WO2016204243A1 - Positioning method and positioning system - Google Patents

Positioning method and positioning system Download PDF

Info

Publication number
WO2016204243A1
WO2016204243A1 PCT/JP2016/067975 JP2016067975W WO2016204243A1 WO 2016204243 A1 WO2016204243 A1 WO 2016204243A1 JP 2016067975 W JP2016067975 W JP 2016067975W WO 2016204243 A1 WO2016204243 A1 WO 2016204243A1
Authority
WO
WIPO (PCT)
Prior art keywords
rss
rss value
positioning
wireless terminal
probe request
Prior art date
Application number
PCT/JP2016/067975
Other languages
French (fr)
Japanese (ja)
Inventor
忠信 潘
Original Assignee
忠信 潘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 忠信 潘 filed Critical 忠信 潘
Publication of WO2016204243A1 publication Critical patent/WO2016204243A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to a positioning system that measures the position of a wireless terminal having a wireless transmission function, and more particularly to a positioning method and a positioning system that can improve the accuracy of position detection of a wireless terminal.
  • the location information service is convenient for the user, but it also provides benefits for the service provider depending on how it is used. For example, a user's flow line can be known by providing a location information service. As a result, the behavior and orientation of the person can be estimated, so that the user's position information becomes important context information when developing the business. For this reason, it is expected that a technology capable of measuring the position (positioning) of a wireless terminal with high accuracy will become increasingly important in the future.
  • GPS Global Positioning System
  • a car navigation system detects the position of a vehicle using GPS, and provides surrounding information and driving route information to a destination.
  • GPS is used for applications based on various position information, but on the other hand, although it is effective outdoors, there is a problem that it is difficult to sufficiently receive a positioning satellite signal in an indoor environment.
  • GPS also has a problem that the accuracy of estimating the position of a wireless terminal in an indoor environment is low due to the problem that positioning accuracy is greatly affected by disturbance.
  • applications such as user flow management in indoor environments require positioning accuracy that is one digit higher than GPS. For this reason, various techniques for improving the accuracy of indoor positioning have been proposed.
  • WLAN positioning methods mainly include arrival time (Time of Arrival, abbreviation: TOA) positioning method, arrival time difference (Time Difference of Arrival, abbreviation: TDOA) positioning method, and received signal strength identifier (Received Signal Strength Identification, abbreviation). : RSS) positioning method.
  • TOA Time of Arrival
  • TDOA Time Difference of Arrival
  • RSS received signal strength identifier
  • One such RSS positioning method is a propagation model positioning method.
  • the signal strength at each position of the WLAN is calculated and the position of the wireless terminal is measured by utilizing the property that the signal transmitted in the air is attenuated by the propagation distance.
  • the RSS positioning method has a problem that it is easily affected by indoor noise, reflection, temperature, humidity, and crowded conditions, and therefore, an error is caused in the positioning result.
  • the RSS positioning method has an advantage that a positioning value can be obtained with a simple measuring device.
  • Patent Document 1 discloses a method for determining whether a signal between an access point and a terminal is affected by reflection in order to prevent degradation in positioning accuracy due to indoor reflection in the WLAN positioning method. Discloses a technique for improving the positioning accuracy. Specifically, the location service information of the AP in the set of measurement APs is acquired by the positioning server, the measurement 3AP in the set of measurement APs is selected according to a preset rule, and the first coordinates of the terminal are set.
  • Calculate obtain a calculated RSS value of any unmeasured AP of the measurement 3AP in the first coordinate according to a preset propagation model signal graph, and calculate the RSS value of the unmeasured AP as a measured RSS value and a preset threshold If it is not smaller than the difference between the measurement 3AP, it is determined that the signal of the unmeasured AP is not affected by reflection, it is determined whether all the measurement 3AP is measured according to the identifier of the AP, and all the measurement 3AP is measured
  • the first coordinate is used as the position coordinate of the terminal, and the terminal is positioned.
