(1)<br />

Page 73


References<br />

Page 74<br />

[1] H. Sah<strong>in</strong> , A. Kar, and E. Tacg<strong>in</strong>, "Analysis of <strong>the</strong> Differential-Algebraic Equations (DAEs)<br />

for Multibody Dynamics", Proceed<strong>in</strong>gs of <strong>the</strong> International <strong>Conference</strong> on Applied Analysis and<br />

Algebra, Istanbul, Turkiye, June 20-24, <strong>2012</strong>.<br />

[2] T. Kurz, P. Eberhard., & S. C. Henn<strong>in</strong>ger, From Neweul to Neweul-M2: symbolic equations<br />

of motion for multibody system analysis and syn<strong>the</strong>sis. Multibody System Dynamics , 2010, 25-<br />

41.<br />

[3] Rieveley, R. J. The Effect of Direct Yaw Moment on Human Controlled Vehicle Systems.<br />

Dissertation . W<strong>in</strong>dsor, Ontario, Canada: University of W<strong>in</strong>dsor, 2010, May 19.<br />

[4] C. Smitke and P. Goossens, “Symbolic Computation Techniques for Multibody Model<br />

Development and Code Generation” <strong>in</strong> ECCOMAS Thematic <strong>Conference</strong> on Multibody<br />

Dynamics, Brussels, Belgium, 4-7 July 2011.


Existence of Global Solutions for a Multidimensional Bouss<strong>in</strong>esq-Type Equation with<br />

<strong>Abstract</strong><br />

Supercritical Initial Energy<br />

H. Taskesen 1 and N. Polat 1<br />

1 Department of Ma<strong>the</strong>matics, Dicle University, Diyarbak¬r, Turkey<br />

In this work, global weak solutions of <strong>the</strong> multidimensional Bouss<strong>in</strong>esq-type equation with power<br />

type nonl<strong>in</strong>earity juj p and supercritical <strong>in</strong>itial energy is given by potential well method. Classical<br />

energy methods can not guarantee <strong>the</strong> global existence for this type of nonl<strong>in</strong>earity. As is known <strong>the</strong><br />

functional de…ned for potential well method <strong>in</strong>cludes only <strong>the</strong> <strong>in</strong>itial displacement, and by use of sign<br />

<strong>in</strong>variance of this functional one can only prove <strong>the</strong> global existence for critical and subcritical <strong>in</strong>itial<br />

energy. In <strong>the</strong> case of supercritical <strong>in</strong>itial energy such a functional fails to prove <strong>the</strong> global existence. A<br />

new functional is de…ned, which conta<strong>in</strong>s not only <strong>in</strong>itial displacement, but also <strong>in</strong>itial velocity.<br />

References<br />

[1] Y-Z. Wang, Y-X. Wang, Existence and nonexistence of global solutions for a class of nonl<strong>in</strong>ear<br />

wave equations of higher order, 72 (2010) 4500-4507.<br />

[2] S. Wang, G. Xu, The Cauchy problem for <strong>the</strong> Rosenau equation, Nonl<strong>in</strong>ear Anal. 71 (2009)<br />

456-466.<br />

[3] H. Taskesen, N. Polat, A. Erta¸s, On global solutions for <strong>the</strong> Cauchy problem of a Bouss<strong>in</strong>esq-type<br />

equation, Abst. Appl. Anal. <strong>in</strong> press.<br />

[4] H. A. Lev<strong>in</strong>e, Instability and nonexistence of global solutions of nonl<strong>in</strong>ear wave equation of <strong>the</strong><br />

form P u = Autt + F (u), TAMS 192 (1974) 1–21.<br />

Page 75


Dissipative Extensions of Fourth Order Di¤erential Operators <strong>in</strong> <strong>the</strong> Lim- 3 case<br />

Hüsey<strong>in</strong> Tuna<br />

<strong>Abstract</strong><br />

Department of Ma<strong>the</strong>matics, Mehmet Akif Ersoy University, Burdur, Turkey<br />

Extensions of symmetric operators arise <strong>in</strong> many areas of ma<strong>the</strong>matical physics, like solvable models<br />

of quantum mechanics and quantization problems. Let us consider <strong>the</strong> scalar fourth order di¤erential<br />

operators generated by di¤erential expression<br />

where q (x) is a real cont<strong>in</strong>uous function <strong>in</strong> [0; 1):<br />

l (y) = y (4) + q (x) y; 0 x < +1<br />

In this paper, a space of boundary value is constructed for scalar fourth order di¤erential operators <strong>in</strong><br />

<strong>the</strong> Lim 3 case. We describe all maximal dissipative, acretive, self adjo<strong>in</strong>t and o<strong>the</strong>r extensions <strong>in</strong> terms<br />

of boundary conditions.<br />

References<br />

[1] Allahverdiev B. P., On extensions of symmetric Schröd<strong>in</strong>ger operators with a matrix potential,<br />

Izvest. Ross. Akad. Nauk. Ser . Math. 59; (1995) ; 19 54; English transl. Izv. Math. 59; (1995) ; 45 62.<br />

[2] Bruk V.M , On a class of boundary –value problemswith a spectral parameter <strong>in</strong> <strong>the</strong> boundary<br />

conditions, Mat. Sb.,100; (1976) ; 210 216:<br />

442:<br />

[3] Calk<strong>in</strong> J. W., <strong>Abstract</strong> boundary conditions, Trans. Amer. Math. Soc.,Vol 45;No. 3; (1939) ; 369<br />

[4] Fulton C.T., Parametrization of Titchmarsh"s m ( ) functions <strong>in</strong> <strong>the</strong> limit circle case, Trans.<br />

Amer. Math. Soc. 229; (1977) ; 51 63:<br />

[5] Fulton C.T., The Bessel-squared equation <strong>in</strong> <strong>the</strong> lim-2, lim-3, and lim-4 cases, Quart. J. Math.<br />

Oxford (2); 40; (1989) ; 423 456.<br />

[6] Gorbachuk M. L., On spectral functions of a second order di¤erential operator with operator<br />

coe¢ cients, Ukra<strong>in</strong>. Mat. Zh. 18; (1966) ; no.2; 3 21; English transl: Amer. Math. Soc. Transl. Ser.<br />

II 72; (1968) ; 177 202:<br />

[7] Gorbachuk M. L., Gorbachuk V. I., Kochubei A.N., The <strong>the</strong>ory of extensions of symmetric operators<br />

and boundary-value problems for di¤erential equations’, Ukra<strong>in</strong>. Mat. Zh. 41; (1989) ; 1299 1312;<br />

English transl. <strong>in</strong> Ukra<strong>in</strong>ian Math. J. 41(1989); 1117 1129:<br />

[8] Gorbachuk M. L., Gorbachuk V. I., Boundary Value Problems for Operator Di¤erential Equations,<br />

Naukova Dumka, Kiev, 1984; English transl. 1991;Birkhauser Verlag.<br />

[9] Guse¼¬nov I. M. and Pashaev R. T., Description of selfadjo<strong>in</strong>t extensions of a class of di¤erential<br />

operators of order 2n with defect <strong>in</strong>dices (n + k; ; n + k); 0 < k < n; Izv.Akad.Nauk Azerb. Ser. Fiz.<br />

Tekh. Mat. Nauk, No.2; (1983) ; 15 19 (<strong>in</strong> Russian).<br />

Page 76


On <strong>the</strong> stability of <strong>the</strong> steady-state solutions of cell equations <strong>in</strong> a tumor growth model<br />

I. Atac and S. Pamuk<br />

Department of Ma<strong>the</strong>matics, University of Kocaeli, Umuttepe Campus, 41380, Kocaeli - TURKEY<br />

<strong>Abstract</strong><br />

In this study, we provide <strong>the</strong> stability analysis of <strong>the</strong> steady state solutions of endo<strong>the</strong>lial, pericyte<br />

and macrophage cell equations <strong>in</strong> a ma<strong>the</strong>matical model <strong>in</strong> tumor angiogenesis. We do this by study<strong>in</strong>g<br />

phase plane analysis of <strong>the</strong> system of ord<strong>in</strong>ary differential equations obta<strong>in</strong>ed from <strong>the</strong> cell equations. We<br />

also discuss <strong>the</strong> biological importance of <strong>the</strong> analysis <strong>in</strong> tumor angiogenesis.<br />

Keywords: Angiogenesis, Phase plane analysis, Tumor cells<br />

References<br />

[1] W.E. Boyce, R.C. DiPrima, Elemantary Differential Equations and Boundary Value Problems, John<br />

Wiley and Sons, Inc., USA, (1992).<br />

[2] L. Edelste<strong>in</strong>-Keshet, Ma<strong>the</strong>matical Models <strong>in</strong> Biology, Random House, NY, (1988).<br />

[3] H.A. Lev<strong>in</strong>e, B.D. Sleeman, M. Nilsen-Hamilton, A ma<strong>the</strong>matical model for <strong>the</strong> roles of pericytes<br />

and macrophages <strong>in</strong> <strong>the</strong> <strong>in</strong>itiation of angiogenesis. I.The role of protease <strong>in</strong>hibitors <strong>in</strong> prevent<strong>in</strong>g<br />

angiogenesis, Math. Biosc. 168(2000) 77-115.<br />

[4] S. Pamuk, Qualitative analysis of a ma<strong>the</strong>matical model for capillary formation <strong>in</strong> tumor angiogen-<br />

esis, Math. Models and Methods Apll. Sci. 13(1)(2003) 19-33.<br />

[5] S. Pamuk, A. Guven, Stability Analysis of <strong>the</strong> Steady-State Solution of a Ma<strong>the</strong>matical Model <strong>in</strong><br />

Tumor Angiogenesis, Global Analysis and Applied Ma<strong>the</strong>matics, 729(2004) 369-373.<br />

[6] N. Paweletz, M. Knierim, Tumor-Related Angiogenesis, Critical Reviews <strong>in</strong> Oncology/Hematology,<br />

9(1989) 197-242.<br />

Page 77


The Cutt<strong>in</strong>gs Transport Modell<strong>in</strong>g with Couette Flow<br />

Ishak Cumhur<br />

Department of Ma<strong>the</strong>matics, Recep Tayyip Erdogan University, Rize, Turkey<br />

<strong>Abstract</strong><br />

In <strong>the</strong> petroleum production, when an oil well is drilled, rock cutt<strong>in</strong>gs are transported up to<br />

<strong>the</strong> surface. As current ma<strong>the</strong>matical models of <strong>the</strong> flow and transport neglect <strong>the</strong> effect of<br />

drillstr<strong>in</strong>g rotation, it is necessary to have a model that <strong>in</strong>cludes rotation effects. Predict<strong>in</strong>g<br />

effective cutt<strong>in</strong>gs transport mechanism requires all of <strong>the</strong> parameters to be considered<br />

simultaneously. To beter understand <strong>the</strong> cutt<strong>in</strong>gs transport mechanism, a mechanistic model is<br />

used for cutt<strong>in</strong>gs <strong>in</strong> Couette and Poiseuille flow, as well as <strong>the</strong> helical flow be<strong>in</strong>g <strong>the</strong><br />

superposition of Couette and Poiseuille flows.<br />

In this paper, we present <strong>the</strong> approximate solution of cutt<strong>in</strong>gs transport model(Couette<br />

Flow Model) be<strong>in</strong>g only direction of rotation by comb<strong>in</strong><strong>in</strong>g Modified Differential Transform<br />

Method and Adomian Decompositon.<br />

Couette flow velocity profile will be used <strong>in</strong><br />

model equation<br />

<strong>in</strong>stead of , where is fluid velocity at location, is dynamic viscosity, is particle<br />

size and (Kurzweg, 1995). Nondimensional parameters are<br />

and<br />

.<br />

References<br />

1. Alexandrou, A., Pr<strong>in</strong>ciples of Fluid Mechanics, Prentice Hall, New Jersey, 2001.<br />

2. Bolchover, P., Allwright, D., Coşkun, E., Jones, G. ve Ockendon, J., Cutt<strong>in</strong>gs Transport with<br />

Drillstr<strong>in</strong>g rotation. http://www.maths-<strong>in</strong>-<strong>in</strong>dustry.org/miis/135/1/ cutt<strong>in</strong>gs.pdf 12 Mayıs 2008<br />

3. Cumhur, İ., Cutt<strong>in</strong>gs Transport Model and Its Analysis <strong>in</strong> Annular Region between two Cyl<strong>in</strong>ders,<br />

PhD dissertation, Karadeniz Technical University, Trabzon, 2011.<br />

4. Çengel, Y., A. ve Cimbala, J., M., Akışanlar Mekaniği Temellleri ve Uygulamaları, Güven Bilimsel,<br />

İzmir, 2007.<br />

5. Kurzweg, U., H, Stokes’ Drag. http://www.mae.ufl.edu/~uhk/HOMEPAGE.html 29 Haziran 2009<br />

6. Papanastasiou, T., C., Georgiou, G. ve Alexandrou, A., N., Viscous Fluid Flow, CRC Press, Florida,<br />

2000.<br />

Page 78<br />

7. Venkatarangan, S., N. ve Rajalakshmi, K., A Modification of Adomian’s Solution for Nonl<strong>in</strong>ear<br />

Oscillatory Systems, Computers Math. Applic., 6, 29 (1995) 67-73.<br />

8. Zhou, J., K., Differential Transformation and Its Application for Electrical Circuits, Huazhong<br />

University Press, Wuhan, Ch<strong>in</strong>a, 1986.<br />

9. Zhu, Y., Chang, Q. ve Wu, S., A New Algorithm for calculat<strong>in</strong>g Adomian Polynomials, Applied<br />

Ma<strong>the</strong>matics and Computation, 169 (2005) 402-416.


On <strong>the</strong> Numerical Solution of Diffusion Problem with<br />

S<strong>in</strong>gular Source Terms<br />

Irfan Turk ∗ and Maksat Ashyraliyev †<br />

∗ Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey, irfanturk@gmail.com<br />

† Department of Ma<strong>the</strong>matics, Bahcesehir University, Istanbul, Turkey, maksat.ashyralyyev@bahcesehir.edu.tr<br />

<strong>Abstract</strong>.<br />

Partial differential equations with s<strong>in</strong>gular (po<strong>in</strong>t) source terms arise <strong>in</strong> many different scientific and eng<strong>in</strong>eer<strong>in</strong>g applications.<br />

S<strong>in</strong>gular means that with<strong>in</strong> <strong>the</strong> spatial doma<strong>in</strong> <strong>the</strong> source is def<strong>in</strong>ed by a Dirac delta function. Our <strong>in</strong>terest is this type<br />

of problems is motivated by ma<strong>the</strong>matical modell<strong>in</strong>g of forecast<strong>in</strong>g and development of new gas reservoirs [1, 2, 3, 4].<br />

Solutions of <strong>the</strong> problems hav<strong>in</strong>g s<strong>in</strong>gular source terms generally have lack of smoothness, which is an obstacle for standard<br />

numerical methods. Therefore, solv<strong>in</strong>g <strong>the</strong>se type of problems numerically requires a great deal of attention [5, 6, 7].<br />

In this paper we discuss <strong>the</strong> numerical solution of <strong>in</strong>itial-boundary value problem with s<strong>in</strong>gular source terms<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

ut = D uxx + k1δ(x − a1)+k2δ(x − a2), 0 < x < 1, t > 0, 0 < a1 < a2 < 1,<br />

u(t,0) = uL, u(t,1) = uR, t ≥ 0,<br />

u(0,x) = ϕ(x), 0 ≤ x ≤ 1,<br />

where δ(x) is a Dirac delta function. We follow <strong>the</strong> standard f<strong>in</strong>ite volume approach based on <strong>the</strong> <strong>in</strong>tegral form of (1). We<br />

consider this approach more natural than <strong>the</strong> f<strong>in</strong>ite difference one directly based on <strong>the</strong> differential form, s<strong>in</strong>ce for <strong>the</strong> <strong>in</strong>tegral<br />

form <strong>the</strong> treatment of <strong>the</strong> Dirac delta function expression is ma<strong>the</strong>matically clear. For ease of presentation, we assume that<br />

<strong>the</strong>re are only two source terms. The presented material is extendable to <strong>the</strong> case with more than two source terms. F<strong>in</strong>ally,<br />

this study can be readily extended to <strong>the</strong> case with time-dependent source terms.<br />

Keywords: Diffusion Equation; S<strong>in</strong>gular Source Terms; F<strong>in</strong>ite Volume Method<br />

PACS: 02.30.Jr, 02.60.Cb, 02.60.Lj, 87.10.Ed<br />

REFERENCES<br />

Page 79<br />

1. S. N. Zakirov and V. I. Vasilyev, Forecast<strong>in</strong>g and development of gas reservoirs, Nedra, Moscow, 1984 (<strong>in</strong> Russian).<br />

2. K. S. Basniev, A. M. Vlasov, I. N. Koch<strong>in</strong>a and V. M. Maksimov, Underground Hydrodynamics, Nedra, Moscow, 1986 (<strong>in</strong><br />

Russian).<br />

3. P. G. Bedrikovetskii, E. V. Manevich and R. Esedulaev, Fluid Dynamics 28 (2), 214–222 (1993).<br />

4. B. Annamukhamedov, N. V. Avramenko, K. S. Basniev, P. G. Bedrikovetskii, E. N. Ded<strong>in</strong>ets and M. S. Muradov, Journal of<br />

Eng<strong>in</strong>eer<strong>in</strong>g Physics 58 (4), 475–483 (1990).<br />

5. J. Santos and P. de Oliveira, Journal of Computational and Applied Ma<strong>the</strong>matics 111, 239–251 (1999).<br />

6. A. K. Tornberg and B. Engquist, Journal of Computational Physics 200, 462–488 (2004).<br />

7. M. Ashyraliyev, J. G. Blom and J. G. Verwer, Journal of Computational and Applied Ma<strong>the</strong>matics 216, 20–38 (2008).<br />

8. W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Spr<strong>in</strong>ger<br />

Series <strong>in</strong> Computational Ma<strong>the</strong>matics, Vol. 33, Spr<strong>in</strong>ger, Berl<strong>in</strong>, 2003.<br />

(1)


One Boundary-Value Problem Perturbed by <strong>Abstract</strong> L<strong>in</strong>ear Operator<br />

<strong>Abstract</strong><br />

K. Aydemir 1 and O. Sh. Mukhtarov 2<br />

1 Department of Ma<strong>the</strong>matics, Gaziosmanpaa University, Tokat, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Gaziosmanpaa University, Tokat, Turkey<br />

The <strong>in</strong>vestigation of regular boundary value problems for which <strong>the</strong> eigenvalue parameter appears<br />

<strong>in</strong> both <strong>the</strong> ord<strong>in</strong>ary differential equation and <strong>the</strong> boundary conditions orig<strong>in</strong>ates from <strong>the</strong> Birkhoff’s<br />

work [3]. In recent years, more and more researchers are <strong>in</strong>terested <strong>in</strong> <strong>the</strong> discont<strong>in</strong>uous Sturm-Liouville<br />

problems. Various physics applications of this k<strong>in</strong>d of problems are found <strong>in</strong> many literatures (see [1],<br />

[2], [6]). The purpose of this paper is to study a Sturm-Liouville problem with discont<strong>in</strong>uities <strong>in</strong> <strong>the</strong> case<br />

when an eigenparameter appears not only <strong>in</strong> <strong>the</strong> differential equation but also <strong>in</strong> <strong>the</strong> boundary conditions.<br />

Morever, <strong>the</strong> ”differential equation” conta<strong>in</strong>ed also an abstract l<strong>in</strong>ear operator (unbounded <strong>in</strong> general)<br />

<strong>in</strong> <strong>the</strong> Hilbert space L2(−1, 0) ⊕ L2(0, 1). We apply a different approach for <strong>in</strong>vestigation some spectral<br />

properties of this problem.<br />

References<br />

[1] Akdoan Z., Demirci M. and Mukhtrov O. Sh., Normalized Eigenfunction of Discont<strong>in</strong>nuous Sturm-<br />

Liouville Type Problem with Transmission Conditions,Applied Ma<strong>the</strong>matical Sciences, Vol.1, no. 52,<br />

2573-2591, 2007.<br />

[2] Fulton C. T., Two-po<strong>in</strong>t boundary value problems with eigenvalue parameter conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong><br />

boundary conditions, Proc. roy. soc. ed<strong>in</strong>. , 77A, 293-308, 1977.<br />

[3]Birkhoff G. D. , On <strong>the</strong> asymptotic character of <strong>the</strong> solution of <strong>the</strong> certa<strong>in</strong> l<strong>in</strong>ear differential<br />

equations conta<strong>in</strong><strong>in</strong>g parameter, Trans. Amer. Math. Soc., 9, p.219-231, 1908.<br />

[4] Mukhtarov O. Sh. and Kadakal M., Some spectral properties of one Sturm-Liouville type problem<br />

with discont<strong>in</strong>uous weight, Sib. Math. J., Vol. 46, 681-694, 2005.<br />

[5] Titchmarsh E. C., Eigenfunction expensions associated with second order diferential equations I,<br />

(2nd edn) London: Oxford Univ. Press., 1962.<br />

[6]Tikhonov, A. N. and Samarskii, A. A.,Partial Equation of Ma<strong>the</strong>matical Physics , Vol 1, San<br />

Francisko, Translated from <strong>the</strong> Russian, Moscow, pp.380, 1962.<br />

Page 80


Us<strong>in</strong>g expand<strong>in</strong>g method of (G ′ /G) to f<strong>in</strong>d <strong>the</strong> travell<strong>in</strong>g wave solutions of nonl<strong>in</strong>ear<br />

partial differential equations and solv<strong>in</strong>g mkdv equation by this method<br />

K. Nojoomi 1 , M. Mahmoudi 2 and A. Rahmani 1<br />

1 Department of Ma<strong>the</strong>matics, SheikhBahaee University, Esfahan, Iran 2 Department of Ma<strong>the</strong>matical<br />

<strong>Abstract</strong><br />

F<strong>in</strong>ance, SheikhBahaee University,Esfahan, Iran<br />

Expand<strong>in</strong>g method of (G ′ /G) can be implemented to f<strong>in</strong>d survey solutions of travell<strong>in</strong>g wave of<br />

some nonl<strong>in</strong>ear partial differential equations. The answers depend on hyperbolic functions, trigonometric<br />

functions and rational functions (see [1]).<br />

This method, converts nonl<strong>in</strong>ear partial differential equations <strong>in</strong>to a plane differential equation. It is<br />

possible to use this method to solve <strong>in</strong>tegrable equations and non-<strong>in</strong>tegrable equations. In this paper, by<br />

describ<strong>in</strong>g <strong>the</strong> method we analysis <strong>the</strong> application of it to solve mkdv equation (see [2-3]).<br />

Phenomenon <strong>in</strong> physics and o<strong>the</strong>r fields are often described by nonl<strong>in</strong>ear partial differential equations.<br />

Dur<strong>in</strong>g 40 years ago, f<strong>in</strong>d<strong>in</strong>g survey solutions of nonl<strong>in</strong>ear partial differential equations by implement<strong>in</strong>g<br />

different methods have been <strong>the</strong> target of many researchers and <strong>the</strong> powerful methods of <strong>in</strong>verse diffusion<br />

method, homogeneous equilibrium,.expand<strong>in</strong>g method of (G ′ /G) are proposed that are based on assump-<br />

tions that <strong>the</strong> solutions of travell<strong>in</strong>g wave of nonl<strong>in</strong>ear partial differential equations can be expressed<br />

<strong>in</strong> (G ′ /G) by polynomial and G = G(ξ)is correct <strong>in</strong> second order l<strong>in</strong>ear ord<strong>in</strong>ary differential equations<br />

(LODE). The degree of polynomial can be obta<strong>in</strong>ed by balance between <strong>the</strong> highest-order derivative of<br />

<strong>the</strong> dependent variable <strong>in</strong> l<strong>in</strong>ear part of <strong>the</strong> differential equation with highest-order of dependent variable<br />

<strong>in</strong> nonl<strong>in</strong>ear part that is appeared <strong>in</strong> ODE.<br />

Def<strong>in</strong>itions and Basic prelim<strong>in</strong>aries:<br />

1.Balance number<br />

balance number of m can be obta<strong>in</strong>ed by balance between <strong>the</strong> highest-order derivative of <strong>the</strong> dependent<br />

variable <strong>in</strong> l<strong>in</strong>ear part of <strong>the</strong> differential equation with highest-order of dependent variable <strong>in</strong> nonl<strong>in</strong>ear<br />

part that is appeared <strong>in</strong> ODE.<br />

2.Expla<strong>in</strong><strong>in</strong>g of (G ′ /G) Expand<strong>in</strong>g Method<br />

We consider nonl<strong>in</strong>ear differential with <strong>in</strong>dependent variable of x and t<br />

P (u, ut, ux, utt, uxt, uxx, ...) = 0 (1)<br />

Which u = u(x, t) is an unknown function, P is a polynomial <strong>in</strong> u = u(x, t) and has been its various<br />

partial derivative that <strong>in</strong>clude higher order derivative and nonl<strong>in</strong>ear parts.<br />

3.Solv<strong>in</strong>g mkdv Method by (G ′ /G) Expand<strong>in</strong>g Method<br />

In this section, we consider mkdv as <strong>the</strong> follow<strong>in</strong>g<br />

We <strong>in</strong>tend to f<strong>in</strong>d <strong>the</strong> solution of above travel<strong>in</strong>g wave equation<br />

Page 81<br />

ut − u 2 ux + δuxxx = 0 δ > 0 (2)<br />

u(x, t) = u(ξ) ξ = x − vt (3)


The speed of V will be determ<strong>in</strong>ed later.<br />

In this paper, (G ′ /G) Expand<strong>in</strong>g Method proposed by Wang, is used to solve mkdv method. It<br />

is clear that solv<strong>in</strong>g nonl<strong>in</strong>ear partial differential equations needs suitable change of variable and after<br />

solv<strong>in</strong>g this k<strong>in</strong>d of equation, we reach a solution. As we observed, by us<strong>in</strong>g (G ′ /G) Expand<strong>in</strong>g Method,<br />

it is possible to solve <strong>the</strong>se equations and have more solutions without consider<strong>in</strong>g specific change of<br />

variables. This method has various applications; as it is a direct and survey method to f<strong>in</strong>d travell<strong>in</strong>g<br />

wave solutions of nonl<strong>in</strong>ear partial differential equations and <strong>the</strong> outcome results can affect <strong>the</strong> future<br />

researches significantly.<br />

References<br />

[1] M.L. Wang, X.Z. Li, J.L. Zhang., The expansion method (G ′ /G) travel<strong>in</strong>g wave solutions of<br />

nonl<strong>in</strong>ear evolution equations <strong>in</strong> ma<strong>the</strong>matical Physics, phys.Lett., A 372, 417-423, A 372 2008.<br />

[2] F.Calogero,W.Eckhaus., Nonl<strong>in</strong>ear evolution equations, rescal<strong>in</strong>gs,model PDES and <strong>the</strong>ir <strong>in</strong>tegra-<br />

bility., I.Inv Probl.3, 229-262, 1987.<br />

[3] F. Calogero, The evolution partial differential equation ut = uxxx + 3(uxxu 2 + 3u 2 xu) + 3uxu 4 .,<br />

Math.Phys.28, 538-555, 1987.<br />

[4] A.R.Mohamed,S.E.Thlaat., Numerical treatment for <strong>the</strong> modified Burgers equation, Math Comput<br />

Simulat.90-98, 70 ,2005.<br />

[5] H.Wilhelmsson., Explosive <strong>in</strong>stabilities of rection diffusion equation,Phsy., Rev. A 36, (1987)<br />

965-966, 202.2008.<br />

Page 82


Weighted Bernste<strong>in</strong> Inequality for Trigonometric Polynomials on a Part of The Period<br />

<strong>Abstract</strong><br />

Mehmet Ali Aktürk 1 and Alexey Lukashov 1<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey<br />

In this study we give a weighted Bernste<strong>in</strong> <strong>in</strong>equality for trigonometric polynomials on a part of <strong>the</strong><br />

period.<br />

References<br />

[1] Bernste<strong>in</strong> S. N., Sur l’ordre de la meilleure approximation des functions cont<strong>in</strong>ues par des polynômes<br />

de degré donné, Memoires de l’Académie Royale de Belgique, 4, 1–103, 1912.<br />

[2] Bernste<strong>in</strong> S. N., Collected Works: Vol. I, Constr. Theory of Functions, 1905-1930, English<br />

Translation, Atomic Energy Commision, Spr<strong>in</strong>gfield, VA, 1958.<br />

[3] Riesz M., E<strong>in</strong>e trigonometrische Interpolations-formel und e<strong>in</strong>ige Ungleichungen für Polynome,<br />

Jahresbericht des Deutschen Ma<strong>the</strong>matiker-Vere<strong>in</strong>igung, 23, 354–368, 1914.<br />

[4] Videnskii V.S., Extremal estimates for <strong>the</strong> derivative of a trigonometric polynomial on an <strong>in</strong>terval<br />

shorter than its period, Soviet Math. Dokl., 1, 5-8, 1960.<br />

1925.<br />

[5] Borwe<strong>in</strong> P., and Erdélyi T., Polynomials and Polynomial Inequalities, Spr<strong>in</strong>ger: New York,1995.<br />

[6] Priwaloff I., Sur la convergence des séries trigonométriques conjuguées, Mat. Sb., (32)2, 357-363,<br />

[7] Lukashov A.L., Inequalities for derivatives of rational functions on several <strong>in</strong>tervals, Izv. Math.,<br />

68, 543–565, 2004.<br />

[8] Dub<strong>in</strong><strong>in</strong> V. N. and Kalmykov S. I., A majoration pr<strong>in</strong>ciple for meromorphic functions, Mat. Sb.,<br />

198(12), 37–46, 2007.<br />

[9] Kalmykov S. I., Majoration pr<strong>in</strong>ciples and some <strong>in</strong>equalities for polynomials and rational functions<br />

with prescribed poles, J. Math. Sci., 157(4), 2009.<br />

[10] Peherstorfer F., and Ste<strong>in</strong>bauer R., Strong asymptotics of orthonormal polynomials with <strong>the</strong> aid<br />

of Greens function, SIAM J. Math. Anal., 32(2), 385-402, 2000.<br />

Page 83


MIXED PROBLEM FOR A DIFFERENTIAL EQUATION WITH INVOLUTION<br />

<strong>Abstract</strong><br />

UNDER BOUNDARY CONDITIONS OF GENERAL FORM<br />

Sadybekov M.A. 1 , A.M.Sarsenbi 2<br />

1 Institute of Ma<strong>the</strong>matics, Informatics and Mechanics, Kazakhstan<br />

2 South-Kazakhstan State University by M.Auezov, Almaty, Kazakhstan<br />

To solve <strong>the</strong> mixed problem for a partial differential equation with <strong>in</strong>volution and a symmetric potential<br />

<strong>the</strong>re was found an explicit analytical representation by <strong>the</strong> Fourier method. The problem was considered<br />

under general boundary conditions with constant coeffi cients by a space variable. At <strong>the</strong> same we used<br />

<strong>the</strong> methods for avoid<strong>in</strong>g <strong>the</strong> termwise differentiation of a functional series and apply<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imal<br />

conditions on <strong>in</strong>itial data of <strong>the</strong> problem.<br />

References<br />

[1] Andreev A.A., On <strong>the</strong> correctness of boundary value problems for some equations <strong>in</strong> partial deriv-<br />

atives with <strong>the</strong> Carleman shift, A.A.Andreev, Differential equations and <strong>the</strong>ir applications: Proceed<strong>in</strong>gs<br />

of <strong>the</strong> 2nd Int. workshop.- Samara, 2,5-18 pp, 1998.<br />

[2] Khromov A.P. ,Mixed problem for a differential equation with <strong>in</strong>volution potential of special<br />

type, A.P.Khromov, Proceed<strong>in</strong>gs of Sarat. University. New series, - V. 10, - Ma<strong>the</strong>matics. Mechanics.<br />

Informatics, iss, 4. -17 - 22 pp,2010.<br />

[3] Chernyat<strong>in</strong> A.V., Justification of <strong>the</strong> Fourier method <strong>in</strong> mixed problem for equations <strong>in</strong> partial<br />

derivatives, A.V.Chernyat<strong>in</strong>, 112 pp,1991.<br />

Page 84


<strong>Abstract</strong><br />

An Application on Suborbital Graphs<br />

M. Besenk 1 , A.H. Deger 1 , and B.O. Guler 1<br />

1 Department of Ma<strong>the</strong>matics, Karadeniz Technical University, Trabzon, Turkey<br />

In this paper, we <strong>in</strong>vestigate suborbital graphs for <strong>the</strong> action of <strong>the</strong> normalizer of Γ0 (N) <strong>in</strong> PSL(2, R),<br />

where N will be of <strong>the</strong> form 28p2 , p> 3 and p is a prime. In addition we give <strong>the</strong> conditions to be a<br />

� �<br />

forest for normalizer <strong>in</strong> <strong>the</strong> suborbital graph F .<br />

References<br />

∞, u<br />

2 8 p 2<br />

[1] Akbas M. and S<strong>in</strong>german D., The Signature of <strong>the</strong> Normalizer of Γ0 (N), London Math. Soc.<br />

Lecture Note Ser., 77-78, 1992.<br />

[2] Akbas M., On Suborbital Graphs for <strong>the</strong> Modular Group, Bull. Lond. Math. Soc., 647-652, 2001.<br />

[3] Biggs N.L. and White A.T., Permutation Groups and Comb<strong>in</strong>atorial Structures, London Math.<br />

Soc. Lecture Note Ser., Cambridge, 33. CUP, Cambridge, 1982.<br />

2006.<br />

[4] Kesk<strong>in</strong> R., Suborbital Graphs for <strong>the</strong> Normalizer of Γ0 (m), European J. Comb<strong>in</strong>atorics, 193-206,<br />

[5] Kesk<strong>in</strong> R. and Demirtürk B., On Suborbital Graphs for <strong>the</strong> Normalizer of Γ0 (N), Electronic J.<br />

Comb<strong>in</strong>atorics, 1-18, 2009.<br />

[6] Sims C.C., Graphs and F<strong>in</strong>ite Permutation Groups, Math. Zeitschr., 76-86, 1967.<br />

[7] Conway J.H. and Norton S.P., Monstrous Moonsh<strong>in</strong>e, Bull. London Math. Soc., 308-339, 1979.<br />

[8] Jones G.A., S<strong>in</strong>german D. and Wicks K., The Modular Group and Generalized Farey Graphs,<br />

London Math. Soc. Lecture Note Ser., 316-338, 1991.<br />

[9] Schoeneberg B., Elliptic Modular Functions, Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1974.<br />

Page 85<br />

[10] Tsukuzu T., F<strong>in</strong>ite Groups and F<strong>in</strong>ite Geometries, Cambridge University Press, Cambridge, 1982.


<strong>Abstract</strong><br />

Cellular Automata Based Byte Error Correct<strong>in</strong>g Codes over F<strong>in</strong>ite Fields<br />

Mehmet E. Koroglu 1 , Irfan Siap 1 and Hasan Ak<strong>in</strong> 2<br />

1 Department of Ma<strong>the</strong>matics, Yildiz Technical University, Istanbul-Turkey<br />

2 Department of Ma<strong>the</strong>matics, Education Faculty, Zirve University, Gaziantep, Turkey<br />

Reed-Solomon codes are very convenient for burst error correct<strong>in</strong>g codes, but as <strong>the</strong> number of errors<br />

<strong>in</strong>crease, <strong>the</strong> circuit structure for Reed-Solomon codes become very complex. The modular and regular<br />

structure of cellular automata can be constructed with VLSI economically. Therefore, <strong>in</strong> recent years,<br />

cellular automata have became an important tool for error correct<strong>in</strong>g codes. For <strong>the</strong> first time cellular<br />

automata based byte error correct<strong>in</strong>g codes analogous to extended Reed-Solomon codes over b<strong>in</strong>ary fields<br />

was studied by Chowdhury et al. <strong>in</strong> [1] and Bhaumik et al. improved that cod<strong>in</strong>g-decod<strong>in</strong>g scheme <strong>in</strong><br />

[2]. In this study cellular automata based double-byte error correct<strong>in</strong>g codes are generalized from b<strong>in</strong>ary<br />

fields to primitive f<strong>in</strong>ite fields Zp.<br />

References<br />

[1] D. R. Chowdhury, I. Sen Gupta and P.P. Chaudhuri, CA-Based Byte Error- Correct<strong>in</strong>g Code,<br />

IEEE Transaction on Computers 44 (3), 371-382, 1995.<br />

[2] J. Bhaumik, D. R. Chowdhury, and I. Chakrabarti, An Improved Double Byte Error Correct<strong>in</strong>g<br />

Code Us<strong>in</strong>g Cellular Automata, In Proc. 8th Int. Conf. Cellular Automat for Res. Ind. (ACRI), LNCS<br />

5191, 463—470, 2008.<br />

Page 86


On The First Fundamental Theorem for Special Dual Orthogonal Group SO(2, D) And its<br />

Application to Dual Bezier Curves<br />

M.Incesu 1 , O. Gursoy 2<br />

1 Department of Ma<strong>the</strong>matics Education, Mus Alparslan University, Mus, Turkey 2 Department of<br />

<strong>Abstract</strong><br />

Ma<strong>the</strong>matics,Maltepe University, Istanbul, Turkey<br />

Let D be set of dual numbers. In this work we study <strong>the</strong> first fundamental <strong>the</strong>orem for special dual<br />

orthogonal transformations group SO(n, D) <strong>in</strong> case of n = 2 . Then our gett<strong>in</strong>g results compared <strong>the</strong><br />

special orthogonal transformations group SO(4, R) <strong>in</strong> R 4 because D 2 is isomorph to R 4 So we showed<br />

that <strong>the</strong> m<strong>in</strong>imal conditions of <strong>the</strong> dual vectors are more less than m<strong>in</strong>imal conditions of real vectors.<br />

References<br />

[1] H. Weyl, The Classical Groups Their Invariants and Representations,2 nd ed.,with suppl., Pr<strong>in</strong>ce-<br />

ton, Pr<strong>in</strong>ceton University Press, 1946.<br />

[2] H.H.Hacisalihoglu, Hareket GHeometrisi ve Kuaterniyonlar Teorisi, Gazi niversitesi Fen Edebiyat<br />

Fakltesi Yaynlar, Ankara 1983.<br />

[3] Dj. Khadjiev, An Application of <strong>the</strong> Invariant <strong>the</strong>ory to <strong>the</strong> Differential Geometry of Curves, Fan,<br />

Tahkent, 1988. (<strong>in</strong> Russian)<br />

[4] Dj. Khadjiev, Some Questions <strong>in</strong> Theory of Vector Invariants, Math. USSR-Sbornic, 1,3 (1967),<br />

383-396.<br />

[5] M.Incesu, The Complete System of Po<strong>in</strong>t Invariants <strong>in</strong> <strong>the</strong> Similarity Geometry, Ph.D. Thesis,<br />

Karadeniz Technical University, Graduate School of Natural and Applied Sciences, 2008.<br />

[6] M. Incesu and O. Gursoy, The similarity Invariants of Bezier Curves and Surfaces, XX. th National<br />

Ma<strong>the</strong>matics Symposium, Ataturk University, 03-06 September 2007, Erzurum.<br />

[7] I. Oren, Invariants of Po<strong>in</strong>ts for <strong>the</strong> Orthogonal Group O(3, 1),Ph.D. Thesis, Karadeniz Technical<br />

University, Graduate School of Natural and Applied Sciences, 2007.<br />

[8] Y. Sagiroglu,Aff<strong>in</strong>e Diferential Invariants of Parametric Curves, Ph.D. Thesis, Karadeniz Technical<br />

University, Graduate School of Natural and Applied Sciences, 2002.<br />

[9] A. Schrijver, Tensor Subalgebras and First Fundamental Theorems <strong>in</strong> Invariant Theory, Journal<br />

of Algebra, 319 (2008),1305-1319.<br />

Page 87


On Euler’s differential method for cont<strong>in</strong>ued fractions<br />

M. Jafari Shah Belaghi 1 and A. Bashirov 1<br />

1 Department of Ma<strong>the</strong>matics, Eastern Mediterranean University, Gazimagusa, Turkey (TRNC)<br />

<strong>Abstract</strong><br />

A cont<strong>in</strong>ued fraction is an expression of <strong>the</strong> form<br />

a0 + K ∞ [ ]<br />

bk<br />

k=1 = a0 +<br />

ak a1 +<br />

b1<br />

b2<br />

a2+ b 3<br />

a 3 +···<br />

where a0, a1, a2, . . . and b1, b2, b3, . . . are two sequences of real or complex numbers. It is remarkable that<br />

rational and irrational numbers can be clearly dist<strong>in</strong>guished by cont<strong>in</strong>ued fractions. In <strong>the</strong> 19th century,<br />

<strong>the</strong>ory of cont<strong>in</strong>ued fractions was one of <strong>the</strong> most popular areas of <strong>in</strong>vestigation <strong>in</strong> ma<strong>the</strong>matics. The<br />

great ma<strong>the</strong>maticians such as Karl Jacobi, Oscar Perron, Charles Hermit, Karl Friderich Gauss, August<strong>in</strong><br />

Cauchy, Thomas Stieltjes etc. have contributed to <strong>the</strong> <strong>the</strong>ory [1].<br />

[ ]<br />

k+t , which depends on <strong>the</strong> parameter −1 < t < ∞.<br />

We study <strong>the</strong> cont<strong>in</strong>ued fraction f(t) = K ∞ k=1<br />

k<br />

This cont<strong>in</strong>ued fraction was studied by Euler. Us<strong>in</strong>g <strong>the</strong> Euler’s differential method, which was not used<br />

by ma<strong>the</strong>maticians for a long time, we derive a new formula<br />

f(t) =<br />

∫ 1<br />

dp<br />

(1 − x)p−t<br />

0<br />

∫ 1<br />

0 (1 − x)p−t dp dxp (xtex ) dx<br />

where p = 0, 1, 2, . . . . For <strong>the</strong> <strong>in</strong>teger values t = p = 1, 2, . . . ,<br />

where<br />

dxp (xt+1ex ) dx<br />

, p − 1 < t ≤ p + 1,<br />

f(p) = (p + 1)<br />

∑p−1 ap,k<br />

k=0 p−k+1<br />

∑p−1 k=0 ap,k<br />

⎛<br />

ap,k = ⎝ p<br />

⎞<br />

⎠<br />

1<br />

·<br />

k (p − k − 1)! .<br />

Previously, it was proved by Euler that f(0) = (e − 1) −1 . Us<strong>in</strong>g numerical methods it is found that <strong>the</strong><br />

function σ(t) = √ t − f(t) is slowly <strong>in</strong>creas<strong>in</strong>g and limt→∞ σ(t) = 0.25.<br />

References<br />

[1] Khrushchev, S.V., Orthogonal Polynomials and Cont<strong>in</strong>ued Fractions from Euler’s Po<strong>in</strong>t of View,<br />

Encyclopedia of Ma<strong>the</strong>matics and Its Applications, Vol. 122., Cambridge University Press 2008.<br />

,<br />

,<br />

Page 88


<strong>Abstract</strong><br />

Almost Convergence and Generalized Weighted<br />

M. Kirişçi<br />

1 Hasan Ali Yücel Faculty of Education, Istanbul University, Istanbul, Turkey<br />

In this paper, we <strong>in</strong>vestigate some new sequence spaces which naturally emerge from <strong>the</strong><br />

concepts of almost convergence and generalized weighted mean. The object of this paper is to<br />

<strong>in</strong>troduce to <strong>the</strong> new sequence spaces obta<strong>in</strong>ed as <strong>the</strong> matrix doma<strong>in</strong> of generalized weighted<br />

mean <strong>in</strong> <strong>the</strong> spaces of almost null and almost convergent sequences. Fur<strong>the</strong>rmore, <strong>the</strong> beta and<br />

gamma dual spaces of <strong>the</strong> new spaces are determ<strong>in</strong>ed and some classes of matrix transformations<br />

are characterized.<br />

References<br />

Page 89<br />

[1] B. Altay, F. Başar, Some paranormed sequence spaces of non-absolute type derived by<br />

weighted mean, J.Math. Anal. Appl. 319(2)(2006), 494-508.<br />

[2] F. Başar, M. Kirişçi, Almost convergence and generalized difference matrix, Comput. Math.<br />

Appl. 61(3)(2011), 602-611.<br />

[3] M. Candan, Almost convergence and double sequential band matrix, under communication.<br />

[4] A.M. Jarrah, E. Malkowsky, BK spaces, bases and l<strong>in</strong>ear operators, Rendiconti Circ. Mat.<br />

Palermo II 52(1990), 177-191.<br />

[5] K. Kayaduman, M. Şengönül, The spaces of Cesàro almost convergent sequences and core<br />

<strong>the</strong>orems, Acta Math. Sci. <strong>in</strong> press.<br />

[6] H. K zmaz, On certa<strong>in</strong> sequence spaces, Canad. Math. Bull. 24(2)(1981), 169-176.<br />

[7] M. Kirişçi, F. Başar, Some new sequence spaces derived by <strong>the</strong> doma<strong>in</strong> of generalized<br />

difference matrix, Comput. Math. Appl. 60(5)(2010), 1299-1309.<br />

[8] G.G. Lorentz, A contribution to <strong>the</strong> <strong>the</strong>ory of divergent sequences, Acta Math. 80(1948),<br />

167-190.<br />

[9] E. Malkowsky, E. Savaş, Matrix transformations between sequence spaces of generalized<br />

weighted means, Appl. Math. Comput. 147(2004), 333-345.<br />

[10] A. Sönmez, Some new sequence spaces derived by <strong>the</strong> doma<strong>in</strong> of <strong>the</strong> triple band matrix,<br />

Comput. Mat. Appl. 62(2)(2011), 641-650.<br />

[11] A. Sönmez, Almost convergence and triple band matrix, Math. Comput. Model. <strong>in</strong> press.


Wavelet-based prediction of crude oil prices<br />

M. Mahmoudi 1 , K. Nojoomi 2 and A. Rahmani 2<br />

1 Department of Ma<strong>the</strong>matical F<strong>in</strong>ance, SheikhBahaee University, Esfahan, Iran 2 Department of<br />

<strong>Abstract</strong><br />

Ma<strong>the</strong>matics, SheikhBahaee University,Esfahan, Iran<br />

There are two k<strong>in</strong>ds of transactions <strong>in</strong> <strong>the</strong> crude oil markets; one is based on immediate delivery while<br />

<strong>the</strong> o<strong>the</strong>r one on future delivery. The spot market is dependent on <strong>the</strong> first k<strong>in</strong>d of transactions and <strong>the</strong><br />

future market is associated to <strong>the</strong> second one. Market condition ( e.g. market risk, irrational trad<strong>in</strong>g,<br />

etc. ) along with o<strong>the</strong>r factors ( e.g. credit risk, <strong>in</strong>surance risk, seasonal factors and etc. ) is often <strong>the</strong><br />

ma<strong>in</strong> cause of uncerta<strong>in</strong>ty <strong>in</strong> <strong>the</strong> crude oil markets. Therefore, <strong>the</strong> future markets ( lead<strong>in</strong>g markets ) are<br />

built up to provide a cover structure for <strong>the</strong>se uncerta<strong>in</strong>ties. Also crude oil future contracts, determ<strong>in</strong>e<br />

def<strong>in</strong>itive prices <strong>in</strong> future deadl<strong>in</strong>es to buy or sell accord<strong>in</strong>g to specific criteria of delivery and payment.<br />

On <strong>the</strong> o<strong>the</strong>r hand, future prices reflects <strong>the</strong> markets expectations about future conditions. Consequently,<br />

large differences between futures and spot prices is often used to describe <strong>the</strong> overall market conditions.<br />

Wavelets are used as a legitimate alternative alternative for irregular situations such as data or signals<br />

with scaled features, or conta<strong>in</strong><strong>in</strong>g discont<strong>in</strong>uities and sharp edges and so on (see [1-2]).<br />

In this study, we are go<strong>in</strong>g to use <strong>the</strong> wavelets as a suitable tool to <strong>in</strong>vestigate its performance <strong>in</strong> <strong>the</strong><br />

crude oil futures markets (see [3]). We <strong>in</strong>tend to provide forecasts over different forecast<strong>in</strong>g horizons by<br />

<strong>in</strong>troduc<strong>in</strong>g a prediction procedure and predict<strong>in</strong>g future prices based on <strong>the</strong> wavelets by utiliz<strong>in</strong>g a series<br />

of data from <strong>the</strong> crude oil market and at last putt<strong>in</strong>g <strong>the</strong> results <strong>in</strong> comparison with <strong>the</strong> crude oil future<br />

markets data. Def<strong>in</strong>itions and Basic prelim<strong>in</strong>aries<br />

1.Multi-scale analysis<br />

multi-scale analysis with a sequence of <strong>in</strong>volute sub-space Vj of functional space of procedure V with<br />

null common po<strong>in</strong>t and at dense <strong>in</strong> L2(R) . This analysis is a discretion at different levels of scalability,<br />

which requires two-scale relationship such as f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj−1 (see [4-5]).<br />

2.discrete wavelet transform(DWT)<br />

discrete wavelet transformation enables us to discrete a time based sequence to subsequences with<br />

different scales <strong>in</strong> order to extract important hidden <strong>in</strong>formation and unstable features (see [4-5]).<br />

We present a procedure to predict crude oil prices for time series of 1, 2, 3 and 4 month and <strong>the</strong>n<br />

compare <strong>the</strong> predicted values with actual expected prices of future market <strong>in</strong> mentioned time series and<br />

as for 1 month time series <strong>the</strong> result are shown <strong>in</strong> below figure:<br />

Page 90


Forecast results <strong>in</strong> contrast with observed values<br />

Forecast<strong>in</strong>g horizon Wavelet-based forecast Futures<br />

1 month ahead 0.992 0.952<br />

2 months ahead 0.998 0.903<br />

3 months ahead 0.995 0.841<br />

4 months ahead 0.998 0.772<br />

And as you can see <strong>in</strong> below figure, wavelet based prediction procedure is more efficient for sample with<br />

a value bigger than 100 .<br />

Applicable procedure will be created by some ma<strong>in</strong> key properties of wavelets and is established based<br />

on discrete wavelet transformation (DWT) on Average monthly time series of crude oil. Wavelet based<br />

prediction procedure which is used <strong>in</strong> this study, can be applied to exam<strong>in</strong>ation of <strong>the</strong> dynamic properties<br />

of various f<strong>in</strong>ancial and economical phenomenon, like economic time series. also predicted crude oil prices<br />

based on wavelets can be used to determ<strong>in</strong>e oil prices <strong>in</strong> future contracts.<br />

References<br />

[1] Cao L, Hong Y, Zhao H, Deng S., Predict<strong>in</strong>g economic time series us<strong>in</strong>g a nonl<strong>in</strong>ear determ<strong>in</strong>istic<br />

technique, Comput., Econom 9(2):14978. 1996<br />

[2] Ramsey J.B., Wavelets <strong>in</strong> economics and f<strong>in</strong>ance: past and future, Stud. Nonl<strong>in</strong>ear Dynam.,<br />

Economet 6(3):127. 2002.<br />

[3] Shahriar Yousefi, Ilona We<strong>in</strong>reich, Dom<strong>in</strong>ik Re<strong>in</strong>arz., Wavelet-based prediction of crude oil prices.,<br />

Chaos, Solitons and Fractals 265-275, 25(2005).<br />

[4] Albert Boggess, Francis J. Narcowich., A First Course <strong>in</strong> Wavelets with fourier analysis, Prentice<br />

Hall, 2001.<br />

[5] Donald B. Percival, Andrew T. Walden., Wavelet Methods for Time Series Analysis, Cambridge<br />

University Press, 2006.<br />

Page 91


Numerical solution of a time-fractional Navier–Stokes Equation with modified<br />

Riemann-Liouville derivative<br />

Mehmet Merdan 1 , Ahmet Gökdoğan 1<br />

1 Gümüşhane University, Department of Ma<strong>the</strong>matical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

29100-Gümüşhane, Turkey<br />

<strong>Abstract</strong><br />

In this paper, fractional variational iteration method (FVIM) is implemented to give an approximate<br />

analytical solution of a time-fractional Navier–Stokes Equation. Fractional derivatives are described <strong>in</strong><br />

<strong>the</strong> Riemann-Liouville derivative. A new application of fractional variational iteration method (FVIM)<br />

was extended to derive analytical solutions <strong>in</strong> <strong>the</strong> form of a series for <strong>the</strong>se equations. By us<strong>in</strong>g an<br />

<strong>in</strong>itial value, <strong>the</strong> explicit solution of <strong>the</strong> equation has been presented <strong>in</strong> <strong>the</strong> closed form and <strong>the</strong>n its<br />

numerical solution has been showed graphically.The behavior of <strong>the</strong> solutions and <strong>the</strong> effects of<br />

different values of fractional order � are <strong>in</strong>dicated graphically. The results obta<strong>in</strong>ed by <strong>the</strong> FVIM<br />

reveal that <strong>the</strong> method is performs extremely well <strong>in</strong> terms of efficiency and simplicity method for<br />

nonl<strong>in</strong>ear differential equations with modified Riemann-Liouville derivative.<br />

Keywords: Fractional variational iteration method, A time-fractional Navier–Stokes<br />

Equation, Riemann-Liouville derivative, Fractional calculus<br />

References<br />

Page 92<br />

[1] K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.<br />

[2] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.<br />

[3] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional<br />

Differential Equations, Elsevier, Amsterdam, 2006.<br />

[4] Podlubny I (1999). Fractional Differential Equations, Academic Press, San Diego.<br />

[5] Caputo M (1967). L<strong>in</strong>ear models of dissipation whose Q is almost frequency <strong>in</strong>dependent,<br />

Part II, J. Roy. Astr. Soc., 13: 529.<br />

[6] A. A. Kilbas, H. H. Srivastava, J. J. Trujillo, Theoryand Applications of Fractional<br />

Differential Equations, Elsevier, TheNe<strong>the</strong>rlands, 2006.<br />

[8] Miller KS, Ross B (1993). An Introduction to <strong>the</strong> Fractional Calculus and Fractional<br />

Differential Equations, Wiley, New York.<br />

[9] Samko SG, Kilbas AA, Marichev OI (1993). Fractional Integrals and Derivatives: Theory<br />

and Applications, Gordon and Breach, Yverdon.<br />

[10] G.M.Zaslavsky, Hamiltonian Chaosand Fractional Dynamics, Oxford University Press,<br />

2005.<br />

[11] M.Merdan, A.Yıldırım, A.Gökdoğan, Numerical solution of time-fraction Modified<br />

Equal Width Wave Equation, Eng<strong>in</strong>eer<strong>in</strong>g Computations, 2011 (<strong>in</strong> press)<br />

[12] Merdan M., Solutions of time-fractional reaction-diffusion equation with modified<br />

Riemann-Liouville derivative, International Journal of Physical Sciences . 7(15), pp.<br />

2317 - 2326 (<strong>2012</strong>).<br />

[13] Merdan M., Mohyud-D<strong>in</strong> S.T., A New Method for Time-fractionel Coupled-KDV<br />

Equations with Modified Riemann-Liouville Derivative, Studies <strong>in</strong> Nonl<strong>in</strong>ear Sciences, 2<br />

(2), pp. 77-86 (2011).<br />

[14] Merdan M., Gökdoğan A., Yıldırım., Mohyud-D<strong>in</strong> S.T., Numerical simulation of<br />

fractional Fornberg-Whitham equation by differential transformation method, <strong>Abstract</strong><br />

and Applied Analysis, Article ID 965367 (<strong>2012</strong>).


Page 93<br />

[15] M. El-Shahed, A. Salem, On <strong>the</strong> generalized Navier–Stokes equations, Appl. Math.<br />

Comput. 156 (1) (2004) 287–293.<br />

[16] S. Momani , Z. Odibat, Analytical solution of a time-fractional Navier–Stokes equation<br />

by Adomian decomposition method, Applied Ma<strong>the</strong>matics and Computation 177 (2006)<br />

488–494.<br />

[17] Z. Z. Ganji, D. D. Ganji, Ammar D. Ganji, M. Rostamian, Analytical Solution of Time-<br />

Fractional Navier–Stokes Equation <strong>in</strong> Polar Coord<strong>in</strong>ate by Homotopy Perturbation<br />

Method, Numer Methods Partial Differential Eq 26: 117–124, 2010<br />

[18] J.H. He, Variational iteration method- a k<strong>in</strong>d of non-l<strong>in</strong>ear analytical technique: Some<br />

examples, Int. J. Nonl<strong>in</strong>ear Mech. 34 (1999) 699-708.<br />

[19] J.H. He, X.H. Wu, Variational iteration method: New development and applications,<br />

Comput. Math. Appl. 54 (7-8) (2007) 881-894.<br />

[20] J.H. He, Some applications of nonl<strong>in</strong>ear fractional differential equations and <strong>the</strong>ir<br />

approximations, Bull. Sci. Technol. 15 (2) (1999) 86-90.<br />

[21] G. Jumarie, Stochastic differential equations with fractional Brownian motion <strong>in</strong>put. Int.<br />

J. Syst. Sci. 6, (1993), 1113–1132.<br />

[22] G. Jumarie, 2006. New stochastic fractional models for Malthusian growth, <strong>the</strong><br />

Poissonian birth process and optimal management of populations. Math. Comput. Model.<br />

44, (2006) 231–254.<br />

[23] G. Jumarie, Laplace’s transform of fractional order via <strong>the</strong> Mittag–Leffler function and<br />

modified Riemann–Liouville derivative, Applied Ma<strong>the</strong>matics Letters 22 (2009) 1659-<br />

1664.<br />

[24] G. Jumarie, 2009. Table of some basic fractional calculus formulae derived from a<br />

modified Riemann–Liouvillie derivative for non differentiable functions. Applied<br />

Ma<strong>the</strong>matics Letters 22 (2009) 378-385.<br />

[25] G. Jumarie, On <strong>the</strong> solution of <strong>the</strong> stochastic differential equation of exponential growth<br />

driven by fractional Brownian motion, Applied Ma<strong>the</strong>matics Letters 18 (2005) 817–826.<br />

[26] M.-J. Jang, C.-L. Chen, and Y.-C. Liu, Two-dimensional differential transform for partial<br />

differential equations, Applied Ma<strong>the</strong>matics and Computation, vol. 121, no. 2-3, pp. 261–<br />

270, 2001.<br />

[27] Faraz N., Khan Y., Jafari H., Yildirim A., Madani M., Fractional variational iteration<br />

method via modified Riemann–Liouville derivative, J. K<strong>in</strong>g. Saud. Univ.(Science) 23,<br />

pp.413-417 (2011).