  • Patent Document 2 listed below receives a plurality of anchors from a plurality of anchors in a mobile terminal in a positioning method for positioning the position of a mobile terminal in order to achieve highly accurate positioning using RSS values in a positioning method, a positioning system, and a program.
  • the current wireless signal strength determine the range of the distance from each anchor of the mobile terminal from the relationship between the distance from the plurality of anchors to the mobile terminal and the wireless signal strength obtained in advance, from each determined anchor
  • the range of the position of the mobile terminal is narrowed down to the first range by the method of performing three-point positioning, and the distance from the two anchors to the mobile terminal that forms each combination for all combinations of the two anchors
  • a range of the position of the mobile terminal corresponding to the disturbance parameter is obtained from the range of the difference, and the range of the position of the mobile terminal thus obtained is calculated between the range of the position and the first range.
  • a second range that is formed in the region it discloses a technique for positioning the terminal.
  • the strength of the RSS value changes dynamically depending on the environmental conditions, so that there is a problem that it is not possible to cope with changes in the environment only by prior measurement.
  • distance attenuation varies depending on the location such as the center of the space or near the wall. Therefore, when modeling with one distance attenuation model, there is a problem that the estimation accuracy is reduced due to the mismatch of the distance attenuation models depending on the location.
  • an object of the present invention is to detect the position of a wireless terminal that moves in an indoor space based on the RSS value, even if the space of the moving wireless terminal is different, and RSS that is received from the same distance depending on the environment and time.
  • An object of the present invention is to provide a positioning method, a positioning system, and a positioning server that can detect the position of a wireless terminal with high accuracy even if the intensity of the value dynamically changes.
  • a probe request frame from a wireless terminal moving in a position measurement space is provided in the position measurement space, and the coordinate values are received by a plurality of known access points.
  • the positioning method for positioning the wireless terminal by an approximate curve representing the relationship between the RSS value of the probe request frame and the distance, Based on the RSS value of the beacon frame transmitted / received at a predetermined interval between the access points, an approximate curve representing the relationship between the RSS value and the distance is automatically applied, a plurality of the access points are selected, and the access points Positioning the position of the wireless terminal by applying the RSS value of the probe request frame received by each to the approximate curve.
  • the invention according to claim 2 is the positioning method according to claim 1, wherein at least three of the access points are selected, and the RSS value of the probe request frame received by the access points is automatically set to the approximate curve. Applicably applied, the position of the wireless terminal is measured by a three-point positioning method.
  • the invention according to claim 3 is the positioning method according to claim 1 or 2, wherein the RSS value of the beacon frame for obtaining the approximate curve is a plurality of RSS values obtained within a predetermined calculation period. Of these, the RSS value excluded according to a preset rule is processed, digitized, and calculated.
  • invention of Claim 4 is the positioning method of Claim 1 or 2, Comprising:
  • frame applied to an approximated curve is the said some RSS obtained within the predetermined
  • a fifth aspect of the present invention is the positioning method according to any one of the first to fourth aspects, wherein the approximate curve is obtained by the following mathematical formula 1.
  • (Formula 1) RSS value: Received signal strength (dBm), D: Distance (m), constant n: Rate constant at which the signal attenuates
  • dBm Received signal strength
  • D Distance
  • n Rate constant at which the signal attenuates
  • A RSS value 1 meter away from the destination access point
  • the invention according to claim 6 is the positioning method according to any one of claims 1 to 5, wherein the distance between the selected access points does not exceed 10 meters.
  • the invention according to claim 7 is the positioning method according to any one of claims 3 to 6, wherein the calculation period is shifted by a predetermined time and the calculation period is repeated a plurality of times to obtain the plurality of RSS values. It is characterized by.
  • a plurality of access points for receiving a probe request frame from a wireless terminal moving in a position measurement space, the coordinate values of which are known, and the probe request frame received by the access point are accessed.