The Modified Simple Equation Method for Solv<strong>in</strong>g Some Nonl<strong>in</strong>ear Evolution<br />

Equations<br />

<strong>Abstract</strong><br />

M.Mızrak and A.Ertaş<br />

Department of Ma<strong>the</strong>matics, Dicle University, Diyarbakır, Turkey<br />

In this paper we applied modified simple equation method (MSEM) for solv<strong>in</strong>g some<br />

nonl<strong>in</strong>ear evolution equations which are very important <strong>in</strong> applied sciences.<br />

We consider a nonl<strong>in</strong>ear evolution equation:<br />

( )<br />

F u, u , u , u ,... = 0<br />

(1)<br />

t x xx<br />

where F is a polynomial <strong>in</strong> u and its partial derivatives.<br />

Step 1. Us<strong>in</strong>g <strong>the</strong> wave transformation<br />

u = u( ξ), ξ = x− t<br />

(2)<br />

From (1) and (2) we have <strong>the</strong> follow<strong>in</strong>g ODE:<br />

' '' ''' ( )<br />

P u, u , u , u ,... = 0<br />

(3)<br />

where P is a polynomial <strong>in</strong> u and its total derivatives and '<br />

Step 2. We suppose that Eq. (3) has <strong>the</strong> formal solution:<br />

( )<br />

( )<br />

N ⎛ψ′ ξ ⎞<br />

u( ξ ) = ∑ Ak ⎜ ⎟<br />

k=<br />

0 ψ ξ ⎟<br />

⎝ ⎠<br />

k<br />

d<br />

= .<br />

dξ<br />

where Ak are arbitrary constants to be determ<strong>in</strong>ed such that AN ≠ 0 while ψ ( ξ ) is an unknown<br />

function to be determ<strong>in</strong>ed later.<br />

Page 94<br />

Step 3. We determ<strong>in</strong>e <strong>the</strong> positive <strong>in</strong>teger N <strong>in</strong> (4) by balanc<strong>in</strong>g <strong>the</strong> highest order derivatives<br />

and <strong>the</strong> nonl<strong>in</strong>ear terms <strong>in</strong> Eq. (3).<br />

Step 4. We substitute (4) <strong>in</strong>to (3), we calculate all <strong>the</strong> necessary derivatives u′ , u′′<br />

,.. . and <strong>the</strong>n we<br />

ψ ′ ( ξ )<br />

account <strong>the</strong> function ψ ( ξ ) . As a result of this substitution, we get a polynomial of and<br />

ψ ξ<br />

its derivatives. In this polynomial, we equate with zero all <strong>the</strong> coefficients of it. This operation<br />

( )<br />

(4)


yields a system of equations which can be solved to f<strong>in</strong>d and ψ ξ . Consequently, we can<br />

get <strong>the</strong> exact solution of Eq. (1).<br />

References<br />

A ( )<br />

[1] Murray J.D, Ma<strong>the</strong>matical Biology I, Spr<strong>in</strong>ger-Verlag New York, USA , 2002<br />

[2] Hereman W. and Nuseir A, Symbolic methods to construct exact solutions of nonl<strong>in</strong>ear partial<br />

differential equations.<br />

[3] Jawad A.J.M., Petkovic M. D., Biswas A., 2010 Modified simple equation method for nonl<strong>in</strong>ear<br />

evolution equations Applied Ma<strong>the</strong>matics and Computation 217 869-877, 2010.<br />

[4] Zayed E. M. E., A note on <strong>the</strong> modified simple equation method applied to Sharma–Tasso–Olver<br />

equation , Applied Ma<strong>the</strong>matics and Computation 218 3962–3964, 2011<br />

k<br />

Page 95


Application of Cross Efficiency <strong>in</strong> Stock Exchange<br />

Mozhgan Mansouri Kaleibar a and Sahand Daneshvar b<br />

a Young Researchers Club, Tabriz Branch, Islamic Azad University, Tabriz,Iran<br />

Email: Mozhganmansouri953@gmail.com<br />

b Tabriz Branch, Islamic Azad University, Tabriz, Iran<br />

Email: Sahanddaneshvar@yahoo.com<br />

<strong>Abstract</strong><br />

This paper firstly revisits <strong>the</strong> cross efficiency evaluation method which is an extension<br />

tool of data (envelopment analysis. In this paper, we consider <strong>the</strong> DMUs as <strong>the</strong><br />

players (<strong>in</strong>stitutions) <strong>in</strong> a cooperative game, where <strong>the</strong> characteristic function values<br />

of <strong>in</strong>stitutions are def<strong>in</strong>ed to compute <strong>the</strong> Shapley value of each DMU (<strong>in</strong>stitution),<br />

and <strong>the</strong> common weights associate with <strong>the</strong> imputation of <strong>the</strong> Shapley values are used<br />

to determ<strong>in</strong>e <strong>the</strong> ultimate cross efficiency scores for <strong>in</strong>stitution of Stock Exchange of<br />

Tehran. This paper <strong>in</strong>troduces <strong>the</strong> models for comput<strong>in</strong>g benefit for each <strong>in</strong>stitution.<br />

Us<strong>in</strong>g shapely value we obta<strong>in</strong> <strong>the</strong> effect of each <strong>in</strong>stitution, and through determ<strong>in</strong><strong>in</strong>g<br />

common weight for each company we f<strong>in</strong>d out <strong>the</strong> ultimate weight which shows<br />

how much <strong>the</strong> existence or not existence of that <strong>in</strong>stitution affects <strong>the</strong> <strong>in</strong>terest<strong>in</strong>g<br />

competence.<br />

Keywords: Data Envelopment Analysis (DEA), Cross efficiency, Cooperative game, Shapley<br />

value, Common weights, stock exchange.<br />

References<br />

[1] G. Owen, On <strong>the</strong> Core of L<strong>in</strong>ear Production Games, Ma<strong>the</strong>matical Programm<strong>in</strong>g,<br />

1975, No. 9, 358- 370.<br />

[2] J. Wu, L. Liang and F. Ynag, Determ<strong>in</strong>ation of The Weights for The Ultimate Cross<br />

Efficiency Us<strong>in</strong>g Shapley Value <strong>in</strong> Cooperative Game, Expert Systems with Applications,<br />

2009, No. 36, 872-876.<br />

[3] K. Nakabayashi and K. Tone, Egoist’s Dilemma: a DEA Game, The International<br />

Journal of Management Science, 2006, No. 36, 135-148.<br />

[4] S. Daneshvar and M. Mansouri Kaleibar, The M<strong>in</strong>imal Allocated Cost and Maximal<br />

Allocated Benefit, Presented at <strong>the</strong> Int Conf. Eng<strong>in</strong>eer<strong>in</strong>g System Management and<br />

Application Sharjah, UAE, 2010.<br />

[5] W. Cooper, L.M. Seiford and K. Tone, Data Envelopment Analysis, Boston: Klawer<br />

Academic publishers, 2000.<br />

1<br />

Page 96


<strong>Abstract</strong><br />

Application of <strong>the</strong> Trial Equation Method for some Nonl<strong>in</strong>ear<br />

Evolution Equations<br />

M. Odabasi 1, 2 and E. Misirli 2<br />

1 Tire Kutsan Vocational School, Ege University, Izmir, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Ege University, Izmir, Turkey<br />

Nonl<strong>in</strong>ear partial differential equations have important applications <strong>in</strong> physics, eng<strong>in</strong>eer<strong>in</strong>g and<br />

applied ma<strong>the</strong>matics. Ma<strong>the</strong>matical modell<strong>in</strong>g of physics and eng<strong>in</strong>eer<strong>in</strong>g problems usually<br />

results <strong>in</strong> nonl<strong>in</strong>ear partial differential equations. To f<strong>in</strong>d <strong>the</strong> travell<strong>in</strong>g wave solutions of<br />

nonl<strong>in</strong>ear evolution equations several methods [1-6] have been proposed. This study presents an<br />

application of <strong>the</strong> trial equation method for nonl<strong>in</strong>ear partial differential equations. The trial<br />

equation method is used to obta<strong>in</strong> exact travell<strong>in</strong>g wave solutions of some nonl<strong>in</strong>ear evolution<br />

equations aris<strong>in</strong>g <strong>in</strong> ma<strong>the</strong>matical physics.<br />

References<br />

Page 97<br />

[1] Ablowitz M.J. and Clarkson P.A., Solitons, Nonl<strong>in</strong>ear Evolutions and Inverse Scatter<strong>in</strong>g,<br />

Cambridge University Press, Cambridge, 1991.<br />

[2] Oliver P.J., Applications of Lie Group to Differential Equations. Spr<strong>in</strong>ger, New York, 1993.<br />

[3] Malfliet W., Solitary wave solutions of nonl<strong>in</strong>ear wave equations,<br />

American Journal of Physics, Vol. 60 (7), 650–654, 1992.<br />

[4] Liu C.S., A New Trial Equation Method and Its Applications, Communications <strong>in</strong><br />

Theoretical Physics, 45, 395–397, 2006.<br />

[5] Du X.H., An irrational trial equation method and its applications, Pramana Journal of<br />

Physics, Vol. 75 (3), 415–422, 2010.<br />

[6] Gurefe Y., Sönmezoğlu A. and Mısırlı E., Application of <strong>the</strong> trial equation method for<br />

solv<strong>in</strong>g some nonl<strong>in</strong>ear evolution equations aris<strong>in</strong>g <strong>in</strong> ma<strong>the</strong>matical physics, Pramana<br />

Journal of Physics, Vol. 77 (6), 1023–1029, 2011.


Paranormality of Some Class of Differential Operators for First Order<br />

M. Sertba¸s 1 , L. Cona 2<br />

1 Department of Ma<strong>the</strong>matics, Karadeniz Technical University, Trabzon, Turkey<br />

2 Department of Ma<strong>the</strong>matical Eng<strong>in</strong>eer<strong>in</strong>g, <strong>Gumushane</strong> University, <strong>Gumushane</strong>, Turkey<br />

<strong>Abstract</strong><br />

In this work, <strong>the</strong> paranormality properties of some class direct sum of differential operators for first<br />

order <strong>in</strong> <strong>the</strong> Hilbert space of vector-functions <strong>in</strong> <strong>the</strong> f<strong>in</strong>ite <strong>in</strong>terval are <strong>in</strong>vestigated. F<strong>in</strong>ally, a spectrum<br />

of <strong>the</strong>se operators is researched.<br />

Keywords: Selfadjo<strong>in</strong>t and Paranormal Operator; Direct Sum of Operators and Hilbert Spaces; Spec-<br />

trum.<br />

2000 AMS Classification: 47A20, 47A10<br />

References<br />

[1] Fruta T., On <strong>the</strong> Class of Paranormal Operators, Proc. Japan Acad. 43, 594-598, 1967.<br />

[2] Jablonski Z.J. and Stochel J., Unbounded 2-Hyperexpansive Operators, Proceed<strong>in</strong>gs of <strong>the</strong> Ed<strong>in</strong>burgh<br />

Ma<strong>the</strong>matical Society, 44, 613-629, 2001<br />

[3] Ismailov Z.I., Otkun Çevik E., Unluyol E., Compact Inverses of Multipo<strong>in</strong>t Normal Differential Op-<br />

erators for First Order, Electronic Journal of Differential Equations, 89, 1-11, 2011.<br />

Page 98


Oscillation Theorems for Second-Order Damped Dynamic Equation on Time Scales<br />

M. Tamer S¸enel<br />

Department of Ma<strong>the</strong>matics, Faculty of Science, Erciyes University, 38039, Kayseri , TURKEY<br />

<strong>Abstract</strong><br />

Much recent attention has been given to dynamic equations on time scales, or measure cha<strong>in</strong>s, and<br />

we refer <strong>the</strong> reader to <strong>the</strong> landmark paper of S. Hilger [1] for a comprehensive treatment of <strong>the</strong> subject.<br />

A book on <strong>the</strong> subject of time scales by Bohner and Peterson [2] also summarizes and organizes much of<br />

<strong>the</strong> time scale calculus.<br />

In this paper we shall study <strong>the</strong> oscillations of <strong>the</strong> follow<strong>in</strong>g nonl<strong>in</strong>ear second-order dynamic equations<br />

with damp<strong>in</strong>g<br />

(r(t)Ψ(x ∆ (t)) ∆ + p(t)Ψ(x ∆ (t)) + q(t)f(x σ (t)) = 0, t ∈ T, (1)<br />

where Ψ(t), f(t), p(t), q(t) and r(t) are rd-cont<strong>in</strong>uous functions. By us<strong>in</strong>g a generalized Riccati transfor-<br />

mation and <strong>in</strong>tegral averag<strong>in</strong>g technique, we establish some new sufficient conditions which ensure that<br />

every solution of this equation oscillates. Throughout this paper, we will assume <strong>the</strong> follow<strong>in</strong>g hypo<strong>the</strong>ses:<br />

(H1) p(t), q(t) ∈ Crd(R, R + ),<br />

(H2) Ψ : T → R is such that Ψ 2 (u) ≤ κuΨ(u) for κ > 0, u �= 0,<br />

(H3) f : R → R is such that f(u)<br />

u ≥ λ > 0, and uf(u) > 0, u �= 0,<br />

(H4) r(t) ∈ C1 rd ([t0, ∞), R + ), � ∞ 1 (<br />

References<br />

t0<br />

r(t)<br />

e −p(t) (t, t0))∆t = ∞.<br />

r(t)<br />

[1] S. Hilger, Analysis on measure cha<strong>in</strong>s A unified approach to cont<strong>in</strong>uous and discrete calculus,<br />

Results Math., 18 , 18-56, 1990.<br />

[2] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications,<br />

Birkhäuser, Boston, 2001.<br />

[3] Samir H. Saker, Ravi P. Agarwal, Donal O’Regan, Oscillation of second-order damped dynamic<br />

equations on time scales, J.Math.Anal. and App., 330, 1317-1337, 2007.<br />

[4] Taher S. Hassan, Lynn Erbe, Allan Peterson, Oscillation Theorems of Second Order Superl<strong>in</strong>ear<br />

Dynamic Equations with Damp<strong>in</strong>g on Time Scales, Com. Math. Appl., 59, 550-558, 2010.<br />

[5] M. T. S¸enel, Oscillation <strong>the</strong>orems for dynamic equation on time scales, Bull. Math. Anal. Appl.,<br />

3, no.4, 101-105, 2011.<br />

[6] M. T. S¸enel, Kamenev-Type Oscillation Criteria for <strong>the</strong> Second-Order Nonl<strong>in</strong>ear Dynamic Equa-<br />

tions with Damp<strong>in</strong>g on Time Scales, <strong>Abstract</strong> and Applied Analysis, Vol. <strong>2012</strong>, Article ID 253107, 18<br />

pages, doi:10.1155/<strong>2012</strong>/253107.<br />

This work was supported by Research Fund of <strong>the</strong> Erciyes University. Project Number:FBA-11-3391<br />

Page 99


On <strong>the</strong> f<strong>in</strong>e spectrum of <strong>the</strong> $\Lambda$ operator def<strong>in</strong>ed by a lambda matrix<br />

over <strong>the</strong> sequence space $c_{0}$ and $c$<br />

<strong>Abstract</strong><br />

M. Yeşilkayagil 1 and F. Başar 2<br />

1 Department of Ma<strong>the</strong>matics, Uşak University, Uşak, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey<br />

The ma<strong>in</strong> purpose of this paper is to determ<strong>in</strong>e <strong>the</strong> f<strong>in</strong>e spectrum with respect to <strong>the</strong> Goldberg's<br />

classification of <strong>the</strong> operator $\Lambda$ def<strong>in</strong>ed by a lambda matrix over <strong>the</strong> sequence spaces<br />

$c_{0}$ and $c$. As a new development, we give <strong>the</strong> approximate po<strong>in</strong>t spectrum, defect<br />

spectrum and compression spectrum of <strong>the</strong> matrix operator $\Lambda$ on <strong>the</strong> sequence spaces<br />

$c_{0}$ and $c$.<br />

References<br />

Page 100<br />

1.A.M. Akhmedov, F. Başar, On <strong>the</strong> f<strong>in</strong>e spectrum of <strong>the</strong> Ces\`{a}ro operator <strong>in</strong> $c_0$}, Math. J.<br />

Ibaraki Univ.(36)(2004), 25-32.<br />

2.B. Altay, F. Başar, On <strong>the</strong> f<strong>in</strong>e spectrum of <strong>the</strong> generalized difference operator $B(r,s)$ over<br />

<strong>the</strong> sequence spaces $c_0$ and $c$}, Int. J. Math. Math. Sci. 2005:(18) (2005), 3005-3013.<br />

3.B. Altay, F. Başar, On <strong>the</strong> f<strong>in</strong>e spectrum of <strong>the</strong> difference operator $\Delta$ on $c_0$ and $c$,<br />

Inform. Sci. (168)(2004), 217-224.<br />

4.B. Altay, M. Karakuş, On <strong>the</strong> spectrum and f<strong>in</strong>e spectrum of <strong>the</strong> Zweier matrix as an operator<br />

on some sequence spaces, Thai J. Math. (3)(2005), 153-162.<br />

5.J. Appell, E. Pascale, A. Vignoli, Nonl<strong>in</strong>ear Spectral Theory, de Gruyter Series <strong>in</strong> Nonl<strong>in</strong>ear<br />

Analysis and Applications 10, Walter de Gruyter, Berl<strong>in</strong>, New York, 2004.<br />

6.S. Goldberg, Unbounded L<strong>in</strong>ear Operators, Dover Publications, Inc. New York, 1985.<br />

7.V. Karakaya, M. Altun, F<strong>in</strong>e spectra of upper triangular double-band matrices, J. Comput.<br />

Appl. Math. (234)(2010), 1387-1394.<br />

8.E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley \& Sons Inc.<br />

New York, Chichester, Brisbane, Toronto, 1978.<br />

9. J.B. Reade, On <strong>the</strong> spectrum of <strong>the</strong> Cesaro operator, Bull. Lond. Math. Soc. (17)(1985), 263-<br />

267.<br />

10. R.B. Wenger, The f<strong>in</strong>e spectra of H\"older summability operators, Indian J. Pure Appl. Math.<br />

(6)(1975), 695-712.


<strong>Abstract</strong><br />

On Hadamard Type Integral Inequalities For Nonconvex Functions<br />

Mehmet Zeki Sarikaya 1 , Hakan Bozkurt 1 and Necmett<strong>in</strong> Alp 1<br />

1 Department of Ma<strong>the</strong>matics, Duzce University, Duzce, Turkey<br />

Convexity plays a central and fundamental role <strong>in</strong> ma<strong>the</strong>matical …nance, economics, eng<strong>in</strong>eer<strong>in</strong>g,<br />

management sciences and optimizastion <strong>the</strong>ory. In recent years, several extensions and generalizations<br />

have been considered for classical convexity. A signi…cant generalization of convex functions is that of<br />

'-convex functions <strong>in</strong>troduced by Noor <strong>in</strong> [3]. In [3] and [6], <strong>the</strong> authors have studied <strong>the</strong> basic properties<br />

of <strong>the</strong> '-convex functions. It is well-know that <strong>the</strong> '-convex functions and '-sets may not be convex<br />

functions and convex sets. This class of nonconvex functions <strong>in</strong>clude <strong>the</strong> classical convex functions and<br />

its various classes as special cases. For some recent results related to this nonconvex functions, see <strong>the</strong><br />

papers [3]-[6]. In this article, us<strong>in</strong>g functions whose derivatives absolute values are '-convex and quasi-'-<br />

convex, we obta<strong>in</strong>ed new <strong>in</strong>equalities releted to <strong>the</strong> right and left side of Hermite-Hadamard <strong>in</strong>equality.<br />

In particular if ' = 0 is taken as, our results obta<strong>in</strong>ed reduce to <strong>the</strong> Hermite-Hadamard type <strong>in</strong>equality<br />

for classical convex functions.<br />

References<br />

[1] S.S. Dragomir and R.P. Agarwal, Two <strong>in</strong>equalities for di¤erentiable mapp<strong>in</strong>gs and applications to<br />

special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91–95.<br />

[2] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and<br />

Applications, RGMIA Monographs, Victoria University, 2000.<br />

171<br />

[3] M. Aslam Noor, Some new classes of nonconvex functions, Nonl.Funct.Anal.Appl.,11(2006),165-<br />

[4] M. Aslam Noor, On Hadamard <strong>in</strong>tegral <strong>in</strong>equalities <strong>in</strong>volv<strong>in</strong>g two log-pre<strong>in</strong>vex functions, J. Inequal.<br />

Pure Appl. Math., 8(2007), No. 3, 1-6, Article 75.<br />

[5] M. Aslam Noor, Hermite-Hadamard <strong>in</strong>tegral <strong>in</strong>equalities for log-' convex functions, Nonl. Anal.<br />

Forum, (2009).<br />

31-42.<br />

[6]M. Aslam Noor, On a class of general variotional <strong>in</strong>equalities, J. Adv. Math. Studies, 1(2008),<br />

[7] K. Inayat Noor and M. Aslam Noor, Relaxed strongly nonconvex functions, Appl. Math. E-Notes,<br />

6(2006), 259-267.<br />

[8] U.S. K¬rmac¬, Inequalities for di¤erentiable mapp<strong>in</strong>gs and applications to special means of real<br />

numbers and to midpo<strong>in</strong>t formula, Appl. Math. Comp., 147 (2004), 137-146.<br />

[9] U.S. K¬rmac¬and M.E. Özdemir, On some <strong>in</strong>equalities for di¤erentiable mapp<strong>in</strong>gs and applications<br />

to special means of real numbers and to midpo<strong>in</strong>t formula, Appl. Math. Comp., 153, (2004), 361-368.<br />

[10] U.S. K¬rmac¬, Improvement and fur<strong>the</strong>r generalization of <strong>in</strong>equalities for di¤erentiable mapp<strong>in</strong>gs<br />

and applications, Computers and Math. with Appl., 55 (2008), 485-493.<br />

[11] D.A. Ion, Some estimates on <strong>the</strong> Hermite-Hadamard <strong>in</strong>equality through quasi-convex functions,<br />

Annals of University of Craiova Math. Comp. Sci. Ser., 34 (2007) 82-87.<br />

[12]C.E.M. Pearce and J. Peµcarić, Inequalities for di¤erentiable mapp<strong>in</strong>gs with application to special<br />

means and quadrature formulae, Appl. Math. Lett., 13(2) (2000), 51–55.<br />

Page 101


[13] J. Peµcarić, F. Proschan and Y.L. Tong, Convex functions, partial order<strong>in</strong>g and statistical appli-<br />

cations, Academic Press, New York, 1991.<br />

[14] M. Z. Sarikaya, A. Saglam and H. Y¬ld¬r¬m, New <strong>in</strong>equalities of Hermite-Hadamard type for<br />

functions whose second derivatives absolute values are convex and quasi-convex, International Journal of<br />

Open Problems <strong>in</strong> Computer Science and Ma<strong>the</strong>matics ( IJOPCM), 5(3), <strong>2012</strong>.<br />

[15] M. Z. Sarikaya, A. Saglam and H. Y¬ld¬r¬m, On some Hadamard-type <strong>in</strong>equalities for h-convex<br />

functions, Journal of Ma<strong>the</strong>matical Inequalities, Volume 2, Number 3 (2008), 335-341.<br />

[16] M. Z. Sarikaya, M. Avci and H. Kavurmaci, On some <strong>in</strong>equalities of Hermite-Hadamard type for<br />

convex functions, ICMS Iternational <strong>Conference</strong> on Ma<strong>the</strong>matical Science. AIP <strong>Conference</strong> Proceed<strong>in</strong>gs<br />

1309, 852 (2010).<br />

[17] M. Z. Sarikaya and N. Aktan, On <strong>the</strong> generalization some <strong>in</strong>tegral <strong>in</strong>equalities and <strong>the</strong>ir applica-<br />

tions Ma<strong>the</strong>matical and Computer Modell<strong>in</strong>g, Volume 54, Issues 9-10, November 2011, Pages 2175-2182.<br />

[18] M. Z. Sarikaya, E. Set and M. E. Ozdemir, On some new <strong>in</strong>equalities of Hadamard type <strong>in</strong>volv<strong>in</strong>g<br />

h-convex functions, Acta Ma<strong>the</strong>matica Universitatis Comenianae, Vol. LXXIX, 2(2010), pp. 265-272.<br />

[19] A. Saglam, M. Z. Sarikaya and H. Yildirim, Some new <strong>in</strong>equalities of Hermite-Hadamard’s type,<br />

Kyungpook Ma<strong>the</strong>matical Journal, 50(2010), 399-410.<br />

Page 102


A geometrical approach of an optimal control problem governed by EDO<br />

<strong>Abstract</strong>:<br />

NEDJOUA DRIAI<br />

Department of Ma<strong>the</strong>matics, Ferhat abbas University, Setif ,Algeria<br />

The <strong>the</strong>ory of optimal control is a very important branch of optimization, <strong>the</strong> resolution of <strong>the</strong><br />

problems controls optimal asks for <strong>the</strong> <strong>in</strong>tervention of several ma<strong>the</strong>matical tools, <strong>in</strong> particular <strong>the</strong><br />

partial derivative equations. In this work one gives a geometrical approach of a problem of optimal<br />

control, it where one calls on <strong>the</strong> basic notions of <strong>the</strong> calculation of <strong>the</strong> variations such as <strong>the</strong> equation<br />

of Euler-Lagrange which is a requirement of optimality, <strong>the</strong> pr<strong>in</strong>ciple of maximum of Pontriaga<strong>in</strong>e<br />

(PMP), which gives an analytical aspect to <strong>the</strong> problem controls optimal and makes it possible to study<br />

unquestionable property of <strong>the</strong> functions which def<strong>in</strong>es <strong>the</strong> criterion to be m<strong>in</strong>imized, <strong>the</strong> regularity of<br />

<strong>the</strong> solutions (m<strong>in</strong>imum or maximum). An o<strong>the</strong>r very important aspect is well geometrical aspect which<br />

is used to f<strong>in</strong>d <strong>the</strong> geodetic ones, <strong>the</strong>ir natures, <strong>the</strong>ir numbers which requires a geometrical luggage<br />

such as <strong>the</strong> fields, of vector, <strong>the</strong> vector spaces, <strong>the</strong> curve acceptable… Then can about it def<strong>in</strong>es a<br />

problem controls optimal controlled by EDO geometrically by giv<strong>in</strong>g some conditions.<br />

References:<br />

[1] NR Burq and P. Gerard; Optimal control of <strong>the</strong> partial derivative equations.<br />

[2] Ovidiu Cal<strong>in</strong> Der-Chen Chang; Geometric Mechanics one Riemannian Manifolds; Birkhäuser<br />

Boston 2005 [3] L.C.Young; read<strong>in</strong>gs one <strong>the</strong> calculus of variations and optimal control <strong>the</strong>ory;<br />

Chelsea publish<strong>in</strong>g company; N.Y, 1980<br />

Page 103


Existence of Local Solution for a Double Dispersive Bad Bouss<strong>in</strong>esq-Type Equation<br />

N. Dündar 1 , N. Polat 1<br />

<strong>Abstract</strong><br />

1 Department of Ma<strong>the</strong>matics, Dicle University, Diyarbak¬r, Turkey<br />

In this work, we consider a purely spatial higher order bad Bouss<strong>in</strong>esq-type equation. We obta<strong>in</strong> <strong>the</strong><br />

existence and uniqueness of <strong>the</strong> local solutions. The local existence of <strong>the</strong> solution is given by aid of<br />

contraction mapp<strong>in</strong>g pr<strong>in</strong>ciple.<br />

References<br />

[1] L.A. Ostrovskii, A.M Sut<strong>in</strong>, Nonl<strong>in</strong>ear Waves <strong>in</strong> Rods, J. Appl. Math. Mech. 41 (1977) 543–549<br />

(English translation of P.M.M.).<br />

[2] C.I. Christov, G. A Maug<strong>in</strong>, On Bouss<strong>in</strong>esq’s Paradigm <strong>in</strong> Nonl<strong>in</strong>ear Wave Propagation, C.<br />

R.Mecanique 335 (2007) 521–535.<br />

[3] N. Polat, A. Erta¸s, Existence and Blow-up of Solution of Cauchy Problem for <strong>the</strong> Generalized-<br />

Damped Multidimensional Bouss<strong>in</strong>esq Equation, J. Math. Anal. Appl. 349 (2009) 10-20.<br />

[4]Y. Liu, Existence and Blow up of a Nonl<strong>in</strong>ear Pochhammer–Chree Equation, Indiana Univ. Math.J.<br />

45 (1996) 797–816.<br />

[5] T. Kato, G. Ponce, Commutator Estimates and <strong>the</strong> Euler and Navier–Stokes Equations, Comm.<br />

Pure Appl. Math. 41 (1988) 891–907.<br />

Page 104


A Perturbation Solution Procedure for a Boundary Layer Problem<br />

N. Elmas 1 , A. Ashyralyev 2 And H. Boyaci 1<br />

1 Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Celal Bayar University 45140 Muradiye, Manisa, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Fatih University, 34500 Buyukçekmece, Istanbul, Turkey<br />

<strong>Abstract</strong><br />

A perturbation algorithm us<strong>in</strong>g a new transformation is <strong>in</strong>troduced for boundary-value problem with small<br />

parameter multiply<strong>in</strong>g <strong>the</strong> derivative terms. To account for <strong>the</strong> l<strong>in</strong>ear and <strong>the</strong> nonl<strong>in</strong>ear dependence of <strong>the</strong><br />

function, we exhibit <strong>the</strong> function f for <strong>the</strong> system. We <strong>in</strong>troduce <strong>the</strong> transformation f ( x,<br />

; ) x , where f<br />

depends on x, and . Results of Multiple Scales method, method of matched asymptotic expansions and our<br />

method are contrasted.<br />

We consider <strong>the</strong> follow<strong>in</strong>g boundary-value problem<br />

y<br />

y(<br />

0)<br />

y<br />

0<br />

y<br />

2<br />

0<br />

y(<br />

1)<br />

Where is a small dimesionless positive number. It is assumed that <strong>the</strong> equation and boundary conditions have<br />

been made dimensionless.<br />

In Direct Perturbation Method, secular terms appear of higher orders of <strong>the</strong> expansion <strong>in</strong>validat<strong>in</strong>g <strong>the</strong> solution.<br />

In order <strong>the</strong> avoid this problem a new transformation has been proposed <strong>in</strong> our study.<br />

The new transformation is def<strong>in</strong>ed as,<br />

T e<br />

f ( x,<br />

;<br />

Us<strong>in</strong>g <strong>the</strong> cha<strong>in</strong> rule, we transform <strong>the</strong> derivate accord<strong>in</strong>gly<br />

dy<br />

dx<br />

2<br />

d y<br />

2<br />

dx<br />

d<br />

2<br />

dT<br />

2<br />

e<br />

dy<br />

dT<br />

y<br />

e<br />

d<br />

dx<br />

dTe<br />

dx<br />

df<br />

dx<br />

dy<br />

dx<br />

x<br />

f<br />

dy<br />

dT<br />

2<br />

e<br />

d<br />

dx<br />

df<br />

dx<br />

dy<br />

dT<br />

e<br />

x<br />

dy<br />

dT<br />

e<br />

f<br />

df<br />

dx<br />

2<br />

d f<br />

2<br />

dx<br />

x<br />

x<br />

y'(<br />

f x<br />

f<br />

x<br />

df<br />

2<br />

dx<br />

f )<br />

d<br />

dT<br />

e<br />

y''<br />

( f<br />

So, we have obta<strong>in</strong>ed a more effective parameter expression T e without los<strong>in</strong>g <strong>the</strong> orig<strong>in</strong>al parameter<br />

x, and . Thus, speed<strong>in</strong>g up and slow<strong>in</strong>g down control of <strong>the</strong> time parameter will be available as <strong>in</strong> Method of<br />

Multiple Scales.<br />

In Equation (3) first order derivatives accord<strong>in</strong>g to new variable T e appear <strong>in</strong> <strong>the</strong> second order derivative<br />

expressions accord<strong>in</strong>g to orig<strong>in</strong>al time variable x. So, we are able to have <strong>in</strong>formation about parameters of<br />

nonl<strong>in</strong>ear differential equation and to <strong>in</strong>terpret <strong>the</strong> results.<br />

)<br />

dy<br />

dT<br />

x<br />

e<br />

x<br />

x<br />

1<br />

2<br />

df<br />

dx<br />

f )<br />

2<br />

x<br />

f<br />

y'(<br />

f<br />

xx<br />

dTe<br />

dx<br />

x<br />

2 f<br />

dy<br />

dT<br />

x<br />

)<br />

e<br />

d<br />

dx<br />

T e<br />

df<br />

dx<br />

x<br />

f<br />

Page 105<br />

(1)<br />

(2)<br />

(3)


By this new transformation we have <strong>the</strong> advantages of both method of matched asymptotic expansions and<br />

Method of Multi Scales [1-6].<br />

Us<strong>in</strong>g perturbation algorithm with new transformation, a more effective time expression without los<strong>in</strong>g <strong>the</strong><br />

orig<strong>in</strong>al time parameter t have been obta<strong>in</strong>ed. Information about parameters of nonl<strong>in</strong>ear differential equation<br />

and <strong>in</strong>terpretation of <strong>the</strong> results has been achieved. Apply<strong>in</strong>g this transformation on boundary value problem<br />

<strong>the</strong> results obta<strong>in</strong>ed are compared with <strong>the</strong> results of <strong>the</strong> studies conducted to time.<br />

References<br />

[1] H. Nayfeh, Introduction to Perturbation Techniques, John Wiley and Sons, New York 1981.<br />

[2] Nayfeh, A.H., Nayfeh S.A. and Mook, D.T., On Methods for cont<strong>in</strong>uous systems with quadratic and<br />

cubic nonl<strong>in</strong>earities, Nonl<strong>in</strong>ear Dynamics, 3, 145-162, 1992<br />

[3] Nayfeh, A.H., 1998. Reduced order models of weakly nonl<strong>in</strong>ear spatially cont<strong>in</strong>uous systems, Nonl<strong>in</strong>ear<br />

Dynamics 16,105–125, 1998.<br />

[4] Ashyralyev A. and Sobolevskii P. E. New Difference Schemesfor Partial Differential Equations.<br />

Birkhauser Verlag: Basel. Boston. Berl<strong>in</strong>, 443 p,2004.<br />

[5] Erw<strong>in</strong> Kreyszig Advanced Eng<strong>in</strong>eer<strong>in</strong>g Ma<strong>the</strong>matics, John Wiley & Sons, New York, 1993.<br />

[6] Perturbation Methods, Instability, Catastrophe and Chaos, C F Chan Man Fong and D D Kee, World<br />

Scientific Publish<strong>in</strong>g, 1999<br />

Page 106


Solution of Differential Equations by Perturbation Technique Us<strong>in</strong>g any Time Transformation<br />

<strong>Abstract</strong><br />

N. Elmas 1 and H. Boyaci 1<br />

1 Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Celal Bayar University 45140 Muradiye, Manisa, Turkey<br />

A perturbation algorithm us<strong>in</strong>g any time transformation is <strong>in</strong>troduced. To account for <strong>the</strong> nonl<strong>in</strong>ear<br />

dependence of <strong>the</strong> function, we exhibit <strong>the</strong> function f of <strong>the</strong> system <strong>in</strong> <strong>the</strong> differential equation. To<br />

this end, we <strong>in</strong>troduce <strong>the</strong> transformation f ( w,<br />

t)<br />

t , where f is a function that depends on t or w.<br />

T e<br />

The problems are solved with new time transformation: L<strong>in</strong>ear damped vibration equation, classical<br />

Duff<strong>in</strong>g equation and damped cubic nonl<strong>in</strong>ear equation. Results of Multiple Scales, L<strong>in</strong>dstedt<br />

Po<strong>in</strong>care method, new method and numerical solutions are contrasted [1-6].<br />

Solution of Differential equations by perturbation technique us<strong>in</strong>g any time transformation. In Direct<br />

Perturbation Method, mostly secular terms appear of higher orders of <strong>the</strong> expansion <strong>in</strong>validat<strong>in</strong>g <strong>the</strong><br />

solution. In order <strong>the</strong> avoid this problem a new time transformation has been proposed <strong>in</strong> our study.<br />

The new time transformation is def<strong>in</strong>ed as,<br />

Us<strong>in</strong>g <strong>the</strong> cha<strong>in</strong> rule, we transform <strong>the</strong> derivate accord<strong>in</strong>gly<br />

du<br />

dt<br />

2<br />

d u<br />

2<br />

dt<br />

T e<br />

f ( w,<br />

t)<br />

t<br />

(1)<br />

u'(<br />

f�<br />

( w,<br />

t)<br />

t<br />

u''<br />

( f�<br />

( w,<br />

t)<br />

t<br />

f ( w,<br />

t))<br />

f ( w,<br />

t))<br />

2<br />

u ( �f<br />

�(<br />

w,<br />

t)<br />

t<br />

2 f�<br />

( w,<br />

t))<br />

So we have obta<strong>in</strong>ed a more effective time expression T e without los<strong>in</strong>g <strong>the</strong> orig<strong>in</strong>al time parameter<br />

t us<strong>in</strong>g <strong>the</strong> function f. Thus, speed<strong>in</strong>g up and slow<strong>in</strong>g down control of <strong>the</strong> time parameter will be<br />

available as <strong>in</strong> Method of Multiple Scales.<br />

Page 107<br />

(2)


In Equation (2) first order time-derivatives accord<strong>in</strong>g to new time variable T e appear <strong>in</strong> second order<br />

time derivative expressions accord<strong>in</strong>g to orig<strong>in</strong>al time variable. So, we are able to have <strong>in</strong>formation<br />

about some parameters of nonl<strong>in</strong>ear differential equation, and to <strong>in</strong>terpret <strong>the</strong> results.<br />

By this new time transformation we have <strong>the</strong> advantages of both L<strong>in</strong>dstedtpo<strong>in</strong>care method and<br />

Method Multi Scales .<br />

Us<strong>in</strong>g a new perturbation algorithm with new time transformation, we showed that, first we have<br />

obta<strong>in</strong>ed a more effective time expression without los<strong>in</strong>g <strong>the</strong> orig<strong>in</strong>al time parameter t us<strong>in</strong>g <strong>the</strong><br />

function f. We are able to have <strong>in</strong>formation about some parameters of nonl<strong>in</strong>ear differential equation,<br />

and to <strong>in</strong>terpret <strong>the</strong> results. When we apply this transformation on <strong>the</strong> known Duff<strong>in</strong>g equation with<br />

<strong>the</strong> results of <strong>the</strong> studies conducted to date have compared <strong>the</strong> results obta<strong>in</strong>ed.<br />

We found <strong>in</strong> this new time with <strong>the</strong> transformation of <strong>the</strong> solutions are compared with approximate<br />

solutions do not differ <strong>in</strong> Results of Multiple Scales, L<strong>in</strong>dstedt Po<strong>in</strong>care method and we found that<br />

<strong>the</strong> approximate solutions.<br />

References<br />

[1] H. Nayfeh, Introduction to Perturbation Techniques, John Wiley and Sons, New York 1981.<br />

[2] Nayfeh, A.H., Nayfeh S.A. and Mook, D.T., On Methods for cont<strong>in</strong>uous systems with quadratic<br />

and cubic nonl<strong>in</strong>earities, Nonl<strong>in</strong>ear Dynamics, 3, 145-162, 1992<br />

[3] Nayfeh, A.H., 1998. Reduced order models of weakly nonl<strong>in</strong>ear spatially cont<strong>in</strong>uous systems,<br />

Nonl<strong>in</strong>ear Dynamics 16,105–125, 1998.<br />

[4] M. Pakdemirli and M. M. F. Karahan, A New Perturbation Solution for Systems with Strong<br />

Quadratic and Cubic Nonl<strong>in</strong>earities, Ma<strong>the</strong>matical Methods <strong>in</strong> <strong>the</strong> Applied Sciences 33, 704-712,<br />

2010.<br />

[5] Perturbation Methods, Instability, Catastrophe and Chaos, C F Chan Man Fong and D D Kee,<br />

World Scientific Publish<strong>in</strong>g, 1999<br />

[6] M. Pakdemirli, M. M. F. Karahan and H. Boyacı, A new perturbation algorithm with<br />

better convergence properties: Multiple Scales L<strong>in</strong>dstedt Po<strong>in</strong>care Method, Ma<strong>the</strong>matical and<br />

Computational Applications 14 ,31-44, 2009.<br />

Page 108


Aproximation Properties of a Generalization of L<strong>in</strong>ear Positive Operators <strong>in</strong> C[0,A]<br />

<strong>Abstract</strong><br />

N.Gonul<br />

Department of Ma<strong>the</strong>matics, Bulent Ecevit University, Zonguldak, Turkey<br />

In this paper we study <strong>the</strong> order of convergence of a generalization of positive operators by means<br />

of <strong>the</strong> functions from Lipschitz class. We use <strong>the</strong> test functions<br />

x<br />

1+x for = 0; 1; 2; a Korovk<strong>in</strong> type<br />

<strong>the</strong>orem given by [1]. Fur<strong>the</strong>rmore we estimate <strong>the</strong> rate of convergence of <strong>the</strong>se operators.Some …gures<br />

correspond to obta<strong>in</strong><strong>in</strong>g results are given. F<strong>in</strong>ally, <strong>the</strong> algorithm used <strong>in</strong> <strong>the</strong> program has been added.<br />

References<br />

[1] Cakar O. and Gadjiev A. , On uniform approximation by Bleimann, Butzer and Hahn on all<br />

positive semiaxis, Tras. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 19, 21–26, 1999.<br />

[2] Coskun, T. Weighted approximation of cont<strong>in</strong>uous functions by sequences of l<strong>in</strong>ear positive oper-<br />

ators. Proc. Indian Acad. Sci. (Math. Sci.) Vol. 110, No. 4, 357-362, 2000.<br />

[3] Dogru O., On Bleimann, Butzer and Hahn type generalization of Balázs operators, Dedicated to<br />

Professor D. D. Stancu on his 75th birthday, Studia Univ. "Babe¸s-Bolyai", Ma<strong>the</strong>matica 47 , 37-45,<br />

2002.<br />

[4] Korovk<strong>in</strong> P.P., L<strong>in</strong>ear Operators and Approximation Theory, H<strong>in</strong>dustan Publ.Co., Delhi, 1960.<br />

[5] Ibragimov I.I., Gadziev A. D. On a sequence of l<strong>in</strong>ear positive operators,Soviet Math. Dokl., v.11,<br />

No:4, pp. 1092-1095,1970.<br />

Page 109


Three-term Asymptotic Expansion for <strong>the</strong> Moments of<br />

<strong>the</strong> Ergodic Distribution of a Renewal-reward Process<br />

with Gamma Distributed Interference of Chance<br />

N. Okur Bekar 1 , R. Aliyev 2 and T. Khaniyev 3<br />

1 Karadeniz Technical University, Faculty of Sciences, Department of Ma<strong>the</strong>matics,<br />

61080, Trabzon, Turkey<br />

2 Baku State University, Faculty of Applied Ma<strong>the</strong>matics and Cybernetics, Department of<br />

Probability Theory and Ma<strong>the</strong>matical Statistics Z. Khalilov 23, Az 1148, Baku, Azerbaijan<br />

3 TOBB University of Economics and Technology, Faculty of Eng<strong>in</strong>eer<strong>in</strong>g, Department of<br />

Industrial Eng<strong>in</strong>eer<strong>in</strong>g, 06560, Sogutozu, Ankara, Turkey<br />

<strong>Abstract</strong><br />

In this study, a renewal-reward process with a discrete <strong>in</strong>terference of chance �X(t) � is<br />

<strong>in</strong>vestigated. We assume that (X �(t)) t� 0<br />

is a renewal-reward process with a gamma distributed<br />

<strong>in</strong>terference of chance with parameters ( �� , ) . Under <strong>the</strong> assumption that <strong>the</strong> process is ergodic,<br />

<strong>the</strong> paper provides <strong>the</strong> three-term asymptotic expansions for <strong>the</strong> moments<br />

References<br />

n<br />

EX� , n � , as λ� 0.<br />

[1] Aliyev R.T., Khaniyev T.A., Okur Bekar N., Weak convergence <strong>the</strong>orem for <strong>the</strong> ergodic<br />

distribution of <strong>the</strong> renewal- reward process with a gamma distributed <strong>in</strong>terference of chance.<br />

Theory of Stochastic Processes, 15 (31) 2, 42-53, 2009.<br />

[2] Csenki A., Asymptotic for renewal-reward processes with retrospective reward structure,<br />

Operation Research and Letters, 26, 201-209, 2000.<br />

[3] Feller W., An Introduction to Probability Theory and Its Applications II, J. Wiley, New<br />

York, 1971.<br />

[4] Gihman I.I., Skorohod A.V., Theory of Stochastic Processes II, Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1975.<br />

[5] Ross S.M., Stochastic Processes, 2nd Ed. New York: John Wiley & Sons, 1996.<br />

Page 110


Blow up of a solution for a system of nonl<strong>in</strong>ear higher-order wave equations with strong<br />

<strong>Abstract</strong><br />

damp<strong>in</strong>g<br />

N. Polat and E. Pi¸sk<strong>in</strong><br />

Department of Ma<strong>the</strong>matics, Dicle University, Diyarbakir, Turkey<br />

This work studies a <strong>in</strong>itial-boundary value problem of <strong>the</strong> strong damped nonl<strong>in</strong>ear higher-order wave<br />

equations. Under suitable conditions on <strong>the</strong> <strong>in</strong>itial datum, we prove that <strong>the</strong> blow up of <strong>the</strong> solution.<br />

References<br />

[1] Agre K. and Rammaha M.A., Systems of nonl<strong>in</strong>ear wave equations with damp<strong>in</strong>g and source terms,<br />

Di¤. Integral Eqns., 19(11), 1235–1270, 2006.<br />

[2] Yu S., On <strong>the</strong> strongly damped wave equation with nonl<strong>in</strong>ear damp<strong>in</strong>g and source terms, E. J.<br />

Qualitative Theory of Di¤. Equ., 39, 1-18, 2009.<br />

2001.<br />

[3] Messaoudi S. A., Blow up <strong>in</strong> a nonl<strong>in</strong>early damped wave equation, Math. Nachr., 231, 105–111,<br />

[4] Pi¸sk<strong>in</strong> E. and Polat N., Global existence and exponential decay of solutions for a class of sys-<br />

tem of nonl<strong>in</strong>ear higher-order wave equations with strong damp<strong>in</strong>g, J. Adv. Res. Appl. Math., Doi:<br />

10.5373/jaram (<strong>in</strong> press).<br />

Page 111


Reduction of spectral problem of Cauchy-Riemann operator with homogeneous boundary<br />

<strong>Abstract</strong><br />

conditions to an <strong>in</strong>tegral equation<br />

N.S.Imanbayev<br />

H.A.Jassavi IKTU, Turkestan, Kazakhstan<br />

In this paper <strong>the</strong> problem on <strong>the</strong> eigenvalues of <strong>the</strong> Cauchy-Riemann operator with homogeneous<br />

boundary conditions is reduced to an <strong>in</strong>tegral equation In <strong>the</strong> functional space C(|z| ≤ 1) we consider<br />

<strong>the</strong> operators generated by differential operation of <strong>the</strong> Cauchy-Riemann<br />

∂ω (z)<br />

Kω (z) = ,<br />

∂z<br />

where z = x + iy, z = x − iy, ∂<br />

� �<br />

1 ∂ ∂<br />

∂z = 2 ∂x + i ∂y on <strong>the</strong> set<br />

References<br />

D (K) ⊂<br />

�<br />

�<br />

∂ω (z)<br />

ω (z) ∈ C(|z| ≤ 1), ∈ C(|z| ≤ 1) .<br />

∂z<br />

[1] Otelbayev M., and Sh<strong>in</strong>ibekov A.N., About <strong>the</strong> correct problems of Bitsadze-Samarskiy type,<br />

Reports of Academy of Sciences,USSR.-V.265, 4.-pp.815-819,1982.<br />

[2] Mikhailets V.A., Spectral problems with general boundary conditions,<strong>Abstract</strong> of doct.of ph.-math,<br />

Kiev, 29 p,1989.<br />

[3]Imanbaev N.S., and Kanguzh<strong>in</strong> B. E , and Kirgizbaev Zh. About Fredholm property of one spectral<br />

problem related to Cauchy-Riemann operator,Inter-<strong>in</strong>stitute collection of scientific proceed<strong>in</strong>gs, ”Ques-<br />

tions of stability, durability and controllability of <strong>the</strong> dynamic systems”,Moscow: RGOTUPS, P. 54-<br />

59.2002<br />

[4] Muskhelishvili N.I., S<strong>in</strong>gular <strong>in</strong>tegral equations,Nauka Moscow, 511 p.1968.<br />

[5] Bitsadze A.V., Fundamentals of <strong>the</strong>ory of analytic functions of complex variable, Nauka, Moscow,<br />

239, p.1969.<br />

Page 112


A Note on Some Elementary Geometric Inequalities<br />

O. Gercek 1 , D. Caliskan 2 , A. Sobucova 1 and F. Cekic 1<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey 2 Department of Ma<strong>the</strong>matics<br />

<strong>Abstract</strong><br />

Teach<strong>in</strong>g, Qafqaz University, Baku, Azerbaijan<br />

In present paper, solutions of some elementary geometric <strong>in</strong>equalities are obta<strong>in</strong>ed. Firstly, we get a<br />

more useful <strong>in</strong>equality by specify<strong>in</strong>g <strong>the</strong> largest lower and smallest upper bounds, to be able to end <strong>the</strong><br />

<strong>in</strong>accuracy of <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>equality. Let a, b, c are lengths of sides of a triangle, and if distances of a<br />

tak<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> <strong>the</strong> <strong>in</strong>ner region of a triangle to <strong>the</strong> vertices are x, y, z, <strong>the</strong>n follow<strong>in</strong>g <strong>in</strong>equality satis…es<br />

1<br />

(a + b + c) < x + y + z < a + b + c:<br />

2<br />

Never<strong>the</strong>less it is true and useful, but it has not accurate boundaries. Because nei<strong>the</strong>r 1<br />

2 (a + b + c)<br />

is <strong>the</strong> largest lower bound, nor a + b + c is <strong>the</strong> smallest upper bound of this sum. But <strong>in</strong> university<br />

preparation course books and textbooks, which describe this <strong>in</strong>equality, <strong>the</strong>y resolved by accepted <strong>the</strong>se<br />

greatest lower bound and least upper bound, so that <strong>in</strong>correct results were obta<strong>in</strong>ed. In this work, we<br />

solved this <strong>in</strong>equality with more useful bounds. Namely,<br />

1. If distances of a tak<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> <strong>the</strong> <strong>in</strong>ner region of a triangle to <strong>the</strong> vertices are x, y, z which have<br />

lengths of sides a, b, c, and <strong>the</strong> area A, and also measures of all <strong>in</strong>ternal angles are smaller than<br />

120 degrees, <strong>the</strong>n follow<strong>in</strong>g <strong>in</strong>equality satis…es<br />

r 1<br />

2 a2 + b 2 + c 2 + 4 p 3A x + y + z < max fa + b; a + c; b + cg :<br />

2. If distances of a tak<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> <strong>the</strong> <strong>in</strong>ner region of a triangle to <strong>the</strong> vertices are x, y, z which have<br />

lengths of sides a, b, c, and <strong>the</strong> area A, and one of <strong>the</strong> measure of <strong>in</strong>ternal angle is greater than or<br />

equal to 120 degrees, <strong>the</strong>n follow<strong>in</strong>g <strong>in</strong>equality satis…es<br />

m<strong>in</strong> fa + b; a + c; b + cg < x + y + z < max fa + b; a + c; b + cg :<br />

We have stated and proved some <strong>the</strong>orems and lemmas that have done before (see <strong>in</strong> [1-5]). One of<br />

<strong>the</strong> our <strong>the</strong>orems is famous one, namely <strong>the</strong> Toricelli-Fermat po<strong>in</strong>t that was solved <strong>in</strong> many ways.<br />

In [6] and [7], we observed that Mustafa Ya¼gc¬have studied such as this work nicely. But, our proofs are<br />

completely di¤erent and some parts are more simple and clearer. In [7], he gave a problem. He claimed<br />

<strong>the</strong> problem he has given can not be solved us<strong>in</strong>g only geometry, but calculus is also used to solve <strong>the</strong><br />

problem. We decided to prove this problem given <strong>in</strong> [7]. After show<strong>in</strong>g <strong>the</strong> existence and uniqueness of<br />

<strong>the</strong> triangle 4XYZ de…ned <strong>in</strong> <strong>the</strong> problem, we tried to solve <strong>the</strong> problem by us<strong>in</strong>g only geometrical way<br />

and we succeeded. The most <strong>in</strong>terest<strong>in</strong>g part of our article is second part, prov<strong>in</strong>g this follow<strong>in</strong>g problem<br />

given below:<br />

Problem. For a given po<strong>in</strong>t P, on chang<strong>in</strong>g plane of <strong>the</strong> X, Y and Z let be jP Xj = a; jP Y j = b; and<br />

jP Zj = c: Then <strong>the</strong> circumference of <strong>the</strong> triangle 4XYZ has <strong>the</strong> largest value, when P is at <strong>the</strong> <strong>in</strong>ner<br />

center of <strong>the</strong> triangle. Secondly, what can be <strong>the</strong> m<strong>in</strong>imum value of <strong>the</strong> sum of a, b and c?<br />

Page 113


References<br />

[1] H.S.M. Coxeter and S.L. Greitzer, Geometry Revisited, MAA, (1967).<br />

[2] D. Pedoe, Geometry: A Comrehensive Course, Dover, (1970).<br />

[3] R. Honsberger, Ma<strong>the</strong>matical Gems I, MAA, (1973).<br />

[4] D. Pedoe, Circles: A Ma<strong>the</strong>matical View, MAA, (1995).<br />

[5] A. Ostermann and G. Wanner, Geometry by Its History, Spr<strong>in</strong>ger, (<strong>2012</strong>).<br />

[6] M. Ya¼gc¬, Fermat-Toricelli Noktas¬, Matematik Dünyas¬ 2004(1), 58-61 (2004).<br />

[7] M. Ya¼gc¬, Fermat-Toricelli’ye K¬sa Bir Ziyaret, Matematik Dünyas¬ 2004(4), 79 (2004).<br />

Page 114


<strong>Abstract</strong><br />

Solv<strong>in</strong>g Crossmatch<strong>in</strong>g Puzzles Us<strong>in</strong>g Multi-Layer Genetic Algorithms<br />

O. Kesemen 1 and E. Özkul 1<br />

1 Department of Statistics and Computer Science, Faculty of Science<br />

Karadeniz Technical University, 61080 Trabzon, Turkey<br />

okesemen@gmail.com, eda.ozkul.gs@gmail.com<br />

Nowadays, puzzles are used commonly as a founta<strong>in</strong> head of our monotonous lives or to spend free<br />

time. Crossmatch<strong>in</strong>g puzzle (CMP) is quite similar to <strong>the</strong> crossword puzzle (CWP). There are detection<br />

key table and control key table <strong>in</strong> crossmatch<strong>in</strong>g puzzles <strong>in</strong>stead of questions <strong>in</strong> crosswrod puzzle which<br />

are written from left to right and from top to bottom. Letters <strong>in</strong> each row of <strong>the</strong> ma<strong>in</strong> solution table<br />

are arranged <strong>in</strong> an order <strong>in</strong> detection key table. In <strong>the</strong> same way, letters <strong>in</strong> <strong>the</strong> ma<strong>in</strong> solution table are<br />

arranged <strong>in</strong> order column by column are put <strong>in</strong> <strong>the</strong> control key table. Therefore, <strong>the</strong> ma<strong>in</strong> table is tried<br />

to solve with cross<strong>in</strong>g of <strong>the</strong> letters <strong>in</strong> <strong>the</strong> detection key table and control key table.<br />