  • An access log collection server that records as an access log for each point and / or the position measurement space, and an approximate curve that represents a relationship between an RSS value and a distance of the probe request frame recorded in the access log collection server.
  • the access point includes a receiving unit that receives a beacon frame transmitted by another access point and its RSS value
  • the access log collection server includes a recording unit that records the RSS value and beacon frame received by the access point for each access point and / or the location measurement space
  • the positioning server automatically and adaptively calculates an approximate curve representing a relationship between an RSS value and a distance from an RSS value of a beacon frame recorded in the recording unit and a coordinate value of the access point, and the probe request
  • a positioning system comprising a coordinate calculation engine that applies an RSS value of a frame to the approximate curve and calculates coordinates of the wireless terminal.
  • the invention according to claim 9 is the positioning system according to claim 8, wherein the coordinate calculation engine is set in advance among RSS values of the plurality of beacon frames obtained in a predetermined calculation period. An RSS value other than those excluded according to the rules is processed under a predetermined condition and converted into a numerical value to obtain the approximate curve.
  • the invention according to claim 10 is the positioning system according to claim 8, wherein the coordinate calculation engine is set in advance among RSS values of the plurality of probe request frames obtained in a predetermined calculation period. An RSS value other than those excluded according to the rules is processed under a predetermined condition, digitized, applied to the approximate curve, and means for positioning the position of the wireless terminal is provided.
  • the invention according to claim 11 is the positioning system according to any one of claims 8 to 10, wherein the coordinate calculation engine processes and specifies the RSS value while shifting the calculation period by a predetermined time. It is provided with.
  • the present invention in the technology for detecting the position of a wireless terminal moving in an indoor space based on the RSS value, even if the space of the moving wireless terminal is different, it is received from the same distance depending on the environment and time. It is possible to provide a positioning method, a positioning system, and a positioning server capable of detecting a position with high accuracy even when the strength of the ground to be changed dynamically.
  • FIG. 6 is a diagram illustrating a data structure that an access point 110 transmits to an access log collection server 30.
  • FIG. It is a coordinate calculation process flowchart. It is the flowchart which showed the processing flow of calibration. It is the figure which showed the outlier filtering process typically. It is the figure which calculated
  • FIG. 1 is a configuration diagram of a positioning system 1 according to an embodiment of the present invention.
  • the positioning system 1 can estimate the position of the radio terminal 100 moving in such a location, such as the position measurement space 10, for example, the 1F or 2F floor of a mall street. Moreover, the flow line can be managed.
  • the position measurement space 10 is preferably provided with at least three or more access points 110. This is because the position of the wireless terminal 100 is estimated by the three-point positioning method.
  • the wireless terminal 100 transmits a probe request frame to the access point 110 in the position measurement space 10.
  • the access point 110 receives this, authenticates the wireless terminal 100, and permits connection to the WLAN network 20.
  • the wireless terminal 100 can access the WLAN server and the Internet.
  • the access log collection server 30 and the positioning server 40 are connected to the WLAN network 20.
  • the access log collection server 30 classifies the data included in the probe request frame (Probe Request Frame) transmitted from the wireless terminal 100 to the access point 110 for each position measurement space 10 and stores the data in the access log database 50.
  • the access log collection server 30 similarly accumulates data included in a beacon frame (beacon frame) described later in the access log database 50.
  • the positioning server 40 calculates the coordinates of the wireless terminal 100 based on the access log data stored in the access log database 50, classifies the positioning results of the terminal for each position positioning space 10, and stores them in the positioning result database 60. Output.
  • FIG. 2 shows positioning in which the position of the wireless terminal 100 is measured using a received signal strength identifier (Received Signal Strength Identification, abbreviated as RSS) included in a probe request frame transmitted from the wireless terminal 100 to the access point 110.
  • RSS Received Signal Strength Identification
  • 3 is a block diagram illustrating functions of devices included in the system 1.