For solution of cross-match<strong>in</strong>g puzzle can be used depth search algorithm. However, <strong>in</strong> spite of depth<br />

search algorithm gives <strong>the</strong> exact result, size of puzzle as augments comput<strong>in</strong>g time of solution <strong>in</strong>creases<br />

exponentially and it makes <strong>the</strong> solution of puzzle impossible. In this case, stochastic search is better to<br />

use <strong>in</strong>stead of determ<strong>in</strong>istic search algorithm.<br />

In this study, improved genetic algorithm as multi-layer is used as stochastic search method [2]. In<br />

this algorithm, each letters represent a gene and each rows represent a chromosome. An <strong>in</strong>dividual is<br />

generated by chromosomes as number of rows come toge<strong>the</strong>r. Fitt<strong>in</strong>g function of created <strong>in</strong>dividual is<br />

determ<strong>in</strong>ed accord<strong>in</strong>g to fitness of control key table.<br />

Keywords: Crossmatch<strong>in</strong>g Puzzle, Multi-Layer Genetic Algorithm<br />

References<br />

[1] Kesemen, O., ve Karakaya, G., Yeni Bir Sayı Yerletirme Oyunu: Sıklık Bulmaca (SıkBul), 9.<br />

Matematik Sempozyumu, 20-22 Ekim, Trabzon, 2010.<br />

[2] Mantere, T. and Koljonen, J., Solv<strong>in</strong>g and Rat<strong>in</strong>g Sudoku Puzzles with Genetic Algorithms, New<br />

Developments <strong>in</strong> Artificial Intelligence and <strong>the</strong> Semantic Web, Proceed<strong>in</strong>gs of <strong>the</strong> 12th F<strong>in</strong>nish Artificial<br />

Intelligence <strong>Conference</strong> Step 2006.<br />

Page 115


<strong>Abstract</strong><br />

Generate Adaptive Quasi-Random Numbers<br />

O. Kesemen 1 and N. Jabbari 1<br />

1 Department of Statistics and Computer Science, Faculty of Science<br />

Karadeniz Technical University, 61080 Trabzon, Turkey<br />

okesemen@gmail.com, nasim.jabbari@gmail.com<br />

Random number generation, especially with <strong>the</strong> development of computer technology has an impor-<br />

tant place <strong>in</strong> <strong>the</strong> world of it.Uniform distribution random number generation can be done <strong>in</strong> almost all<br />

programm<strong>in</strong>g languages. Also <strong>in</strong> o<strong>the</strong>r distributions number generation can be produced with <strong>the</strong> help<br />

of <strong>the</strong> generated number from uniform distribution [1]. Games, education and simulation such as appli-<br />

cations programs which frequently used random number generation, is produced <strong>in</strong> <strong>the</strong> form of discrete<br />

data. Sometimes random numbers generation produced with <strong>the</strong> same values observe consecutive. In<br />

most applications (such as education) to purify this effect we can reused <strong>the</strong> result<strong>in</strong>g number aga<strong>in</strong>. But<br />

it reduces <strong>the</strong> amount of numbers, <strong>the</strong> random number will be <strong>in</strong> facilitates prediction.<br />

Indeed, as it reduced <strong>the</strong> probability of <strong>the</strong> taken number at <strong>the</strong> same time for mak<strong>in</strong>g <strong>the</strong> prediction<br />

of <strong>the</strong> next number difficult,variable produced random numbers with <strong>the</strong>ir probability [2].<br />

The frequency of region of each generated random number (fi) are stored <strong>in</strong> an <strong>in</strong>crease. The next<br />

random number which be generated,if it selected <strong>in</strong> each region,that number is considered to be <strong>the</strong><br />

number. In this method,because of <strong>the</strong> equal <strong>in</strong>tervals of <strong>the</strong> numbers <strong>the</strong>y have equal probability.The<br />

aim here is to reduce <strong>the</strong> probability of select<strong>in</strong>g <strong>the</strong> same number. In this case,<strong>the</strong> <strong>in</strong>terval between <strong>the</strong><br />

numbers must be narrowed. The process of <strong>in</strong>creas<strong>in</strong>g of <strong>the</strong> propbability of narrower<strong>in</strong>g <strong>the</strong> <strong>in</strong>terval<br />

transferred to o<strong>the</strong>r numbers. In this case, <strong>in</strong>terval’s limits will be changed.<br />

In statistical simulations,deviations from randomness is be reduced by tak<strong>in</strong>g too much random num-<br />

bers. In this work, reduction of <strong>the</strong> amount of deviation,a set of data as a result of simulation provides<br />

an approach <strong>the</strong>oretical curve more rapidly. Thus simulation results can be reached with less data. This<br />

provides a reduction of <strong>the</strong> comput<strong>in</strong>g time.<br />

Keywords: Adaptive Quasi Random Number, Statistical Simulation<br />

References<br />

[1] Kobayashi, H., Mark, B.L. and Tur<strong>in</strong>, W., Probability, Random Processes,and Statistical Analysis,<br />

Cambridge University Press, <strong>2012</strong><br />

[2] Morokoff, W. J. and Caflisch, R. E.,Quasi-Random Sequences And Their Discrepancies, Vol. 6<br />

(15) 1251-1279, SIAM Journal of Science Comput<strong>in</strong>g, 1994.<br />

Page 116


Polygonal Approximation of Digital Curve Us<strong>in</strong>g Artificial Bee Colony Optimization<br />

<strong>Abstract</strong><br />

Algorithms<br />

O. Kesemen 1 and S. Vafaei 1<br />

1 Department of Statistics and Computer Science, Faculty of Science<br />

Karadeniz Technical University, 61080 Trabzon, Turkey<br />

okesemen@gmail.com, soheyla.vafaei@yahoo.com<br />

In image process<strong>in</strong>g and pattern recognition, it is an important concept def<strong>in</strong><strong>in</strong>g two-dimensional<br />

objects <strong>in</strong> <strong>the</strong> image [1]. Firstly, <strong>the</strong> dom<strong>in</strong>ant po<strong>in</strong>ts of <strong>the</strong> edges of <strong>the</strong> object (corner po<strong>in</strong>ts) are<br />

determ<strong>in</strong>ed while objects are def<strong>in</strong>ed. Objects with <strong>the</strong> help of <strong>the</strong> dom<strong>in</strong>ant po<strong>in</strong>ts compared to a<br />

polygon, <strong>the</strong>n <strong>the</strong> number of edges or vertices are determ<strong>in</strong>ed. The purpose of <strong>the</strong> dom<strong>in</strong>ant po<strong>in</strong>t, <strong>the</strong><br />

desired object is to represent, us<strong>in</strong>g fewer po<strong>in</strong>ts. Thus, <strong>in</strong> practice, it is realized large memory, and<br />

trad<strong>in</strong>g volume. The problem is how to select <strong>the</strong>se po<strong>in</strong>ts. Accord<strong>in</strong>g to number of dom<strong>in</strong>ant po<strong>in</strong>t of<br />

any object, all comb<strong>in</strong>ations of boundary pixels is tested. Thus <strong>the</strong> exact solution is used <strong>in</strong> polygonal<br />

approach that gives <strong>the</strong> least error. If <strong>the</strong> object is small, and <strong>the</strong> required number of po<strong>in</strong>ts is less,<br />

<strong>the</strong> exact solution will give <strong>the</strong> best results. However, if <strong>the</strong> required number of comb<strong>in</strong>ations is more,<br />

determ<strong>in</strong>istic solution is impossible. Therefore, for solv<strong>in</strong>g <strong>the</strong> problem it is needed a stochastic search<br />

algorithm are needed. In this case, artificial bee colony (ABC) algorithm selected. ABC algorithm<br />

has been developed by model<strong>in</strong>g <strong>the</strong> bees look for food <strong>in</strong> bulk [2]. In this study, <strong>the</strong> advantages and<br />

shortcom<strong>in</strong>gs of <strong>the</strong> ABC method were exam<strong>in</strong>ed by compar<strong>in</strong>g ABC method with Genetic algorithm<br />

method<br />

rithm<br />

Keywords: Dom<strong>in</strong>ant Po<strong>in</strong>t, Digital Curve, Polygonal Approximation, Artificial Bee Colony Algo-<br />

References<br />

[1] Y<strong>in</strong>, P.Y., A new method for polygonal approximation us<strong>in</strong>g genetic algorithms, Pattern Recogni-<br />

tion Letters, (19) 1017-1026, 1998.<br />

[2] Karaboga, D. and Basturk, B., On <strong>the</strong> performance of artificial bee colony (ABC) algorithm,<br />

Applied Soft Comput<strong>in</strong>g (8) 687-697, 2008.<br />

Page 117


Generat<strong>in</strong>g Random Po<strong>in</strong>ts from Arbitrary Distribution In Polygonal Areas<br />

<strong>Abstract</strong><br />

O. Kesemen 1 and Ü. Ünsal 1<br />

1 Department of Statistics and Computer Science, Faculty of Science<br />

Karadeniz Technical University, 61080 Trabzon, Turkey<br />

okesemen@gmail.com, ulkunsal@gmail.com<br />

Random numbers generation <strong>in</strong> polygonal area is used <strong>in</strong> many applications area simulation. These<br />

application areas can be distribution of liv<strong>in</strong>g life <strong>in</strong> a pond, level of pollution <strong>in</strong> a city, density of tree<br />

species <strong>in</strong> a forest, traffic flow <strong>in</strong> a region, density of flight <strong>in</strong> air space, diversity of wildlife <strong>in</strong> a region,<br />

crime rate <strong>in</strong> a city etc. [1].<br />

Traditionally, acceptance-rejection method is used that <strong>in</strong> a polygonal area which it has known prob-<br />

ability density function (f(x,y)) to generate random numbers [2]. For this, at first rectangular area<br />

boundaries which are surround<strong>in</strong>g polygon is found. By <strong>the</strong> help of <strong>the</strong>se boundaries X and Y random<br />

values are created which <strong>the</strong>y selected from uniform distribution. If created po<strong>in</strong>t is out of polygonal<br />

area, po<strong>in</strong>t is rejected. If selected po<strong>in</strong>t with<strong>in</strong> polygonal area for adapt<strong>in</strong>g selected po<strong>in</strong>t to probabil-<br />

ity density function, a random value which is between zero and highest probability density value with<strong>in</strong><br />

polygonal area selected from uniform distribution (z direction). If this value is bigger than value of f(X,Y)<br />

is rejected, if not it is accepted. Thus, a random po<strong>in</strong>t is selected <strong>in</strong> polygonal area. This procedure can<br />

be repeated any numbers of random numbers are generated. Used method not only generate unnecessary<br />

random number but also it causes <strong>in</strong>creased computational time for <strong>in</strong>vestigat<strong>in</strong>g whe<strong>the</strong>r <strong>the</strong> po<strong>in</strong>t <strong>in</strong><br />

polygonal area.<br />

The basis of proposed method is based on that calculated by divid<strong>in</strong>g triangle pieces of <strong>the</strong> all area with<br />

corner po<strong>in</strong>ts of polygonal area by comb<strong>in</strong><strong>in</strong>g toge<strong>the</strong>r. By select<strong>in</strong>g a certa<strong>in</strong> random po<strong>in</strong>t <strong>in</strong> polygonal<br />

area, triangulation size can be reduced and calculation sensitization can be <strong>in</strong>creased. A plane which is<br />

<strong>in</strong> <strong>the</strong> probability density function value of corner po<strong>in</strong>ts of each triangle, regarded as probability density<br />

function of <strong>the</strong> triangle. Under <strong>the</strong> probability density functions that <strong>the</strong>y have all triangles volume<br />

be equal 1 is agreed as <strong>the</strong> probability basic axiom. Hence volume of triangular prism of each triangle<br />

formed is gave probability that <strong>the</strong> selection of <strong>the</strong> triangle. The probability density function def<strong>in</strong>es <strong>in</strong><br />

a unit triangle which is subtend<strong>in</strong>g <strong>the</strong> probability density function for each triangle. A random number<br />

generated with<strong>in</strong> this def<strong>in</strong>ed triangle is moved by <strong>the</strong> pr<strong>in</strong>ciple of aff<strong>in</strong>e <strong>in</strong>variance <strong>in</strong>to selected triangle<br />

area. In this manner any number of random numbers can be generated.<br />

The method proposed <strong>in</strong> this study not only prevents unnecessary random number generation but also<br />

reduces computation time <strong>in</strong>deed. Specially, when want to generate a large number of random numbers<br />

it can be used as an effective method.<br />

Keywords: Random Number, Poligonal Area, Triangulate<br />

References<br />

[1] Kesemen, O. and Dogru, F.Z., Cumulative Distribution Functions of Two Variables <strong>in</strong> Polygonal<br />

Areas, 7. International Statistical Congress,28 Apr-01 May 2011 Belek-ANTALYA.<br />

[2] Mart<strong>in</strong>ez, W.L. and Mart<strong>in</strong>ez, A.R., Computational Statistics Handbook with MATLAB, Chapman<br />

& Hall Crc, 2002.<br />

Page 118


Panoramic Image Mosaic<strong>in</strong>g Us<strong>in</strong>g Multi-Object Artificial Bee Colony Optimization<br />

<strong>Abstract</strong><br />

Algorithm<br />

O. Kesemen 1 and Y. Yeg<strong>in</strong>o˘glu 1<br />

1 Department of Statistics and Computer Science, Faculty of Science<br />

Karadeniz Technical University, 61080 Trabzon, Turkey<br />

okesemen@gmail.com, yesimyeg<strong>in</strong>oglu@gmail.com<br />

Sometimes distance, necessary to take wide- angle photography , may not be available. In this case,<br />

<strong>the</strong> need may occur comb<strong>in</strong><strong>in</strong>g <strong>in</strong> accordance photographs taken piece by piece. Nowadays, a lot of<br />

camera manufacturer tried to solve <strong>the</strong> problem by us<strong>in</strong>g wide-angle lens (fish eye) [1-2]. But <strong>in</strong> order<br />

to change perspective it is almost impossible to get a good image. On <strong>the</strong> o<strong>the</strong>r hand, on <strong>the</strong> basis of<br />

images taken by a number of different angle (especially video images) may be required to obta<strong>in</strong> a wide-<br />

angle image. In this case, <strong>in</strong> accordance with a multi-image comb<strong>in</strong>ed panoramic images are obta<strong>in</strong>ed.<br />

However, adaptation research for <strong>the</strong> realization of suitable attachment can take a very long time.<br />

In this study, for solv<strong>in</strong>g <strong>the</strong> problem, artificial bee colony algorithm [3] is changed based on adopted<br />

multi-object search. Accord<strong>in</strong>g to this method, <strong>the</strong> right side of each image is determ<strong>in</strong>ed as <strong>the</strong> food<br />

region and <strong>the</strong> left side represents a bee hive. The bees <strong>in</strong> each hive move to food regions of o<strong>the</strong>r images,<br />

divided <strong>in</strong>to groups that have equal number of bees. Each bee has its own search on food regions. After<br />

one of <strong>the</strong> bees which from <strong>the</strong> first hive reached <strong>the</strong> highest value of <strong>the</strong> objective function, tries to pull<br />

<strong>the</strong> o<strong>the</strong>r bees from o<strong>the</strong>r regions. As a result of a particular iteration bees of every hive are kept toge<strong>the</strong>r<br />

<strong>in</strong> a certa<strong>in</strong> region. Thus, it can be determ<strong>in</strong>ed that which image is positioned <strong>in</strong> which order and which<br />

location.<br />

Keywords: Multi-Object Optimization, Artificial Bee Colony Algorithm,Panoramic Image Mosaic<strong>in</strong>g<br />

References<br />

[1] Peleg, S. and Herman, J., Panoramic Mosaics by Manifold Projection, Computer Vision and<br />

Pattern Recognition, 338-343, 1997.<br />

[2] Kourogi, M., Kurata, T., Hosh<strong>in</strong>o, J. and Muraoka, Y., Real-time Image Mosaic<strong>in</strong>g from a Video<br />

Sequence, Image Process<strong>in</strong>g, (4) 133-137, 1999.<br />

[3] Karaboga, D. and Basturk, B., On <strong>the</strong> Performance of Artificial Bee Colony (ABC) Algorithm,<br />

Applied Soft Comput<strong>in</strong>g (8) 687-697, 2008.<br />

Page 119


<strong>Abstract</strong><br />

Some Properties of a Sturm-Liouville-Type Problem and The Green Function<br />

Okan KUZU, Yasem<strong>in</strong> KUZU, Mahir KADAKAL<br />

Department of Ma<strong>the</strong>matics, Ahi Evran University, Kirsehir, Turkey<br />

In this study we have created Hilbert Space of The Sturm-Liouville Boundary Value<br />

Problem <strong>in</strong> [0, π] <strong>in</strong>terval, with boundary conditions which has λ complex eigenparameter.<br />

We have shown symmetric of appropriate operator to <strong>the</strong> problem. We have obta<strong>in</strong>ed<br />

asymptotic of solution functions and asymtotic of wronskian of <strong>the</strong> solution functions by<br />

us<strong>in</strong>g <strong>the</strong>m. Moreover, we have exam<strong>in</strong>ed Green function and asymtotic expansion of<br />

eigenvalues.<br />

References<br />

[1] Birkhoff, G. D. On The Asymptotic Character of The Solution of The Certa<strong>in</strong> L<strong>in</strong>ear<br />

Differential Equations Conta<strong>in</strong><strong>in</strong>g Parameter, Trans. Amer. Math. Soc., Vol. 9 1908,<br />

pp. 219-231.<br />

[2] Birkhoff, G. D. Boundary Value and Expantion Problems of Ord<strong>in</strong>ary L<strong>in</strong>ear Differ-<br />

ential Equations, Trans. Amer. Math. Soc., Vol. 9 1908, pp. 373-395.<br />

[3] Boyce, W. E.; Diprima, R. C. Elementary Differential Equations and Boundary Value<br />

Problems, John Willey and Sons, New York, 1977, pp. 544-554.<br />

[4] Fulton, C. T. Two-po<strong>in</strong>t Boundary Value Problems with Eigenvalue Parameter Con-<br />

ta<strong>in</strong>ed <strong>in</strong> The Boundary Condition, Proceed<strong>in</strong>gs of <strong>the</strong> Royal Society of Ed<strong>in</strong>burgh.<br />

Section A 77, 1977, p. 293-308.<br />

[5] H<strong>in</strong>ton, D. B. An Expansion Theorem for Eigenvalue Problem with Eigenvalue Pa-<br />

rameter <strong>in</strong> The Boundary Condition, Quart. J. Math. Oxford, vol. 30, No;2, 1979,<br />

33-42.<br />

[6] Kerimov, N. B.; Mamedov, Kh. K. On a Boundary Value Problem with a Spectral<br />

Parameter <strong>in</strong> The Boundary Conditions, Sibirsk. Math. J. 40, No:2, 1999, 281-290.<br />

[7] Levitan, B. M., Sarqsyan, I.S. Sturm-Liouville and Direct Operators, Moskov, Nauka,<br />

1988.<br />

[8] Mukhtarov, O. Sh., Kadakal, M and Muhtarov, F. S. On discont<strong>in</strong>uous Sturm-<br />

Liouville problems with transmission conditions, J. Math. Kyoto Univ. 44-4 (2004),<br />

779798.<br />

1<br />

Page 120


[9] Naimark, M. A. L<strong>in</strong>ear Differantial Operators, Ungar, New York, 1967.<br />

[10] Schneider, A. A Note Eigenvalue Problems with Eigenvalue Parameter <strong>in</strong> The Bound-<br />

ary Conditions, Math. Z. 136, 1974, 163-167.<br />

[11] Shkalikov, A. A. Boundary Value Problems for Ord<strong>in</strong>ary Differential Equations with<br />

a Parameter <strong>in</strong> Boundary Conditions, Trudy., Sem., Imeny, I. G. Petrovsgo, 9, 1983,<br />

190-229.<br />

[12] Titchmarsh, E. C. Eigenfunction Expansions Associated with Second Order Differen-<br />

tial Equations, 2nd end, Oxford Univ. Pres, London, 1962.<br />

[13] Walter, J. Regular Eigenvalue Problems with Eigenvalue Parameter <strong>in</strong> The Boundary<br />

Conditions, Math. Z., 133, 1973, 301-312.<br />

[14] Zayed, E.M.E. and Ibrahim, S.F.M., Regular Eigenvalue Problem with Eigenparam-<br />

eter <strong>in</strong> <strong>the</strong> Boundary Conditions, Bull. Cal. Math. Soc. 84 379-393, 1992.<br />

2<br />

Page 121


<strong>Abstract</strong><br />

Real Time 3D Palmpr<strong>in</strong>t Pose Estimation and Feature Extraction Us<strong>in</strong>g Multiple View<br />

Geometry Techniques<br />

Ö. B<strong>in</strong>göl 1 , M. Ek<strong>in</strong>ci 2<br />

1 Department of Software Eng<strong>in</strong>eer<strong>in</strong>g, <strong>Gumushane</strong> University, <strong>Gumushane</strong>, Turkey<br />

2 Department of Computer Eng<strong>in</strong>eer<strong>in</strong>g, Karadeniz Technical University, Trabzon, Turkey<br />

In this paper, it was aimed to develop a system that works <strong>in</strong> real time for to obta<strong>in</strong> palmpr<strong>in</strong>t pose<br />

(po<strong>in</strong>t of view) of a fully opened hand towards <strong>the</strong> camera. This system will be both a platform <strong>in</strong>dependent<br />

model (non-touchable) and aris<strong>in</strong>g from <strong>the</strong> hand movement rotations, translations and scal<strong>in</strong>g <strong>in</strong>dependet<br />

model. For this purpose, po<strong>in</strong>ted at <strong>the</strong> same direction two cameras (stereo) is used <strong>in</strong>stead of s<strong>in</strong>gle-camera<br />

vision systems system. Palmpr<strong>in</strong>t <strong>in</strong>formations carried to 3D space us<strong>in</strong>g Mutliple View Geometry<br />

techniques from <strong>the</strong> obta<strong>in</strong>ed images. Thus, <strong>the</strong> problems are elim<strong>in</strong>ated <strong>in</strong> previous studies as rotation,<br />

translation, scal<strong>in</strong>g and platform dependecy.<br />

Common po<strong>in</strong>ts must be identified and mapped for capture of 3D palmpr<strong>in</strong>t on obta<strong>in</strong>ed images from<br />

two cameras. SURF algorithm based on Hessian matrix is determ<strong>in</strong>ed common <strong>in</strong>terest po<strong>in</strong>ts on real-time<br />

snapshots of each cameras. The Levenberg-Marquardt optimization algorithm is used to m<strong>in</strong>imize deviations<br />

from <strong>the</strong> characteristics of <strong>the</strong> cameras. Paired <strong>in</strong>terest po<strong>in</strong>ts of palmpr<strong>in</strong>t was considered to be<br />

approximately on a plane. Normal of 3D plane will give palmpr<strong>in</strong>t pose (po<strong>in</strong>t of view) accord<strong>in</strong>g to <strong>the</strong><br />

cameras. F<strong>in</strong>ally, <strong>the</strong> palmr<strong>in</strong>t image were transferred to <strong>the</strong> 2D surface with aff<strong>in</strong>e transformation. As a<br />

result, palmpr<strong>in</strong>t patterns have been obta<strong>in</strong>ed for strong 2D recognition palmpr<strong>in</strong>t systems.<br />

References<br />

Page 122<br />

[1] Bay H., Tuytelaars T. and Van Gool L., SURF: Speeded Up Robust Features, <strong>in</strong>: ECCV, 2006.<br />

[2] Hartley R. and Zisserman, A., Multiple View Geometry <strong>in</strong> Computer Vision, Cambridge University<br />

Press: Cambridge, UK, 2000<br />

[3] Trucco E. and Verri A., Introductory Techniques for 3-D Computer Vision. N.J.: Prentice Hall,<br />

1998.<br />

[4] B.D. Lucas and T. Kanade, An Iterative Image Registration Technique With an Application to<br />

Stereo Vision, Proc. Int"l Jo<strong>in</strong>t Conf. Artificial Intelligence, pp. 674-679, 1981.<br />

[5] Schweighofer, G. and P<strong>in</strong>z, A. Robust Pose Estimation From a Planar Target. IEEE Transactions on<br />

Pattern Analysis and Mach<strong>in</strong>e Intelligence, 28(12), 2024–2030, 2006.<br />

[6] Zhang D., Kong A., You J. and Wong M., Onl<strong>in</strong>e Palmpr<strong>in</strong>t Identification,IEEE Trans. Pattern Anal.<br />

Mach. Intell., 25 (9), pp. 1041–1050, 2003.<br />

[7] Han C.C., Cheng H.L., L<strong>in</strong> C.L. and Fan K.C., Personal Au<strong>the</strong>ntication Us<strong>in</strong>g Palmpr<strong>in</strong>t Features,<br />

Pattern Recognition, 36 (2), 2003.<br />

[8] T. Connie, A.T.B. J<strong>in</strong>, M.G.K. On, D.N.C. L<strong>in</strong>g, An Automated Palmpr<strong>in</strong>t Recognition System,<br />

Image Vision Comput., 23 (5), pp. 501–515, 2005.<br />

[9] Ek<strong>in</strong>ci M., Aykut M., Palmpr<strong>in</strong>t Recognition by Apply<strong>in</strong>g Wavelet Subband Representation And<br />

Kernel PCA, Lecture Notes <strong>in</strong> Artificial Intelligence, pp. 628–642, 2007.<br />

[10] Ek<strong>in</strong>ci M., Aykut M., Palmpr<strong>in</strong>t Recognition by Apply<strong>in</strong>g Wavelet-Based Kernel PCA, J. Comput.<br />

Sci. Technol., 23, pp. 851–861, 2008.


<strong>Abstract</strong><br />

Chaos <strong>in</strong> cubic-qu<strong>in</strong>tic nonl<strong>in</strong>ear oscillator<br />

Patanjali Sharma 1 and V. G. Gupta 2<br />

1 Dept. of Ma<strong>the</strong>matics, Banasthali University, Banasthali 304 022<br />

2 Dept. of Ma<strong>the</strong>matics, University of Rajasthan, Jaipur 302 004<br />

In this paper, we used Hamiltonian formulation and Lie transform to <strong>in</strong>vestigate a strongly nonl<strong>in</strong>ear<br />

oscillator. Us<strong>in</strong>g Chirikov†s overlap criterion we f<strong>in</strong>d <strong>the</strong> value of εcr at which <strong>the</strong> chaos loses its local<br />

character and becomes global. The results of Lie transformation analysis and Chirikov†s criteria for<br />

<strong>the</strong> oscillator are compared with numerically generated Po<strong>in</strong>care Maps.<br />

References<br />

[1] Chirikov, B.V., A Universal Instability of Many-Dimensional Oscillator Systems, Physics Reports<br />

52 1979, 265-376.<br />

[2] Deprit, A., Canonical Transformations Depend<strong>in</strong>g on a Small Parameter, Celestial Mechanics, 1<br />

1969, 12-30.<br />

[3] Goldste<strong>in</strong>, H., Poole, C., and Safko, J., Classical Mechanics, Third Edition, Pearson Education,<br />

Inc., 2004.<br />

[4] Kamel, A. A., Perturbation Theory Based on Lie Transforms, NASA Contractor Report CR-1622<br />

(1970).<br />

[5] N. Abouhazim, B. Mohamed and R. H. Rand, Two models for <strong>the</strong> parametric forc<strong>in</strong>g of a nonl<strong>in</strong>ear<br />

oscillator, Nonl<strong>in</strong>ear Dynamics, 50, 2007, 147-160.<br />

[6] Rand, R. H., Topics <strong>in</strong> Nonl<strong>in</strong>ear Dynamics with Computer Algebra, Gordon and Breach, Lang-<br />

horne, PA, 1994.<br />

[7] Zounes, R. S. and Rand, R. H., Global Behavior of a Nonl<strong>in</strong>ear Quasiperiodic Mathieu Equation,<br />

Nonl<strong>in</strong>ear Dynamics, 27, 2002, 87-105.<br />

Page 123


The Numerical Solution of Boundary Value Problems by us<strong>in</strong>g Galerk<strong>in</strong><br />

Method<br />

S. Alkan 1 , T. Yeloğlu 2 and D. Yılmaz 2<br />

1 Department of Management Information Systems, Bartın University, Bartın, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Mustafa Kemal University, Hatay, Turkey<br />

duygu.yilmazz@yandex.com<br />

<strong>Abstract</strong><br />

In this study, we obta<strong>in</strong> approximate solutions of some boundary value problems by <strong>the</strong> Galerk<strong>in</strong><br />

method. To demonstrate <strong>the</strong> effectiveness of <strong>the</strong> Galerk<strong>in</strong> method, we give some examples. Also,<br />

we compare <strong>the</strong> obta<strong>in</strong>ed solutions and <strong>the</strong>ir exact solutions by us<strong>in</strong>g Ma<strong>the</strong>matica.<br />

Keywords: Boundary value problems (BVPs), Galerk<strong>in</strong> method, Ma<strong>the</strong>matica<br />

References<br />

Page 124<br />

[1] Alkan, S., Sınır Değer Problemler<strong>in</strong><strong>in</strong> Nümerik Çözümleri, Yüksek Lisans Tezi, Muğla<br />

Üniversitesi, Muğla, 2011.<br />

[2] Evans, G., Blackledge, J., Yardley, P., Numerical Methods for Partial Differential Equations,<br />

Spr<strong>in</strong>ger, New York, 290p., 2000.<br />

[3] Bhatti, M.I., Bracken, P., Solutions of differential equations <strong>in</strong> a Bernste<strong>in</strong> polynomial basis,<br />

J. Comput. Appl. Math., 205, 272-280, 2007.


Semismooth Newton method for gradient constra<strong>in</strong>ed m<strong>in</strong>imization problem<br />

S.Anyyeva 1 and K.Kunisch 1<br />

1 Institute of Ma<strong>the</strong>matics and Scientific Comput<strong>in</strong>g, Karl Franzens University, Graz, Austria<br />

<strong>Abstract</strong><br />

In this paper we treat a gradient constra<strong>in</strong>ed m<strong>in</strong>imization problem which has applications <strong>in</strong> me-<br />

chanics and superconductivity [1, 2, 5]:<br />

F<strong>in</strong>d a solution y ∈ K such that (1)<br />

J(y) = m<strong>in</strong><br />

v∈K J(v),<br />

where J(v) = 1<br />

�<br />

2<br />

Ω<br />

|∇v| 2 �<br />

dx − fvdx,<br />

Ω<br />

K = {v ∈ H 1 0 (Ω)| |∇v(x)| ≤ 1 a.e. <strong>in</strong> Ω}.<br />

Here Ω ⊂ R n , n ≤ 3, is bounded Lipschitz doma<strong>in</strong> and f ∈ L 2 (Ω) is given. A particular case of this<br />

problem is <strong>the</strong> elasto-plastic torsion problem.<br />

In order to get <strong>the</strong> numerical approximation to <strong>the</strong> solution we have developed an algorithm <strong>in</strong> an <strong>in</strong>-<br />

f<strong>in</strong>ite dimensional space framework us<strong>in</strong>g <strong>the</strong> concept of <strong>the</strong> generalized, so called, Newton differentiation<br />

[3,4,6]. At first we regularize <strong>the</strong> problem <strong>in</strong> order to approximate it with <strong>the</strong> unconstra<strong>in</strong>ed m<strong>in</strong>imiza-<br />

tion problem and to make <strong>the</strong> po<strong>in</strong>twise maximum function Newton differentiable. Afterwards, us<strong>in</strong>g<br />

semismooth Newton method, we obta<strong>in</strong> cont<strong>in</strong>uation method <strong>in</strong> function space. For <strong>the</strong> numerical im-<br />

plementation <strong>the</strong> variational equations at Newton steps are discretized us<strong>in</strong>g f<strong>in</strong>ite elements method. We<br />

compare <strong>the</strong> numerical results <strong>in</strong> two-dimensional case obta<strong>in</strong>ed us<strong>in</strong>g C 1 -conform<strong>in</strong>g and non-conform<strong>in</strong>g<br />

f<strong>in</strong>ite elements discretization.<br />

References<br />

[1] Duvaut G. and Lions J., Inequalities <strong>in</strong> mechanics and physics, Berl<strong>in</strong> : Spr<strong>in</strong>ger, 1976.<br />

[2] Ekeland I. and Temam R., Convex analysis and variational problems, SIAM, Amsterdam, 1987.<br />

[3] Ito K. and Kunisch K., Lagrange Multiplier Approach to Variational Problems and Applications,<br />

vol. 15 of Advances <strong>in</strong> Design and Control, Society for Industrial and Applied Ma<strong>the</strong>matics, U.S., 2008.<br />

[4] H<strong>in</strong>termüller M., Ito K. and Kunisch K., The primal-dual active set strategy as a semismooth<br />

Newton method, SIAM J. Optimization 13, 865–888 (2003).<br />

[5] Glow<strong>in</strong>ski R., Lions J. and Trémolièrs R., Numerical analysis of variational <strong>in</strong>equalities, North<br />

Holland publish<strong>in</strong>g company - Amsterdam - New York - Oxford, 1981, ISBN 0444861998.<br />

[6] Kummer B., Generalized Newton and NCP methods: Convergence, regularity, actions, Discuss.<br />

Math. Differ. Incl. Control Optim., 2000, p.209-244<br />

Page 125


The F<strong>in</strong>ite Element Method Solution of Variable Diffusion Coefficient<br />

Convection-Diffusion Equations<br />

<strong>Abstract</strong><br />

S.H Aydın 1 and C. Çiftçi 2<br />

1 Department of Ma<strong>the</strong>matics, Karadeniz Technical University, Trabzon, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Ordu University, Ordu, Turkey<br />

Ma<strong>the</strong>matical model<strong>in</strong>g of many physical and eng<strong>in</strong>eer<strong>in</strong>g problems is def<strong>in</strong>ed with convection-<br />

diffusion equation. Therefore, <strong>the</strong>re are many analytic and numeric studies about convection-<br />

diffusion equation <strong>in</strong> literature. The f<strong>in</strong>ite element method is <strong>the</strong> most preferred numerical<br />

method <strong>in</strong> <strong>the</strong>se studies s<strong>in</strong>ce it can be applied to many problems easily. But, most of <strong>the</strong> studies<br />

<strong>in</strong> literature are about constant coefficient case of <strong>the</strong> convection-diffusion equation. In this<br />

study, <strong>the</strong> f<strong>in</strong>ite element formulation of <strong>the</strong> variable coefficient case of <strong>the</strong> convection-diffusion<br />

equation is given <strong>in</strong> both one and two dimensional cases. Accuracy of <strong>the</strong> obta<strong>in</strong>ed formulations<br />

are tested on some problems <strong>in</strong> one and two dimensions.<br />

References<br />

Page 126<br />

[1] L<strong>in</strong>β T., Analysis of a Galerk<strong>in</strong> F<strong>in</strong>ite Element Method on a Bakhvalov-Shishk<strong>in</strong> Mesh for a<br />

L<strong>in</strong>ear Convection-Diffusion Problem, IMA J. Numer. Anal., 20(4) 621-623, 2000.<br />

[2] L<strong>in</strong>β T., Layer-adapted Meshes for Convection-Diffusion Problems, Comput. Meth Appl.<br />

M., 192(9-10), 1061-1105, 2003<br />

[3] Reddy J.N., An Introduction to <strong>the</strong> F<strong>in</strong>ite Element Method, The McGraw-Hill Companies,<br />

2006.


Multiple solutions for quasil<strong>in</strong>ear equations depend<strong>in</strong>g<br />

on a parameter<br />

Shapour Heidarkhani<br />

a Department of Ma<strong>the</strong>matics, Faculty of Sciences,<br />

Razi University, 67149 Kermanshah, Iran<br />

e-mail addresses: s.heidarkhani@razi.ac.ir<br />

<strong>Abstract</strong><br />

The purpose of this talk is to use a very recent three critical po<strong>in</strong>ts <strong>the</strong>orem due to Bonanno<br />

and Marano [1] to establish <strong>the</strong> existence of at least three solutions for quasil<strong>in</strong>ear<br />

second order differential equations on a compact <strong>in</strong>terval [a, b] ⊂ R under appropriate hypo<strong>the</strong>ses.<br />

We exhibit <strong>the</strong> existence of at least three (weak) solutions and, and <strong>the</strong> results are<br />

illustrated by examples.<br />

Keywords- Dirichlet problem; Critical po<strong>in</strong>t; Three solutions; Multiplicity results.<br />

AMS subject classification: 34B15; 47J10.<br />

1 Ma<strong>in</strong> results<br />

Consider <strong>the</strong> follow<strong>in</strong>g quasil<strong>in</strong>ear two-po<strong>in</strong>t boundary value problem<br />

�<br />

−u ′′ = (λf(x, u) + g(u))h(u ′ ) <strong>in</strong> (a, b),<br />

u(a) = u(b) = 0<br />

where [a, b] ⊂ R is a compact <strong>in</strong>terval, f : [a, b] × R → R is an L 1 -Caratéodory function,<br />

g : R → R is a Lipschitz cont<strong>in</strong>uous function with g(0) = 0, i.e., <strong>the</strong>re exists a constant<br />

L ≥ 0 provided<br />

|g(t1) − g(t2)| ≤ L|t1 − t2|<br />

for all t1, t2 ∈ R, h : R →]0, +∞[ is a bounded and cont<strong>in</strong>uous function with m := <strong>in</strong>f h > 0<br />

and λ is a positive parameter.<br />

Employ<strong>in</strong>g Theorem 3.6 of [1], we establish <strong>the</strong> existence of at least three dist<strong>in</strong>ct (weak)<br />

solutions <strong>in</strong> W 1,2<br />

0 ([a, b]) to <strong>the</strong> problem (1) for any fixed positive parameter λ belong<strong>in</strong>g to<br />

an exact <strong>in</strong>terval which will be observed <strong>in</strong> <strong>the</strong> ma<strong>in</strong> results.<br />

1<br />

Page 127<br />

(1)


We mean by a (weak) solution of problem (1), any u ∈ W 1,2<br />

0 ([a, b]) such that<br />

� b<br />

u<br />

a<br />

′ (x)v ′ � b<br />

(x)dx − [λf(x, u(x)) + g(u(x))]h(u<br />

a<br />

′ (x))v(x)dx = 0<br />

for every v ∈ W 1,2<br />

0 ([a, b]). Denote M := sup h and suppose that <strong>the</strong> constant L ≥ 0 satisfies<br />

LM(b − a) 2 < 4.<br />

We <strong>in</strong>troduce <strong>the</strong> functions F : [a, b] × R → R, H : R → R and G : R → R respectively,<br />

as follows<br />

and<br />

� t<br />

F (x, t) = f(x, ξ)dξ for all (x, t) ∈ [a, b] × R,<br />

0<br />

� t � τ<br />

H(t) =<br />

0<br />

0<br />

1<br />

dδdτ for all t ∈ R<br />

h(δ)<br />

� t<br />

G(t) = − g(ξ)dξ for all t ∈ R.<br />

0<br />

We now formulate our ma<strong>in</strong> result.<br />

Theorem 1. Assume that <strong>the</strong>re exist a positive constant r and a function w ∈ W 1,2<br />

0 ([a, b])<br />

such that<br />

(α1) � b<br />

a [G(w(x)) + H(w′ (x))]dx > r,<br />

�<br />

2M(b−a)r<br />

(α2)<br />

� b<br />

a sup<br />

t∈[−<br />

(α3) lim sup |t|→+∞<br />

respect to x ∈ [a, b].<br />

Then, for each<br />

4−LM(b−a) 2<br />

,<br />

F (x,t)<br />

t 2<br />

r<br />

�<br />

2M(b−a)r<br />

4−LM(b−a) 2<br />

]<br />

< 4−LM(b−a)2<br />

2M(b−a) 2 r<br />

⎤<br />

⎥<br />

� b<br />

⎥ a<br />

λ ∈ Λ1 := ⎥<br />

⎦<br />

[G(w(x)) + H(w′ (x))]dx<br />

,<br />

F (x, w(x))dx<br />

� b<br />

a<br />

F (x,t)dx<br />

� b<br />

F (x,w(x))dx<br />

a < � b<br />

a [G(w(x))+H(w′ (x))]dx ,<br />

� b<br />

a sup �<br />

2M(b−a)r<br />

t∈[−<br />

4−LM(b−a) 2 ,<br />

� b<br />

a sup t∈[−<br />

� 2M(b−a)r<br />

4−LM(b−a) 2 ,<br />

� F (x, t)dx uniformly<br />

2M(b−a)r<br />

4−LM(b−a) 2 ]<br />

r<br />

� F (x, t)dx<br />

2M(b−a)r<br />

4−LM(b−a) 2 ]<br />

<strong>the</strong> problem (1) admits at least three dist<strong>in</strong>ct weak solutions <strong>in</strong> W 1,2<br />

0 ([a, b]).<br />

References<br />

[1]G. Bonanno, S. A. Marano, On <strong>the</strong> structure of <strong>the</strong> critical set of non-differentiable<br />

functions with a weak compactness condition, Appl. Anal. 89 (2010) 1-10.<br />

2<br />

Page 128<br />

⎡<br />

⎢<br />


The Modified Bi-qu<strong>in</strong>tic B-spl<strong>in</strong>e base functions: An Application to Diffusion Equation<br />

S. Kutluay 1 and N.M. Ya˘gmurlu 1<br />

1 Department of Ma<strong>the</strong>matics, Faculty of Arts and Sciences, ˙ Inönü University, Malatya, Turkey<br />

<strong>Abstract</strong><br />

In this paper, <strong>the</strong> bi-qu<strong>in</strong>tic B-spl<strong>in</strong>e base functions are modified on a general 2-dimensional problem<br />

and <strong>the</strong>n <strong>the</strong>y are applied to two-dimensional Diffusion problem <strong>in</strong> order to obta<strong>in</strong> its numerical solutions.<br />

The computed results are compared with <strong>the</strong> results given <strong>in</strong> <strong>the</strong> literature. The error norms L2 and L∞<br />

are computed and found to be marg<strong>in</strong>ally accurate and efficient.<br />

References<br />

[1] B. S. Moon, D. S. Yoo,Y.H. Lee, I.S. Oh, J.W. Lee, D.Y. Lee and K.C. Kwon, A non-separable<br />

solution of <strong>the</strong> diffusion equation based on <strong>the</strong> Galerk<strong>in</strong>’s method us<strong>in</strong>g cubic spl<strong>in</strong>es , Appl. Math. and<br />

Comput., 217 (2010) 1831–1837.<br />

[2] K.N.S. Kasi Viswanadham, S.R. Koneru, F<strong>in</strong>ite element method for one-dimensional and two-<br />

dimensional time dependent problems with B-spl<strong>in</strong>es, Comput. Methods Appl. Mech. Engrg. 108,<br />

(1993) 201-222.<br />

[3] L.R.T. Gardner, G.A. Gardner, A two dimensional bi-cubic B-spl<strong>in</strong>e f<strong>in</strong>ite element: used <strong>in</strong> a study<br />

of MHD-duct flow, Comput. Methods Appl. Mech. Engrg. 124 (1995) 365-375.<br />

[4] J. Wu, X. Zhang, F<strong>in</strong>ite Element Method by Us<strong>in</strong>g Quartic B-Spl<strong>in</strong>es, Numerical Methods for<br />

Partial Differential Equations, 10 (2011) 818-828<br />

Page 129


Numerical Solutions of <strong>the</strong> Modified Burgers’ Equation by Cubic B-spl<strong>in</strong>e Collocation<br />

Method<br />

S. Kutluay 1 , Y. Ucar 1 and N.M. Ya˘gmurlu 1<br />

1 Department of Ma<strong>the</strong>matics, Faculty of Arts and Sciences, ˙ Inönü University, Malatya, Turkey<br />

<strong>Abstract</strong><br />

In this paper, a numerical solution of <strong>the</strong> modified Burgers’ equation is obta<strong>in</strong>ed by a cubic B-spl<strong>in</strong>e<br />

collocation method. In <strong>the</strong> solution process, a l<strong>in</strong>earization technique has been applied to deal with <strong>the</strong><br />

non-l<strong>in</strong>ear term appear<strong>in</strong>g <strong>in</strong> <strong>the</strong> equation. The computed results are compared with <strong>the</strong> results given <strong>in</strong><br />

<strong>the</strong> literature. The error norms L2 and L∞ are also computed and found to be sufficiently small.<br />

References<br />

[1] D. Irk, Sextic B-spl<strong>in</strong>e collocation method for <strong>the</strong> modified Burgers’ equation, Kybernetes , 38<br />

(2009) 1599–1620.<br />

[2] M. A. Ramadan and T. S. El-Danaf, Numerical treatment for <strong>the</strong> modified burgers equation,<br />

Ma<strong>the</strong>matics and Computers <strong>in</strong> Simulation 70, (2005) 90-98.<br />

[3] T. Roshan and K.S. Bhamra, Numerical solutions of <strong>the</strong> modified Burgers’ equation by Petrov-<br />

Galerk<strong>in</strong> method, Applied Ma<strong>the</strong>matics and Computation 218 (2011) 3673-3679.<br />

[4] A. G. Brastos and L. A. Petrakis, An explicit numerical scheme for <strong>the</strong> modified Burgers’ equation,<br />

International Journal for Numerical Methods <strong>in</strong> Biomedical Eng<strong>in</strong>eer<strong>in</strong>g, 27 (2011) 232-237.<br />

Page 130


The Modified Kudryashov Method for Solv<strong>in</strong>g Some Evolution Equations<br />

<strong>Abstract</strong><br />

S.M. Ege 1 and E. Misirli 1<br />

1 Department of Ma<strong>the</strong>matics, Ege University, Izmir, Turkey<br />

The study of numerical methods for solv<strong>in</strong>g partial differential equations and <strong>the</strong> travell<strong>in</strong>g wave<br />

solutions of <strong>the</strong>se equations have significant roles <strong>in</strong> physical science over <strong>the</strong> last decades<br />

from both <strong>the</strong>oretical and <strong>the</strong> practical po<strong>in</strong>ts of view. Ma<strong>the</strong>matical physics consist of many<br />

ma<strong>the</strong>matical models which described by <strong>the</strong> nonl<strong>in</strong>ear partial differential equations. The<br />

<strong>in</strong>vestigation of <strong>the</strong> travell<strong>in</strong>g wave solutions of nonl<strong>in</strong>ear evolution equations appears <strong>in</strong> various<br />

scientific fields, such as plasma physics, fluid mechanics, hydrodynamic, optical fibers, chemical<br />

physics. Many powerful and effective methods are used for <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> explicit travell<strong>in</strong>g<br />

wave solutions.<br />

In this paper, we have applied <strong>the</strong> modified Kudryashov method for solv<strong>in</strong>g some nonl<strong>in</strong>ear<br />

evolution equations by <strong>the</strong> help of commutative algebra. This method is applicable for <strong>the</strong> o<strong>the</strong>r<br />

nonl<strong>in</strong>ear partial differential equations.<br />

We consider <strong>the</strong> general nonl<strong>in</strong>ear partial differential equation for a function u of two variables, space x<br />

and time t :<br />

P( u, ut , ux, uxx, utt , uxt ,...) � 0<br />

(1)<br />

It is useful to summarize <strong>the</strong> steps of modified Kudryashov method as follows[5]:<br />

Step 1. We <strong>in</strong>vestigate <strong>the</strong> travell<strong>in</strong>g wave solutions of Eq.(1) of <strong>the</strong> form:<br />

u( x, t) � u( �),<br />

� �kx� wt,<br />

(2)<br />

where k and w are arbitrary constants. Then Eq.(1) reduces to a nonl<strong>in</strong>ear ord<strong>in</strong>ary differential equation<br />

of <strong>the</strong> form:<br />

G( u, u� , u�� , u���<br />

,...) � 0<br />

(3)<br />

Step 2. We suppose that <strong>the</strong> exact solutions of Eq.(3) can be obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g form:<br />

Page 131


N<br />

i<br />

u( �) � y( �)<br />

�� a Q ,<br />

(4)<br />

i<br />

i�0<br />

1<br />

where Q<br />

1 e � � and <strong>the</strong> function Q is <strong>the</strong> solution of equation<br />

�<br />

2<br />

Q� Q Q<br />

� � (5)<br />

Step 3. Accord<strong>in</strong>g to <strong>the</strong> method, we assume that <strong>the</strong> solution of Eq.(3) can be expressed <strong>in</strong> <strong>the</strong> form<br />

N<br />

u( �) �aQ� ...<br />

(6)<br />

N<br />

Calculation of value N <strong>in</strong> formula (6) that is <strong>the</strong> pole order for <strong>the</strong> general solution of Eq. (3). In order to<br />

determ<strong>in</strong>e <strong>the</strong> value of N we balance <strong>the</strong> highest order nonl<strong>in</strong>ear terms <strong>in</strong> Eq. (3) analogously as <strong>in</strong> <strong>the</strong><br />

classical Kudryashov method. Suppos<strong>in</strong>g<br />

of Eq. (3) and balanc<strong>in</strong>g <strong>the</strong> highest order nonl<strong>in</strong>ear terms we have:<br />

Step 4. Substitut<strong>in</strong>g Eq.(4) <strong>in</strong>to Eq.(3) and equat<strong>in</strong>g <strong>the</strong> coefficients of<br />

l ( s)<br />

p r<br />

u ( �) u ( � ) and ( u ( � )) are <strong>the</strong> highest order nonl<strong>in</strong>ear terms<br />

s � rp<br />

N � ,<br />

(7)<br />

r�l� 1<br />

algebraic equations. By solv<strong>in</strong>g this system, we obta<strong>in</strong> <strong>the</strong> exact solutions of Eq.(1).<br />

References<br />

i<br />

Q to zero, we get a system of<br />

[1] Kudryashov N A <strong>2012</strong> One method for f<strong>in</strong>d<strong>in</strong>g exact solutions of nonl<strong>in</strong>ear differential equations<br />

Commun. Nonl<strong>in</strong>ear Sci. 17 2248–2253<br />

[2] Kudryashov N A 1990 Exact solutions of <strong>the</strong> generalized Kuramoto–Sivash<strong>in</strong>sky equation Phys.<br />

Lett. A 147 287–91<br />

[3] Kabir M M, Khajeh A, Aghdam E A, Koma A Y 2011 Modified Kudryashov method for f<strong>in</strong>d<strong>in</strong>g exact<br />

solitary wave solutions of hihher-order nonl<strong>in</strong>ear equations Math. Methods Appl. Sci. 35 213-219<br />

[4] Kabir M M 2011 Modified Kudryashov method for generalized forms of <strong>the</strong> nonl<strong>in</strong>ear heat<br />

conduction equation Int. J. Phys. Sci. 6 6061-6064<br />

[5] Pandir Y, Gurefe Y, Misirli E <strong>2012</strong> A new approach to Kudryashov's method for solv<strong>in</strong>g some<br />

nonl<strong>in</strong>ear physical models Int. J. Phys. Sci.7 2860-2866<br />

[6] Ryabov P N, S<strong>in</strong>elshchikov D I, Kochanov M B 2011 Application of Kudryashov method for f<strong>in</strong>d<strong>in</strong>g<br />

exact solutions of higher order nonl<strong>in</strong>ear evolution equations Appl. Math.Comput. 218 3965-3972<br />

Page 132


Study of an <strong>in</strong>verse problem that models <strong>the</strong> detection of corrosion <strong>in</strong> metalic plate whose<br />

lower part is embedded<br />

SAIDMohamed Said<br />

Laboratoire LMA University of Kasdi Merbah Faculty of Sciences and technology Ouargla,<br />

30000 Ouargla Algeria<br />

<strong>Abstract</strong><br />

In this work, we will study an <strong>in</strong>verse problem to determ<strong>in</strong>e corrosion <strong>in</strong> an <strong>in</strong>accessible location<br />

of a metalic plate. Our study area is <strong>in</strong>side <strong>the</strong> plate metalic plate whose lower part is embedded<br />

<strong>the</strong>refore <strong>in</strong>acssecible. We will perform measurements on <strong>the</strong> upper part of <strong>the</strong> plate, which is<br />

not <strong>in</strong> contact with <strong>the</strong> ground. For this, we will send an electric field on this part and take<br />

measurements. This problem is modeled by a Laplace problem with mixed presence of an<br />

unknown term <strong>in</strong> <strong>the</strong> boundary conditions this term is an unknown function which can take<br />

several forms. It is this function that we will detect <strong>the</strong> presence or absence of corrosion <strong>in</strong>side<br />

<strong>the</strong> tube and we will <strong>the</strong>n follow our steps to <strong>the</strong> top edge of <strong>the</strong> field <strong>in</strong>formation on <strong>the</strong><br />

evolution of this corrosion. We will first formulate our problem which is an <strong>in</strong>verse problem and<br />

we will make a <strong>the</strong>oretical study and we will that this problem has a unique solution also this<br />

solution is stable. After, we will solve this problem by construct<strong>in</strong>g an iterative algorithm which<br />

gives problems that will cross a series of impedance functions which determ<strong>in</strong>es <strong>the</strong> rate of<br />

corrosion. F<strong>in</strong>ally we study <strong>the</strong> convergence and we will <strong>the</strong>n make a numerical application<br />

References<br />

Page 133<br />

[1]P. Grisvard, Alternative of Fredholm relat<strong>in</strong>g to <strong>the</strong> problem of Dirichlet <strong>in</strong> a polygon, Boll.<br />

Un. Mat. Ital. 5(4) (1972), 132-164<br />

[2]P. Grisvard, S<strong>in</strong>gularities <strong>in</strong> boundary values problem, Dunod Paris (1992)<br />

[3] BRESIS. H . Analyse Fonctionnelle Masson Paris 1983<br />

[4] J. Cheng M Chouli X Yang An iterative BEM method for <strong>the</strong> <strong>in</strong>verse problem of detect<strong>in</strong>g<br />

corrosion <strong>in</strong> a pipe<br />

numerical Ma<strong>the</strong>matics A journal of Ch<strong>in</strong>eese universities, Vol 14 N°3 Ang 2005<br />

[5] A Tveito , R W<strong>in</strong>ter Introduction to partial differential equations a computitionnal approach<br />

spr<strong>in</strong>ger 2008-<br />

[6] M Chouli <strong>in</strong>troduction aux problèmes <strong>in</strong>verses elliptiques et paraboliques Spr<strong>in</strong>ger Ver<strong>in</strong>g<br />

Berl<strong>in</strong> Heidlberg 2009<br />

[7] M Chouli Stability estimates for an <strong>in</strong>verse elliptic problem Journal of <strong>in</strong>verse problems 3<br />

posed Prob,(10), 2002<br />

N°6, 601-610.


<strong>Abstract</strong><br />

Commut<strong>in</strong>g nilpotent operators with maximal rank<br />

Semra Öztürk Kaptano˘glu<br />

Department of Ma<strong>the</strong>matics, Orta Do˘gu Teknik Üniversitesi, Ankara, T¨rkiye<br />

Let X, ˆ X be commut<strong>in</strong>g nilpotent matrices over a field k with nilpotency p t . We show that if X − ˆ X<br />

is a certa<strong>in</strong> l<strong>in</strong>ear comb<strong>in</strong>ation of products of commut<strong>in</strong>g nilpotent matrices, <strong>the</strong>n X is of maximal rank<br />

if and only if ˆ X is of maximal rank. In <strong>the</strong> case, k is an algebraically closed field of positive characteristic<br />

p <strong>the</strong>re is an <strong>in</strong>terpretation about module over group algebras.<br />

References<br />

[1] J. F. Carlson, E. Friedlander, J. Pevtsova, Modules of constant Jordan type, J. Re<strong>in</strong>e Angew.<br />

Math., 614, 191234, 2008.<br />

[2] S. Ö. Kaptano˘glu, Commut<strong>in</strong>g Nilpotent Operators and Maximal Rank, Complex Anal. Oper.<br />

Theory, 4, 901–904, 2010.<br />

Page 134


<strong>Abstract</strong><br />

F<strong>in</strong>d<strong>in</strong>g Global m<strong>in</strong>ima with a new class of …lled function<br />

T. Hamaizia<br />

Department of Ma<strong>the</strong>matics, Larbi Ben M’hidi University, Oum Elbouaghi, Algeria.<br />

Global Optimization problems arise <strong>in</strong> many …elds of science and technology [2-4]. Filled function<br />

method is a type of e¢ cient methods to obta<strong>in</strong> <strong>the</strong> global solution of a multivariable function. The key<br />

idea of <strong>the</strong> …lled function method is to leave from a current local m<strong>in</strong>imizer x to a lower m<strong>in</strong>imizer x of<br />

<strong>the</strong> orig<strong>in</strong>al objective function f(x) with <strong>the</strong> auxiliary function P (x) constructed at <strong>the</strong> local m<strong>in</strong>imizer.<br />

This method was <strong>in</strong>troduced <strong>in</strong> Ge’s paper [1] for cont<strong>in</strong>uous global optimization problem, <strong>the</strong> …rst …lled<br />

has <strong>the</strong> form<br />

p(x; r; ) =<br />

where r and are two adjustable parametres.<br />

1<br />

r + f(x) exp<br />

kx x k k 2<br />

This paper gives a new de…nition of <strong>the</strong> …lled function. It shows that <strong>the</strong> …lled function given <strong>in</strong> some<br />

paper are <strong>the</strong> special forms of this …lled functions.<br />

References<br />

[1] Ge Renpu, A …lled function method for …nd<strong>in</strong>g global m<strong>in</strong>imizer of a function of several variables[J].<br />

ma<strong>the</strong>matical programm<strong>in</strong>g. 46(1990) 191–204..<br />

[2] Ge R.P.and Q<strong>in</strong> Y.F., A class of …lled functions for …nd<strong>in</strong>g a global m<strong>in</strong>imizer of a function of<br />

several variables[J]. Journal of optimization <strong>the</strong>ory and applications. 54(1987) 241–252.<br />

[3] Xian Liu, F<strong>in</strong>d<strong>in</strong>g global m<strong>in</strong>ima with a computable …lled function. Journal of global optimization.<br />

19(2001) 151–161.<br />

[4] Xian Liu, Wilsun Xu.: A new …lled function applied to global optimization. Computer and<br />

Operation Research. 31(2004) 61–80.<br />

2<br />

!<br />

Page 135


Weak Convergence Theorem For A Semi-Markovian Random Walk With<br />

Delay And Pareto Distributed Interference Of Chance<br />

T. Kesemen 1 and F. Yetim 2<br />

1 Karadeniz Technical University, Faculty of Sciences, Department of Ma<strong>the</strong>matics, Trabzon,<br />

Turkey<br />

2 Avrasya University, Faculty of Art and Science, Department of Ma<strong>the</strong>matics, Trabzon, Turkey<br />

<strong>Abstract</strong><br />

In this study, a semi-Markovian random walk with delay and a discrete <strong>in</strong>terference of<br />

chance �X(t) � is constructed. The weak convergence <strong>the</strong>orem is proved for <strong>the</strong> ergodic<br />

distribution of <strong>the</strong> process X(t) and <strong>the</strong> limit form of <strong>the</strong> ergodic distribution is found, when <strong>the</strong><br />

random variables ��n �,<br />

n � 0 have Pareto distribution with parameters ( �� , ) where <strong>the</strong> random<br />

variables � describe <strong>the</strong> discrete <strong>in</strong>terference of chance.<br />

n<br />

References<br />

Page 136<br />

[1] Aliyev R.T, Khaniyev T.A., Kesemen T., Asymptotic expansions for <strong>the</strong> moments of a semi-<br />

Markovian random walk with gamma distributed <strong>in</strong>terference of chance, Communications <strong>in</strong><br />

Statistics-Theory and Methods, 39, 130-143, 2010.<br />

[2] Feller W., Introduction to Probability Theory and Its Applications II, J. Wiley, New York,<br />

1971.<br />

[3] Khaniyev T.A., Atalay K.D., On <strong>the</strong> weak convergence <strong>the</strong>orem for <strong>the</strong> ergodic distribution<br />

for an <strong>in</strong>ventory model of Type (s,S), Hacettepe Journal of Ma<strong>the</strong>matics and Statistics, 39(4),<br />

599-611, 2010.


PARAMETER DEPENDENT NOVIER-STOKES LIKE<br />

PROBLEMS<br />

VELI B. SHAKHMUROV<br />

Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, Okan University, Ak…rat, Tuzla 34959<br />

Istanbul, Turkey,<br />

E-mail: veli.sahmurov@okan.edu.tr<br />

<strong>Abstract</strong><br />

In this talk, <strong>the</strong> follow<strong>in</strong>g nonstationary Novier-Stokes like equation with<br />

variable coe¢ cients<br />

@u<br />

@t A" (x) u + (u:r) u + r' = f (x; t) ; div u = 0; x 2 G; t 2 (0; T ) ;<br />

L1"u = X<br />

" i<br />

is considered, where<br />

R n + =<br />

i=0<br />

@ i u<br />

i<br />

@xi n<br />

x 0<br />

; 0; t = 0, 2 f0; 1g ;<br />

u (x; 0) = a (x) ; x 2 R n +; t 2 (0; T ) ;<br />

n<br />

x 2 R n ; xn > 0; x = x 0<br />

; xn ; x 0<br />

= (x1; x2; :::; xn 1)<br />

A" (x) u = "<br />

nX<br />

k=1<br />

ak (x) @2u @x2 ; i =<br />

k<br />

1<br />

2<br />

i + 1<br />

q<br />

, q 2 (1; 1) ,<br />

" is a small positive parameter, i are complex numbers, ak are cont<strong>in</strong>ious<br />

functions on R n n;<br />

u = u" (x) = (u1" (x; t) ; u2" (x; t) ; :::; un" (x; t))<br />

are represent <strong>the</strong> unknown velocity, f = (f1 (x; t) ; f2 (x; t) ; :::; fn (x; t)) represents<br />

a given external force and a denotes <strong>the</strong> <strong>in</strong>itial velocity.<br />

The existence, uniqueness and L p estimates of solution <strong>the</strong> above problem<br />

is derived.<br />

1<br />

o<br />

;<br />

Page 137


A New Spl<strong>in</strong>e Approximation for <strong>the</strong> Solution of One-space<br />

Dimensional Second Order Non-l<strong>in</strong>ear Wave Equations<br />

With Variable Coefficients<br />

VENU GOPAL and R. K. MOHANTY<br />

Department of Ma<strong>the</strong>matics<br />

Faculty of Ma<strong>the</strong>matical Sciences<br />

University of Delhi<br />

Delhi-110 007, INDIA<br />

<strong>Abstract</strong>: In this paper, we propose a new three-level implicit n<strong>in</strong>e po<strong>in</strong>t<br />

compact f<strong>in</strong>ite difference formulation of order two <strong>in</strong> time and four <strong>in</strong> space<br />

directions, based on non-polynomial spl<strong>in</strong>e <strong>in</strong> compression for <strong>the</strong> solution of<br />

one-space dimensional second order non-l<strong>in</strong>ear hyperbolic partial differential<br />

equations with variable coefficients and significant first order space derivative<br />

term. We describe <strong>the</strong> Ma<strong>the</strong>matical formulation procedure <strong>in</strong> details and also<br />

discussed <strong>the</strong> stability. Numerical results are provided to justify <strong>the</strong> usefulness<br />

of <strong>the</strong> proposed method.<br />

Keywords: Non-polynomial spl<strong>in</strong>e <strong>in</strong> compression; Non-l<strong>in</strong>ear Wave equation;<br />

Maximum absolute errors<br />

REFERENCES<br />

1. Mohanty, R. K.; Gopal, Venu. High accuracy cubic spl<strong>in</strong>e f<strong>in</strong>ite difference<br />

approximation for <strong>the</strong> solution of one-space dimensional non-l<strong>in</strong>ear wave equations.<br />

Appl. Math. Comput. 218 (2011), no. 8, 4234–4244.<br />

2. Ja<strong>in</strong>, M. K.; Aziz, Tariq. Spl<strong>in</strong>e function approximation for differential equations.<br />

Comput. Methods Appl. Mech. Engrg. 26 (1981), no. 2, 129–143.<br />

Page 138<br />

3. Ja<strong>in</strong>, M. K.; Aziz, Tariq. Cubic spl<strong>in</strong>e solution of two-po<strong>in</strong>t boundary value<br />

problems with significant first derivatives. Comput. Methods Appl. Mech. Engrg. 39<br />

(1983), no. 1, 83–91.<br />

4. Ja<strong>in</strong>, M. K.; Iyengar, S. R. K.; Pillai, A. C. R. Difference schemes based on spl<strong>in</strong>es <strong>in</strong><br />

compression for <strong>the</strong> solution of conservation laws. Comput. Methods Appl. Mech.<br />

Engrg. 38 (1983), no. 2, 137–151.<br />

5. Ja<strong>in</strong>, M. K. Numerical solution of differential equations. Second edition. A Halsted<br />

Press <strong>Book</strong>. John Wiley & Sons, Inc., New York, 1984.<br />

6. W.G. Bickley, Piecewise cubic <strong>in</strong>terpolation and two po<strong>in</strong>t boundary value problems,<br />

Comput. J. 11 (1968) 206–208.


7. D. J. Fyfe, The use of cubic spl<strong>in</strong>es <strong>in</strong> <strong>the</strong> solution of two po<strong>in</strong>t boundary value<br />

problems, Comput. J. 12 (1969) 188–192.<br />

8. A. Khan and T. Aziz, Parametric cubic spl<strong>in</strong>e approach to <strong>the</strong> solution of a system of<br />

second order boundary value problems, J. Optim. Theory Appl., 118 (2003) 45-54.<br />

9. Khan, Arshad; Khan, Islam; Aziz, Tariq A survey on parametric spl<strong>in</strong>e function<br />

approximation. Appl. Math. Comput. 171 (2005), no. 2, 983–1003.<br />

10. J. Rashid<strong>in</strong>ia ; Mohammadi, R.; Jalilian, R. Spl<strong>in</strong>e methods for <strong>the</strong> solution of<br />

hyperbolic equation with variable coefficients. Numer. Methods Partial Differential<br />

Equations 23 (2007), no. 6, 1411–1419.<br />

11. J. Rashid<strong>in</strong>ia, R. Jalilian, V. Kazemi, Spl<strong>in</strong>e methods for <strong>the</strong> solutions of hyperbolic<br />

equations, Appl. Math. Comput., 190 (2007) 882-886.<br />

12. Rashid<strong>in</strong>ia, J.; Mohammadi, R. Non-polynomial cubic spl<strong>in</strong>e methods for <strong>the</strong><br />

solution of parabolic equations. Int. J. Comput. Math. 85 (2008), no. 5, 843–850.<br />

13. Rashid<strong>in</strong>ia, Jalil; Jalilian, Reza. Spl<strong>in</strong>e solution of two po<strong>in</strong>t boundary value<br />

problems. Appl. Comput. Math. 9 (2010), no. 2, 258–266.<br />

Page 139<br />

14. Hengfei D<strong>in</strong>g, Yux<strong>in</strong> Zhang, Parametric spl<strong>in</strong>e methods for <strong>the</strong> solution of<br />

hyperbolic equations, Appl. Math. Comput., 204 (2008) 938-941.<br />

15. C.T. Kelly, Iterative Methods for L<strong>in</strong>ear and Non-l<strong>in</strong>ear Equations, SIAM<br />

Publications, Philadelphia, 1995.<br />

16. L.A. Hageman and D.M. Young, Applied Iterative Methods, Dover Publication, New<br />

York, 2004.


An error correction method for solv<strong>in</strong>g stiff <strong>in</strong>itial value problems based on a<br />

cubic C 1 -spl<strong>in</strong>e collocation method<br />

<strong>Abstract</strong><br />

Xiangfan Piao a , Sang Dong Kim a , Philsu Kim a,1,∗<br />

a Department of Ma<strong>the</strong>matics, Kyungpook National University, Daegu 702-701, Korea<br />

For solv<strong>in</strong>g nonl<strong>in</strong>ear stiff <strong>in</strong>itial value problems, we develop an improved error correction method (IECM) which<br />

orig<strong>in</strong>ates from <strong>the</strong> error corrected Euler methods (ECEM) recently developed by <strong>the</strong> authors (see [17, 18]) and<br />

reduces <strong>the</strong> computational cost and fur<strong>the</strong>r enhances <strong>the</strong> stability for <strong>the</strong> ECEM. We use <strong>the</strong> stabilized cubic C 1 -spl<strong>in</strong>e<br />

collocation method <strong>in</strong>stead of <strong>the</strong> Chebyshev collocation method used <strong>in</strong> ECEM for solv<strong>in</strong>g <strong>the</strong> asymptotic l<strong>in</strong>ear<br />

ODE for <strong>the</strong> difference between <strong>the</strong> Euler polygon and <strong>the</strong> true solution. It is proved that IECM is A-stable, a semiimplicit<br />

one-step method, and of order 4 with only one evaluation of <strong>the</strong> Jacobian at each <strong>in</strong>tegration step. Also,<br />

we use <strong>the</strong> iteration process of <strong>the</strong> Lobatto IIIA method developed by [13] for solv<strong>in</strong>g <strong>the</strong> <strong>in</strong>duced matrix system.<br />

It is shown that this iteration process does not require such <strong>the</strong> nonl<strong>in</strong>ear function evaluation as <strong>the</strong> implicit method<br />

does and hence it reduces <strong>the</strong> numerical computational cost efficiently. Numerical evidence is provided to support <strong>the</strong><br />

<strong>the</strong>oretical results with several stiff problems.<br />

Keywords: Euler polygon, Cubic C 1 -spl<strong>in</strong>e collocation method, Lobatto IIIA method, Error correction method, Stiff<br />

<strong>in</strong>itial value problem<br />

References<br />

[1] C.A. Addisonand I. Gladwell, Second derivative methods applied to implicit first and second order systems, Internat. J. Numer. Methods<br />

Engng. 20 (1984) pp. 1211–1231.<br />

[2] P. Amodioand L. Brugnano, A note on <strong>the</strong> efficient implementation of implicit methods for ODEs, J. Comput. Appl. Math. 87 (1997) pp. 1–9.<br />

[3] T.A. Bickart, An efficient solution process for implicit Runge-Kutta methods, SIAM J. Numer. Anal. 14 (1977) pp. 1022–1027.<br />

[4] L. Brugnanoand C. Magher<strong>in</strong>i, Blended implementation of block implicit methods for ODEs, Appl. Numer. Math. 42 (2002) pp. 29–45.<br />

[5] J.C. Butcher, On <strong>the</strong> implementation of implicit Runge-Kutta methods, BIT 16 (1976) pp. 237–240.<br />

[6] J.C. Butcherand G. Wanner, Runge-Kutta methods: some historical notes, Appl. Numer. Math. 22 (1996) pp. 113–151.<br />

[7] G.J. Cooperand J.C. Butcher, An iteration scheme for implicit Runge-Kutta methods, IMA J. Numer. Anal. 3 (1983) pp. 127–140.<br />

[8] G.J. Cooperand R. Vignesvaran, A scheme for <strong>the</strong> implementation of implicit Runge-Kutta methods, Comput<strong>in</strong>g 45 (1990) pp. 321–332.<br />

[9] G.J. Cooperand R. Vignesvaran, Some schemes for <strong>the</strong> implementation of implicit Runge-Kutta methods, J. Comput. Appl. Math. 45 (1993)<br />

pp. 213–225.<br />

[10] G. Dahlquist, A special stability problem for l<strong>in</strong>ear multistep methods, BIT 3 (1963) pp. 27–43.<br />

[11] S. González-P<strong>in</strong>to, C. GonzÁlezand J.I. Montijano, Iterative schemes for Gauss methods, Comput. Math. Appl. 27 (1994) 67–81.<br />

[12] S. González-P<strong>in</strong>to, J.I. Montijanoand L. Rández, Iterative schemes for three-stage implicit Runge-Kutta methods, Comput. Math. Appl. 27<br />

(1994) 67–81.<br />

[13] S. González-P<strong>in</strong>to, S. Pérez Rodríguezand J.I. Montijano, On <strong>the</strong> numerical solution of stiff IVPs by Lobatto IIIA Runge-Kutta methods, J.<br />

Comput. Appl. Math. 82 (1997) pp. 129–148.<br />

[14] S. GonzÁlez-P<strong>in</strong>toand R. Rojas-Bello, Speed<strong>in</strong>g up Newton-type iterations for stiff problems, J. Comp. Appl. Math. 181 (2005) pp. 266–279.<br />

[15] E. Hairer, G. Wanner, Solv<strong>in</strong>g Ord<strong>in</strong>ary Differential Equations, II Stiff and Differential-Algebraic Problems, Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 1991<br />

pp. 5-8.<br />

[16] E. Hairer, G. Wanner, Solv<strong>in</strong>g ord<strong>in</strong>ary differential equations. II Stiff and Differential-Algebraic Problems, Spr<strong>in</strong>ger Series <strong>in</strong> Computational<br />

Ma<strong>the</strong>matics, Spr<strong>in</strong>ger (1996).<br />

∗ Correspond<strong>in</strong>g author<br />

Email addresses: piaoxf76@hanmail.net (Xiangfan Piao), skim@knu.ac.kr (Sang Dong Kim),kimps@knu.ac.kr (Philsu Kim)<br />

1 This work was supported by basic science research program through <strong>the</strong> National Research Foundation of Korea(NRF) funded by <strong>the</strong> m<strong>in</strong>istry<br />

of education, science and technology (grant number 2011-0029013).<br />

1<br />

Page 140


Page 141<br />

An error correction method for stiff <strong>in</strong>itial value problems 2<br />

[17] P. Kim, X. Piaoand S.D. Kim, An error corrected Euler method for solv<strong>in</strong>g stiff problems based on Chebyshev collocation, SIAM J. Numer.<br />

Anal. 49 (2011) pp. 2211–2230.<br />

[18] S.D. Kim, X. Piao, D.H. Kimand P. Kim, Convergence on Error correction methods for solv<strong>in</strong>g <strong>in</strong>itial value problems, J. Comp. Appl. Math.,<br />

236 (<strong>2012</strong>) pp. 4448–4461.<br />

[19] J. Kweon, S.D. Kim, X. Piaoand P. Kim, A Chebyshev collocation method for stiff <strong>in</strong>itial values and its stability, Kyungpook Ma<strong>the</strong>matical<br />

Journal 51 (2011) pp. 435–456.<br />

[20] H. Ramos, A non-standard explicit <strong>in</strong>tegration scheme for <strong>in</strong>itial-value problems, Appl. Math. Comp. 189(1) (2007) pp. 710–718.<br />

[21] H. Ramos, J. Vigo-Aguiar, A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations, J. Comp. Appl. Numer. 204<br />

(2007) pp. 124–136.<br />

[22] S. Sallamand M. Naim Anwar, Stabilized cubic C 1 -spl<strong>in</strong>e collocation method for solv<strong>in</strong>g first-order ord<strong>in</strong>ary <strong>in</strong>itial value problems, Intern.<br />

J. Computer Math. 74 (2000) pp. 87–96.<br />

[23] E. Schäfer, A new approach to expla<strong>in</strong> <strong>the</strong> ‘high irradiance responses’ of photomorphogenesis on <strong>the</strong> basis of phytochrome, J. Math. Biology.<br />

2 (1975) 41–56.<br />

[24] J.G. Verwer, Gauss-Seidel iteration for stiff odes from chemical k<strong>in</strong>etics, SIAM J. Sci. Comput. 15 (1994) pp. 1243–1250.<br />

[25] X.Y. Wu, J.L. Xia, Two low accuracy methods for stiff systems, Appl. Math. Comput. 123 (2001) pp. 141-153.


<strong>Abstract</strong><br />

On Numerical Solution of Multipo<strong>in</strong>t NBVP<br />

for Hyperbolic-Parabolic Equations with Neumann Condition<br />

A. Ashyralyev 1 and Y. Ozdemir 2<br />

1 Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Duzce University, Duzce, Turkey<br />

Certa<strong>in</strong> problems of modern physics and technology can be effectively described <strong>in</strong> terms of nonlocal<br />

problem for partial differential equations. These nonlocal conditions arise ma<strong>in</strong>ly when <strong>the</strong> data on <strong>the</strong><br />

boundary cannot be measured directly. Methods of solutions of nonlocal boundary value problems for<br />

partial differential equations and partial differential equations of mixed type have been studied extensively<br />

by many researchers <strong>in</strong> [1-5].<br />

In this paper, numerical solutions of difference schemes of multipo<strong>in</strong>t nonlocal boundary value problem<br />

for multidimensional hyperbolic-parabolic equation with Neumann condition are considered. The first<br />

and second orders of accuracy difference schemes are established. The <strong>the</strong>oretical statements for <strong>the</strong><br />

solution of <strong>the</strong>se difference schemes are supported by results of numerical experiments.<br />

References<br />

[1] Ashyralyev A. and Aggez N., A note on difference schemes of <strong>the</strong> nonlocal boundary value problems<br />

for hyperbolic equations, Num. Func. Anal. & Opt., 25(5-6), 439-462, 2004.<br />

[2] Ashyralyev A. and Gercek O., Nonlocal boundary value problems for elliptic-parabolic differential<br />

and difference equations, Dis. Dyn. <strong>in</strong> Nat. & Soc., 2008(2008), 1-16, 2008.<br />

[3] Ashyralyev A. and Ozdemir Y., On stable implicit difference scheme for hyperbolic-parabolic<br />

equations <strong>in</strong> a Hilbert space, Num. Math. for Par. Diff. Eqn., 25(5), 1110-1118, 2009.<br />

[4] Ashyralyev A. and Yildirim O., On multipo<strong>in</strong>t nonlocal boundary value problems for hyperbolic<br />

differential and difference equations, Tai. Jour. of Math.., 14(1), 165-164, 2010.<br />

[5] Koksal M. E., Recent developments on operator-difference schemes for solv<strong>in</strong>g nonlocal BVPs for<br />

<strong>the</strong> wave equation, Dis. Dyn. <strong>in</strong> Nat. & Soc., 2011(2011), 1-14, 2011.<br />

Page 142


Classification of exact solutions for <strong>the</strong> Pochhammer-Chree equations<br />

<strong>Abstract</strong><br />

Y. Gurefe 1 , Y. Pandir 1 and E. Misirli 2<br />

1 Department of Ma<strong>the</strong>matics, Bozok University, Yozgat, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Ege University, Izmir, Turkey<br />

In this study, exact solutions to <strong>the</strong> Pochhammer-Chree equations are obta<strong>in</strong>ed by us<strong>in</strong>g complete<br />

discrim<strong>in</strong>ation system. These solutions can be reduced to soliton solution, rational and elliptic<br />

function solutions. Also, we propose a more general method for <strong>the</strong> generalized nonl<strong>in</strong>ear partial<br />

differential equations.<br />

Keywords: Trial equation method, Soliton solutions, Elliptic function solutions.<br />

References<br />

Page 143<br />

[1] Malfliet W., Hereman W., The tanh method: exact solutions of nonl<strong>in</strong>ear evolution and<br />

wave equations, Phys. Scr., 54, 563-568, 1996.<br />

[2] He J.H., Wu X.H., Exp-function method for nonl<strong>in</strong>ear wave equations, Chaos Soliton.<br />

Fract., 30, 700-708, 2006.<br />

[3] Misirli E., Gurefe Y., Exp-function method for solv<strong>in</strong>g nonl<strong>in</strong>ear evolution equations,<br />

Math. Comput. Appl. 16, 258-266, 2011.<br />

[4] Wazwaz A.M., The tanh-coth and <strong>the</strong> s<strong>in</strong>e-cos<strong>in</strong>e methods for k<strong>in</strong>ks, solitons, and<br />

periodic solutions for <strong>the</strong> Pochhammer-Chree equations, Appl. Math. Comput., 195, 24-33,<br />

2008.<br />

[5] Jib<strong>in</strong> L., Lijun Z., Bifurcations of travell<strong>in</strong>g wave solutions <strong>in</strong> generalized Pochhammer-<br />

Chree equation, Chaos Soliton. Fract., 14(4), 581-593, 2002.<br />

[6] Li B., Chen Y., Zhang H., Travell<strong>in</strong>g wave solutions for generalized Pochhammer-<br />

Chree equations, Z. Naturforsch, 57(a), 874-882, 2002.


On <strong>the</strong> Density of Regular Functions <strong>in</strong> Variable Exponent Sobolev Spaces<br />

<strong>Abstract</strong><br />

Yas<strong>in</strong> KAYA<br />

Dicle University, Diyarbakır,Turkey<br />

The talk will deal with when every function <strong>in</strong> a variable exponent Sobolev space can be<br />

approximated by a more regular function, such as a smooth or Lipschitz cont<strong>in</strong>uous function.<br />

Many researchers have made contributions , but still rema<strong>in</strong> substantial gaps <strong>in</strong> our<br />

understand<strong>in</strong>g of this <strong>in</strong>tricate question. A discussion on methods also will take place. I will<br />

also give some my results for <strong>the</strong> density <strong>in</strong> variable exponent Sobolev spaces .<br />

References<br />

[ ] Cruz-Uribe, D., Fiorenza,A. Approximate identities <strong>in</strong> variable spaces. - Math. Nachr.<br />

280, 2007, 256–270.<br />

[ ] Dien<strong>in</strong>g, L., Harjulehto, P., Hästö, P., Ruzicka, M., Lebesgue and Sobolev Spaces<br />

withVariable Exponents. Spr<strong>in</strong>ger, 2011.<br />

Page 144<br />

[ ] Edmunds, D. E., Rakosnik, J. Density of smooth functions <strong>in</strong> ( ) ( ), Proc. Roy. Soc.<br />

London.Ser. A 437 (1992), 229,236.<br />

[ ] Fan, X. L., Wang, S., Zhao, D.. Density of ( ) <strong>in</strong> ( ) ( ) with discont<strong>in</strong>uous<br />

exponent ( ). Math. Nachr., 279:142–149, 2006<br />

[ ] Hastö, P. Counter-examples of regularity <strong>in</strong> variable exponent Sobolev spaces. InThe p-harmonic<br />

equation and recent advances <strong>in</strong> analysis, volume 370 of Contemp.Math., pages 133–143. Amer.<br />

Math. Soc., Providence, RI, 2005.<br />

[ ] Hastö, P. On <strong>the</strong> density of smooth functions <strong>in</strong> variable exponent Sobolev space.Rev. Mat.<br />

Iberoamericana, 23:215–237, 2007.<br />

[ ] Samko, S. Denseness of ( ) <strong>in</strong> <strong>the</strong> generalized Sobolev spaces ( ) ( ), pp. 333,342 <strong>in</strong><br />

Directand <strong>in</strong>verse problems of ma<strong>the</strong>matical physics (Newark, DE, 1997), Int. Soc. Anal. Appl.<br />

Comput. 5,Kluwer Acad. Publ., Dordrecht, 2000.


<strong>Abstract</strong><br />

Numerical Solution of a Hyperbolic-Schröd<strong>in</strong>ger<br />

Equation with Nonlocal Boundary Conditions<br />

Y. Ozdemir and M. Kucukunal<br />

Department of Ma<strong>the</strong>matics, Duzce University, Duzce, Turkey<br />

A numerical method is proposed for solv<strong>in</strong>g hyperbolic-Schröd<strong>in</strong>ger partial di¤erential equations with<br />

nonlocal boundary condition. The …rst and second orders of accuracy di¤erence schemes are presented.<br />

A procedure of modi…ed Gauss elim<strong>in</strong>ation method is used for solv<strong>in</strong>g <strong>the</strong>se di¤erence schemes <strong>in</strong> <strong>the</strong> case<br />

of a one-dimensional hyperbolic-Schröd<strong>in</strong>ger partial di¤erential equations. The method is illustrated by<br />

numerical examples.<br />

References<br />

[1] Ashyralyev A. and Aggez N., A note on di¤erence schemes of <strong>the</strong> nonlocal boundary value problems<br />

for hyperbolic equations, Num. Func. Anal. & Opt., 25(5-6), 439-462, 2004.<br />

[2] Ashyralyev A. and Gercek O., Nonlocal boundary value problems for elliptic-parabolic di¤erential<br />

and di¤erence equations, Dis. Dyn. <strong>in</strong> Nat. & Soc., 2008(2008), 1-16, 2008.<br />

[3] Ashyralyev A. and Ozdemir Y., On stable implicit di¤erence scheme for hyperbolic-parabolic<br />

equations <strong>in</strong> a Hilbert space, Num. Math. for Par. Di¤. Eqn., 25(5), 1110-1118, 2009.<br />

[4] Ashyralyev A. and Yildirim O., On multipo<strong>in</strong>t nonlocal boundary value problems for hyperbolic<br />

di¤erential and di¤erence equations, Tai. Jour. of Math.., 14(1), 165-164, 2010.<br />

[5] Ashyralyev A. and Sirma A., Modi…ed Crank-Nicholson di¤erence schemes for nonlocal boundary<br />

value problem for <strong>the</strong> Schrod<strong>in</strong>ger equation, Dis. Dyn. <strong>in</strong> Nat. & Sci., 10.1155/2009/584718, 2009.<br />

[6] Simos T. E., Exponentially and trigonometrically …tted methods for <strong>the</strong> solution of <strong>the</strong> <strong>the</strong><br />

Schröd<strong>in</strong>ger equation, Acta App. Math., 110(3), 1331-1352, 2010.<br />

Page 145


New generalized hyperbolic functions to f<strong>in</strong>d exact solution of <strong>the</strong> nonl<strong>in</strong>ear partial<br />

<strong>Abstract</strong><br />

differential equation<br />

Y. Pandir 1 and H. Ulusoy 2<br />

1 Department of Ma<strong>the</strong>matics, Bozok University, Yozgat, Turkey<br />

In this article, we first time def<strong>in</strong>e new functions (called generalized hyperbolic functions) and devise<br />

new k<strong>in</strong>ds of transformation (called generalized hyperbolic function transformation) to construct new<br />

exact solutions of nonl<strong>in</strong>ear partial differential equations. Based on <strong>the</strong> generalized hyperbolic function<br />

transformation of <strong>the</strong> generalized KdV equation. We obta<strong>in</strong> abundant families of new exact solutions of<br />

<strong>the</strong> equation and analyze <strong>the</strong> properties of this by tak<strong>in</strong>g different parameter values of <strong>the</strong> generalized<br />

hyperbolic functions. As a result, we f<strong>in</strong>d that <strong>the</strong>se parameter values and <strong>the</strong> region size of <strong>the</strong> <strong>in</strong>de-<br />

pendent variables affect some solution structure. These solutions may be useful to expla<strong>in</strong> some physical<br />

phenomena.<br />

1 Introduction<br />

To construct exact solutions to nonl<strong>in</strong>ear partial differential equations, some important methods have<br />

been def<strong>in</strong>ed such as Hirota method, tanh-coth method, <strong>the</strong> exponential function method, (G ′ /G)-<br />

expansion method, <strong>the</strong> trial equation method, and so on [1-15]. There are a lot of nonl<strong>in</strong>ear evolution<br />

equations that are <strong>in</strong>tegrated us<strong>in</strong>g <strong>the</strong> various ma<strong>the</strong>matical methods. Soliton solutions, compactons,<br />

s<strong>in</strong>gular solitons and o<strong>the</strong>r solutions have been found by us<strong>in</strong>g <strong>the</strong>se approaches. These types of solutions<br />

are very important and appear <strong>in</strong> various areas of applied ma<strong>the</strong>matics. In Section 2, we give <strong>the</strong> defi-<br />

nition and properties of generalized hyperbolic functions. In Section 3, as applications, we obta<strong>in</strong> exact<br />

solution of <strong>the</strong> generalized KdV equation<br />

(u l )t + αu(u n )x + β[u(u n )xx]x + γu(u n )xxx = 0. (1)<br />

2 The def<strong>in</strong>ition and properties of <strong>the</strong> symmetrical hyperbolic<br />

Fibonacci and Lucas functions<br />

In this section, we will def<strong>in</strong>e new functions which named <strong>the</strong> symmetrical hyperbolic Fibonacci and<br />

Lucas functions for construct<strong>in</strong>g new exact solutions of NPDEs, and <strong>the</strong>n study <strong>the</strong> properties of <strong>the</strong>se<br />

functions.<br />

Def<strong>in</strong>ition 2.1 Suppose that ξ is an <strong>in</strong>dependent variable, p, q and k are all constants. The generalized<br />

hyperbolic s<strong>in</strong>e function is<br />

generalized hyperbolic cos<strong>in</strong>e function is<br />

Page 146<br />

s<strong>in</strong>ha(ξ) = pakξ − qa−kξ , (2)<br />

2<br />

cosha(ξ) = pakξ + qa−kξ , (3)<br />

2


generalized hyperbolic tangent function is<br />

generalized hyperbolic cotangent function is<br />

generalized hyperbolic secant function is<br />

generalized hyperbolic cosecant function is<br />

tanha(ξ) = pakξ − qa−kξ pakξ , (4)<br />

+ qa−kξ cotha(ξ) = pakξ + qa−kξ pakξ , (5)<br />

− qa−kξ secha(ξ) =<br />

cosecha(ξ) =<br />

2<br />

pakξ , (6)<br />

+ qa−kξ 2<br />

pakξ , (7)<br />

− qa−kξ <strong>the</strong> above six k<strong>in</strong>ds of functions are said generalized new hyperbolic functions. Thus we can prove <strong>the</strong><br />

follow<strong>in</strong>g <strong>the</strong>ory of generalized hyperbolic functions on <strong>the</strong> basis of Def<strong>in</strong>ition 2.1.<br />

Theorem 2.1. The generalized hyperbolic functions satisfy <strong>the</strong> follow<strong>in</strong>g relations:<br />

cosh 2 a(ξ) − s<strong>in</strong>h 2 a(ξ) = pq, (8)<br />

1 − tanh 2 a(ξ) = pq.sech 2 a(ξ), (9)<br />

1 − coth 2 a(ξ) = −pq.cosech 2 a(ξ), (10)<br />

secha(ξ) =<br />

cosecha(ξ) =<br />

The follow<strong>in</strong>g just part of <strong>the</strong>m are proved here for simplification.<br />

1<br />

, (11)<br />

cosha(ξ)<br />

1<br />

, (12)<br />

s<strong>in</strong>ha(ξ)<br />

tanha(ξ) = s<strong>in</strong>ha(ξ)<br />

, (13)<br />

cosha(ξ)<br />

cotha(ξ) = cosha(ξ)<br />

. (14)<br />

s<strong>in</strong>ha(ξ)<br />

Theorem 2.2. The derivative formulae of generalized hyperbolic functions as follow<strong>in</strong>g<br />

d(s<strong>in</strong>ha(ξ))<br />

dξ<br />

d(cosha(ξ))<br />

dξ<br />

d(tanha(ξ))<br />

dξ<br />

d(cotha(ξ))<br />

dξ<br />

d(secha(ξ))<br />

dξ<br />

d(cosecha(ξ))<br />

dξ<br />

Proof of (17): Accord<strong>in</strong>g to (15) and (16), we can get<br />

d(tanha(ξ))<br />

dξ<br />

=<br />

= k ln a cosha(ξ), (15)<br />

= k ln a s<strong>in</strong>ha(ξ), (16)<br />

= kpq ln a sech 2 a(ξ), (17)<br />

= −kpq ln a cosech 2 a(ξ), (18)<br />

= −k ln a secha(ξ) tanha(ξ), (19)<br />

= −k ln a cosecha(ξ) cotha(ξ). (20)<br />

( ) ′<br />

s<strong>in</strong>ha(ξ)<br />

=<br />

cosha(ξ)<br />

(s<strong>in</strong>ha(ξ)) ′ cosha(ξ) − (cosha(ξ)) ′ s<strong>in</strong>ha(ξ)<br />

cosh 2 a(ξ)<br />

Page 147


= k ln a cosh2a(ξ) − k ln a s<strong>in</strong>h 2 a(ξ)<br />

cosh 2 = kpqsech<br />

a(ξ)<br />

2 ( ξ), (21)<br />

Similarly, we can prove o<strong>the</strong>r differential coefficient formulae <strong>in</strong> Theorem 2.2.<br />

Remark 2.1. We see that when p = 1, q = 1, k = 1 and a = e <strong>in</strong> (2)-(7), new generalized hyperbolic<br />

function s<strong>in</strong>ha(ξ), cosha(ξ), tanha(ξ), cotha(ξ), secha(ξ) and cosecha(ξ), degenerate as hyperbolic func-<br />

tion s<strong>in</strong>h(ξ), cosh(ξ), tanh(ξ), coth(ξ), sech(ξ) and cosech(ξ), respectively. In addition, when p = 0 or<br />

q = 0 <strong>in</strong> (2)-(7), s<strong>in</strong>ha(ξ), cosha(ξ), tanha(ξ), cotha(ξ), secha(ξ) and cosecha(ξ), degenerate as exponen-<br />

tial function 1<br />

2 pak(ξ) , ± 1<br />

2 qa−k(ξ) , 2pa −k(ξ) , ±2qa k(ξ) and ±1, respectively.<br />

References<br />

[1] Hirota R., Exact solutions of <strong>the</strong> Korteweg-de-Vries equation for multiple collisions of solitons,<br />

Phys. Lett. A, 27, 1192-1194, 1971.<br />

[2] Malfliet W., Hereman W., The tanh method: exact solutions of nonl<strong>in</strong>ear evolution and wave<br />

equations, Phys. Scr., 54, 563-568, 1996.<br />

[3] Misirli E., Gurefe Y., Exp-function method for solv<strong>in</strong>g nonl<strong>in</strong>ear evolution equations, Math. Com-<br />

put. Appl., 16, 258-266, 2011.<br />

[4] Ismail M.S., Biswas A., 1-Soliton solution of <strong>the</strong> generalized KdV equation with, Appl. Math.<br />

Comput., 216, 1673-1679, 2010.<br />

[4] Ren Y., Zhang H., New generalized hyperbolic functions and auto-Bcklund transformation to f<strong>in</strong>d<br />

new exact solutions of <strong>the</strong> (2+1)-dimensional NNV equation, Phys. Lett. A, 357, 438-448, 2006.<br />

Page 148


EQUIVALENCE OF AFFINE CURVES<br />

Yasem<strong>in</strong> SAĞIROĞLU<br />

Karadeniz Technical University<br />

Science Faculty<br />

Ma<strong>the</strong>matics Department<br />

TRABZON/ TURKEY<br />

ysagiroglu@ktu.edu.tr<br />

ABSTRACT<br />

The def<strong>in</strong>itions of aff<strong>in</strong>e curve, aff<strong>in</strong>e arclength and aff<strong>in</strong>e types of an aff<strong>in</strong>e curve are<br />

2<br />

given <strong>in</strong> R . Aff<strong>in</strong>e <strong>in</strong>variant parametrization of an aff<strong>in</strong>e curve which is <strong>in</strong>variant under <strong>the</strong><br />

aff<strong>in</strong>e group is <strong>in</strong>troduced. The complete system of aff<strong>in</strong>e differential <strong>in</strong>variants for aff<strong>in</strong>e<br />

plane curves is obta<strong>in</strong>ed and we show that <strong>the</strong>se <strong>in</strong>variants are <strong>in</strong>dependent. The conditions of<br />

2<br />

equivalence of two aff<strong>in</strong>e curves is obta<strong>in</strong>ed <strong>in</strong> terms of aff<strong>in</strong>e differential <strong>in</strong>variants <strong>in</strong> R .<br />

Keywords: Aff<strong>in</strong>e geometry, aff<strong>in</strong>e curve, aff<strong>in</strong>e differential <strong>in</strong>variants, aff<strong>in</strong>e<br />

equivalence.<br />

MSC: 53A15, 53A55.<br />

References<br />

[1] E. De Angelis, T. Moons, L. Van Gool and P. Verstraelen, Complete system of aff<strong>in</strong>e<br />

semi-differential <strong>in</strong>variants for plane and space curves, In: Dillen, F. (ed.) et al., Geometry<br />

and topology of submanifolds, VIII, Proceed<strong>in</strong>gs of <strong>the</strong> <strong>in</strong>ternational meet<strong>in</strong>g on geometry of<br />

submanifolds, Brussel, Belgium, July 13-14 (1995) and Nordfjordeid, Norway, July 18-<br />

August 7 (1995). S<strong>in</strong>gapore. World Scientific (1996), 85-94.<br />

[2] W. Bar<strong>the</strong>l, Zur aff<strong>in</strong>en Differentialgeometrie-Kurven<strong>the</strong>orie <strong>in</strong> der allgeme<strong>in</strong>en<br />

Aff<strong>in</strong>geometrie, Proceed<strong>in</strong>gs of <strong>the</strong> Congress of Geometry, Thessaloniki (1987), 5-19.<br />

[3] W. Blaschke, Aff<strong>in</strong>e Differentialgeometrie, Berl<strong>in</strong>, 1923.<br />

[4] E. Cartan, La théorie des groupes f<strong>in</strong>is et cont<strong>in</strong>us et la géometrie différentielle, Gauthier-<br />

Villars, Paris, 1951.<br />

[5] R.B. Gardner and G.R. Wilkens, The fundamental <strong>the</strong>orems of curves and hypersurfaces<br />

<strong>in</strong> centro-aff<strong>in</strong>e geometry, Bull. Belg. Math. Soc. 4 (1997), 379-401.<br />

[6] H.W. Guggenheimer, Differential Geometry, McGraw-Hill, New York, 1963.<br />

Page 149<br />

[7] S. Izumiya and T. Sano, Generic aff<strong>in</strong>e differential geometry of space curves, Proceed<strong>in</strong>gs<br />

of <strong>the</strong> Royal Society of Ed<strong>in</strong>burg 128A (1998), 301-314.<br />

[8] D. Khadjiev, The Application of Invariant Theory to Differential Geometry of Curves, Fan<br />

Publ., Tashkent, 1988.


[9] D. Khadjiev and Ö. Pekşen, The complete system of global differential and <strong>in</strong>tegral<br />

<strong>in</strong>variants for equi-aff<strong>in</strong>e curves, Differential Geom. Appl. 20 (2004), 167-175.<br />

[10] Ö. Pekşen, D. Khadjiev, On <strong>in</strong>variants of curves <strong>in</strong> centro-aff<strong>in</strong>e geometry, J. Math.<br />

Kyoto Univ. 44 (2004), no.3, 603-613.<br />

[11] P.A. Schirokow, A.P. Schirokow, Aff<strong>in</strong>e Differentialgeometrie, Teubner, Leipzig, 1962.<br />

[12] W. Kl<strong>in</strong>genberg, A Course <strong>in</strong> Differential Geometry, Spr<strong>in</strong>ger-Verlag, New York, 1978.<br />

[13] K. Nomizu and T. Sasaki, Aff<strong>in</strong>e Differential Geometry, Cambridge Univ. Pres, 1994.<br />

[14] H.P. Paukowitsch, Begleitfiguren und Invariantensystem m<strong>in</strong>imaler<br />

Differentiationsordnung von Kurven im reellen n-dimensionalen aff<strong>in</strong>en Raum, Mh. Math. 85<br />

(1978), no.2, 137-148.<br />

[15] J.P. Gibl<strong>in</strong>, G. Sapiro, Aff<strong>in</strong>e-<strong>in</strong>variant distances, envelopes and symmetry sets, Geom.<br />

Dedicata 71 (1998), 237-261.<br />

[16] E.J.N. Looijenga, Invariants of quartic plane curves as automorphic forms, Contemp.<br />

Math. 422 (2007), 107-120.<br />

[17] Y. Sağıroğlu and Ö.Pekşen, The Equivalence of Equi-aff<strong>in</strong>e Curves, Turk. J. Math. 34<br />

(2010), 95-2011.<br />

[18] Y. Sağiroğlu, The equivalence of curves <strong>in</strong> SL(n,R) and its application to ruled surfaces,<br />

Appl. Math. Comput. 218 (2011), 1019-1024.<br />

[19] B. Su, Aff<strong>in</strong>e Differential Geometry, Science Pres, Beij<strong>in</strong>g, Gordon and Breach, New<br />

York, 1983.<br />

[20] H. Weyl, The Classical Groups, Pr<strong>in</strong>ceton Univ. Press, Pr<strong>in</strong>ceton, NJ, 1946.<br />

Page 150


Modified trial equation method for nonl<strong>in</strong>ear differential equations<br />

<strong>Abstract</strong><br />

Y. A Tandogan 1 , Y. Pandir 1 and Y. Gurefe 1,2<br />

1 Department of Ma<strong>the</strong>matics, Bozok University, Yozgat, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Ege University, Izmir, Turkey<br />

In this research, we def<strong>in</strong>ed a new approach with respect to <strong>the</strong> trial equation method. This<br />

method is applied for construct<strong>in</strong>g <strong>the</strong> soliton solutions, rational function solutions and elliptic<br />

function solutions. Also, we conclude that <strong>the</strong> modified trial equation method can be extended to<br />

solve o<strong>the</strong>r physical problems <strong>in</strong> nonl<strong>in</strong>ear science.<br />

Keywords: Modified trial equation method, Soliton solutions, Elliptic function solutions.<br />

References<br />

Page 151<br />

[1] Gurefe Y., Sonmezoglu A., Misirli E., Application of <strong>the</strong> trial equation method for<br />

solv<strong>in</strong>g some nonl<strong>in</strong>ear evolution equations aris<strong>in</strong>g <strong>in</strong> ma<strong>the</strong>matical physics, Pramana-J. Phys.,<br />

77, 1023-1029, 2011.<br />

[2] Gurefe Y., Sonmezoglu A., Misirli E., Application of an irrational trial equation method<br />

to high-dimensional nonl<strong>in</strong>ear evolution equations, J. Adv. Math. Stud., 5, 41-47, <strong>2012</strong>.<br />

[3] Jun C.Y., Classification of travel<strong>in</strong>g wave solutions to <strong>the</strong> Vakhnenko equations,<br />

Comput. Math. Appl., 62, 3987-3996, 2011.<br />

[4] Liu C.S., Applications of complete discrim<strong>in</strong>ation system for polynomial for<br />

classifications of travel<strong>in</strong>g wave solutions to nonl<strong>in</strong>ear differential equations, Comput. Phys.<br />

Commun., 181, 317-324, 2010.<br />

[5] Pandir Y., Gurefe Y., Kadak U., Misirli E., Classifications of exact solutions for some<br />

nonl<strong>in</strong>ear partial differential equations with generalized evolution, Abstr. Appl. Anal., <strong>2012</strong>, 1-<br />

16, <strong>2012</strong>.<br />

[6] Ivanov R., On <strong>the</strong> <strong>in</strong>tegrability of a class of nonl<strong>in</strong>ear dispersive wave equations, J.<br />

Nonl<strong>in</strong>ear Math. Phys., 1294, 462-468, 2005.


F<strong>in</strong>ite Difference Method for <strong>the</strong> Integral-Differential<br />

Equation of <strong>the</strong> Hyperbolic Type<br />

Zilal Direk ∗ and Maksat Ashyraliyev †<br />

∗ Department of Ma<strong>the</strong>matics, Fatih University, Istanbul, Turkey, zdirek@fatih.edu.tr<br />

† Department of Ma<strong>the</strong>matics, Bahcesehir University, 34353, Besiktas, Istanbul, Turkey,<br />

maksat.ashyralyyev@bahcesehir.edu.tr<br />

<strong>Abstract</strong>.<br />

Hyperbolic partial differential equations are used <strong>in</strong> many branches of physics, eng<strong>in</strong>eer<strong>in</strong>g and several areas of science,<br />

e.g. electromagnetic, electrodynamic, hydrodynamics, elasticity, fluid flow and wave propagation [1, 2, 3]. There is a great<br />

deal of work for solv<strong>in</strong>g <strong>the</strong>se type of problems numerically and <strong>the</strong>ir stability <strong>in</strong> various functional spaces has received a<br />

great deal of importance. However, most of <strong>the</strong>se works are studied <strong>in</strong> one-dimensional space (see [4, 5, 6, 7]). There are<br />

some studies about <strong>the</strong> numerical solution of two-dimensional hyperbolic equations with <strong>the</strong> collocation method or rational<br />

differential quadrature method [8, 9].<br />

Let Ω be <strong>the</strong> unit open cube <strong>in</strong> <strong>the</strong> n-dimensional Euclidean space R n (0 < xk < 1, 1 ≤ k ≤ n) with <strong>the</strong> boundary S,<br />

¯Ω = Ω ∪ S. In [−1,1] × Ω <strong>the</strong> mixed problem for <strong>the</strong> multidimensional <strong>in</strong>tegral-differential equation of <strong>the</strong> hyperbolic type<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

n<br />

vtt − ∑ (ar(x)Vxr<br />

r=1<br />

) xr =<br />

�t<br />

n<br />

∑ (br(p,x)vxr<br />

−t<br />

r=1<br />

) xr d p+ f(t,x), − 1 ≤ t ≤ 1, x = (x1,...,xn) ∈ Ω,<br />

v(t,x) = 0, x ∈ S, − 1 ≤ t ≤ 1,<br />

v(0,x) = ϕ(x), vt(0,x) = ψ(x), x ∈ ¯Ω<br />

is considered. In [10] it was proved that <strong>the</strong> problem (1) has a unique smooth solution v(t,x) for <strong>the</strong> smooth functions<br />

ar(x) ≥ δ > 0, r = 1,...,n, ϕ(x), ψ(x), x ∈ ¯Ω and f(t,x), b(t,x), t ∈ (−1,1), x ∈ Ω. Moreover, <strong>the</strong> first order of accuracy<br />

difference scheme was <strong>in</strong>vestigated.<br />

In <strong>the</strong> present paper <strong>the</strong> second order of accuracy difference scheme approximately solv<strong>in</strong>g <strong>the</strong> problem (1) is studied. The<br />

stability estimates for <strong>the</strong> solution of this difference scheme are established. Theoretical results are supported by numerical<br />

examples.<br />

Keywords: F<strong>in</strong>ite Difference Method; Integral-Differential Equation of <strong>the</strong> Hyperbolic Type<br />

PACS: 02.60.Lj, 02.60.Nm, 02.70.Bf, 87.10.Ed<br />

REFERENCES<br />

Page 152<br />

1. G. L. D. Siden and D. R. Lynch, International Journal for Numerical Method <strong>in</strong> Fluids 8, 1071–1093 (1988).<br />

2. S. J. We<strong>in</strong>sten, AICHE Journal 36, 1873–1889 (1990).<br />

3. K. R. Umashankar, Wave Motion 10, 493–525 (1988).<br />

4. A. Ashyralyev and N. Aggez, Numerical Functional Analysis and Optimization 25, 439–462 (2004).<br />

5. A. Ashyralyev and N. Aggez, Discrete Dynamics <strong>in</strong> Nature and Society 2011, 1–15 (2011).<br />

6. A. Ashyralyev, M. E. Koksal, and R. P. Agarwal, Computer Ma<strong>the</strong>matics with Applications 61, 1855–1872 (2011).<br />

7. J. I. Ramos, Applied Ma<strong>the</strong>matics and Computation 190, 804–832 (2007).<br />

8. M. Dehghan and A. Mohebbi, Numerical Methods for Partial Differential Equations 25, 232–243 (2009).<br />

9. M. Dehghan and A. Shokri, Numerical Methods for Partial Differential Equations25(2), 494–506 (2009).<br />

10. M. Ashyraliyev, Numerical Functional Analysis and Optimization 29(7–8), 750–769 (2008).<br />

11. P. E. Sobolevskii, Difference Methods for <strong>the</strong> Approximate Solution of Differential Equations, Izdat. Voronezh. Gosud. Univ.,<br />

Voronezh, Russia, 1975.<br />

(1)


Normal Extensions of a S<strong>in</strong>gular Differential Operator For First Order<br />

<strong>Abstract</strong><br />

Z.I. Ismailov1 and R. Öztürk Mert2<br />

1 Department of Ma<strong>the</strong>matics, Karadeniz Technical University, Trabzon, Turkey<br />

2 Department of Ma<strong>the</strong>matics, Hitit University, Corum, Turkey<br />

In this work, <strong>in</strong> terms of boundary values all normal extensions of <strong>the</strong> m<strong>in</strong>imal operator generated<br />

by a l<strong>in</strong>ear s<strong>in</strong>gular differential-operator expression for first order with operator coefficients <strong>in</strong> Hilbert<br />

space of vector-functions <strong>in</strong> a right half-<strong>in</strong>f<strong>in</strong>ite <strong>in</strong>terval are described. Later on, a po<strong>in</strong>t spectrum of such<br />

extensions has been <strong>in</strong>vestigated.<br />

References<br />

[1] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models <strong>in</strong> Quantum Mechanics,<br />

Spr<strong>in</strong>ger, New-York, 1988.<br />

[2] A. Zettl, Sturm-Liouville Theory, Amer. Math. Soc., Ma<strong>the</strong>matical Survey and Monographs, vol.<br />

121, Rhode Island, 2005.<br />

[3] J. von Neumann, Allgeme<strong>in</strong>e Eigenwert<strong>the</strong>orie Hermitescher Funktional operatoren, Math. Ann.,<br />

102, 49-131, 1929-1930.<br />

[4] F. S. Rofe-Beketov, A. M. Kholk<strong>in</strong>, Spectral Analysis of Differential Operators, World Scientific<br />

Monograph Series <strong>in</strong> Ma<strong>the</strong>matics, vol. 7, (World Scientific Publish<strong>in</strong>g Co. Pte. Lad. Hanckensack, NJ),<br />

2005.<br />

[5] E. A. Codd<strong>in</strong>gton, Extension <strong>the</strong>ory of formally normal and symmetric subspaces, Mem. Amer.<br />

Math. Soc., 134, 1-80, 1973.<br />

[6] N. Dunford and J. T. Schwartz, L<strong>in</strong>ear Operators p.II, Second ed., Interscience, New York, 1963.<br />

[7] V. I. Gorbachuk and M. L. Gorbachuk, On boundary value problems for a first-order differential<br />

equation with operator coefficients and <strong>the</strong> expansion <strong>in</strong> eigenvectors of this equation, Soviet Math. Dokl.,<br />

v.14(1), 244-248, 1973.<br />

[8] E. Bairamov, R. Öztürk Mert and Z. Ismailov, Selfadjo<strong>in</strong>t extensions of a s<strong>in</strong>gular differential<br />

operator, J. Math. Chem., 50(5), 1100-1110, <strong>2012</strong>.<br />

[9] Z. Ismailov and R. Öztürk Mert, Normal extensions of a s<strong>in</strong>gular multipo<strong>in</strong>t differential operator<br />

of first order, Electronic Journal of Differential Equations, 36, 1-9, <strong>2012</strong>.<br />

Page 153


Reproduc<strong>in</strong>g Kernel Hilbert Space Method for Solv<strong>in</strong>g <strong>the</strong> Pollution Problem of Lakes<br />

Z. Karabulut 1 and V. S. Ertürk 2<br />

<strong>Abstract</strong><br />

1 Department of Ma<strong>the</strong>matics, Ondokuz May¬s University, Samsun, Turkey<br />

2 Department of Matehmatics,Ondokuz May¬s University, Samsun, Turkey<br />

Pollution is a major threat for our environment. Monitor<strong>in</strong>g pollution is <strong>the</strong> …rst step to save envi-<br />

ronment and has become possible with use of di¤erential equations. This study <strong>in</strong>cludes <strong>the</strong> problem of<br />

pollution of three lakes connected with pipes or channels [4]. Consider <strong>the</strong> follow<strong>in</strong>g ma<strong>the</strong>matical model<br />

describ<strong>in</strong>g <strong>the</strong> pollution of a system of lakes [1-3] :<br />

8<br />

><<br />

>:<br />

dx1<br />

dt<br />

= F13<br />

V3 x3(t) + p(t)<br />

dx3<br />

dt<br />

dx2<br />

dt<br />

= F21<br />

V1 x1(t)<br />

F31<br />

V1 x1(t)<br />

= F31<br />

V1 x1(t) + F32<br />

V2 x2(t)<br />

F32<br />

V2 x2(t)<br />

F21<br />

V1 x1(t)<br />

F13<br />

V3 x3(t)<br />

The approximate solutions are obta<strong>in</strong>ed with Reproduc<strong>in</strong>g Kernel Hilbert Space Method [5-6] for<br />

three di¤erent models: impulse, step and s<strong>in</strong>usoidal. The absolute errors are calculated by compar<strong>in</strong>g<br />

<strong>the</strong> numerical results to <strong>the</strong> analytic results. The errors are seen to be acceptable. All of <strong>the</strong> numerical<br />

computations have been calculated on a computer programme with MATHEMATICA .<br />

References<br />

[1] Yüzba¸s¬¸S., ¸Sah<strong>in</strong> N. and Sezer M., A Collocation Approach to Solv<strong>in</strong>g <strong>the</strong> Model of Pollution for<br />

a System of Lakes, Ma<strong>the</strong>matical and Computer Modell<strong>in</strong>g, 55, 330-341,<strong>2012</strong>.<br />

[2] Biazar J., Farrokhi L. and Islam M.R., Model<strong>in</strong>g <strong>the</strong> Pollution of a System of Lakes, Applied<br />

Ma<strong>the</strong>matics and Computation, 178, 423-430, 2006.<br />

[3] Biazar J., Shahbala M. and Ebrahimi H., VIM for Solv<strong>in</strong>g <strong>the</strong> Pollution Problem of a System of<br />

Lakes, Journal Control Science and Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 2010, 6 pages, 2010.<br />

[4] Aguirre J. and Tully D., Lake Pollution Model ,<br />

hhttp : ==onl<strong>in</strong>e:redwoods:cc:ca:us=<strong>in</strong>struct=darnold=deproj=Sp99=DarJoel=lakepollution:pdfi, 1999.<br />

[5] Geng F., Analytic Approximations of Solutions to Systems of Ord<strong>in</strong>ary Di¤erential Equations with<br />

Variable Coe¢ cients, Ma<strong>the</strong>matical Sciences,3(2), 133-146, 2009.<br />

[6] Li Y., Geng F. and Cui M., The Analytical Solution of a System of Nonl<strong>in</strong>ear Di¤erential Equations,<br />

International Journal of Ma<strong>the</strong>matical Analysis ,1(10), 451-462, 2007.<br />

Page 154<br />

(1)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!