  • FIG. FIG. 3 is a diagram showing a data structure that the access point 110 transmits to the access log collection server 30.
  • the wireless terminal 100 transmits a probe request frame to the access point 110 installed in the space where the wireless terminal 100 is located.
  • Each access point 110 receives the probe request frame transmitted from the wireless terminal 100, and when receiving the probe request frame from the wireless terminal 100, the RSS value, the frame type, the reception time, the MAC address of the wireless terminal (Media Access Record Control (address) etc.
  • each access point 110 transmits a probe response frame (Probe Response Frame) in response to the probe request frame from the wireless terminal 100.
  • the access point includes a receiving unit that receives beacon frames transmitted from other access points at predetermined intervals. That is, by providing a function that each access point can receive a beacon frame that has been received only by the wireless terminal 100 in the past, it is possible to know the RSS value of a beacon frame transmitted / received between access points with known coordinate values. it can. Thereby, the relationship between the dynamically changing distance and the RSS value can be automatically applied.
  • the access point 110 receives the probe request frame and the beacon frame, its own IP address, the frame type indicating the type of the probe request frame or the beacon frame, and the wireless terminal that has transmitted the probe request frame.
  • the MAC address and the received RSS value are transmitted to the access log collection unit 300 provided in the access log collection server 30 in a data structure as shown in FIG.
  • the access log collection unit 300 classifies the IP address, the type of the received probe request frame or beacon frame transmitted from the access point 110 for each position measurement space 10 and records it in the access log database 50.
  • the coordinate calculation engine 400 provided in the positioning server 40 calculates the coordinates of the wireless terminal 100 based on the data recorded in the access log database 50 and records the result in the positioning result database 60.
  • the coordinate calculation engine 400 obtains a position correspondence table 600 indicating the correspondence between the access point and the position of the wireless terminal.
  • FIG. 4 is a coordinate calculation processing flowchart showing the overall processing flow in which the coordinate calculation engine 400 calculates the coordinates of the wireless terminal 100 based on the data recorded in the access log database 50.
  • the coordinates of the access point 110 are mapped (S1).
  • the coordinates of at least three or more access points are set.
  • an access log that is a log that the wireless terminal 100 has accessed the access point 110 is processed in time series. If such processing is performed for a certain period, for example, 5 seconds, the access logs collected in 5 seconds are collectively processed for each wireless terminal 100 (for each MAC address) (S2).
  • the setting of the calculation period is to make it easy to exclude error signals in a filtering process described later.
  • the coordinate calculation engine 400 reads the access log data (S3), and executes calibration for each access point 110 (S4). By performing such calibration at predetermined intervals, even if the position measurement space 10 of the wireless terminal 100 moving in the indoor space is different, and even if the strength of the RSS value received from the same distance changes depending on the environment at that time The position of the wireless terminal 100 can be estimated with high accuracy.
  • FIG. 5 is a flowchart showing a calibration processing flow.
  • the calibration first, one access point 110 installed in the position measurement space 10 is selected (S41). Next, all beacon frame logs having the selected access point 110 as a transmission source are acquired (S42).
  • the beacon frames transmitted with the selected access point 110 as the transmission destination are classified for each access point 110 of the transmission destination, and an outlier filtering process for excluding outliers of the RSS value is executed (S43).
  • outlier filtering processing includes filtering processing according to environmental conditions such as Smirnov-Grubbs test and Thompson test, assuming that the deviation is divided by unbiased standard deviation, normal distribution, etc. preferable.
  • outlier filtering processing as shown in FIG. 6 is performed.
  • the RSS values of all beacon frames (S42) acquired within the calculation period are sorted in ascending order to obtain the overall median value (M1) of the RSS values.
  • the median value (M2) of the minimum RSS value (RSS1) and the overall median value (M1), and the median value (M3) of the overall median value (M1) and the maximum RSS value (RSSn) And RSS values not included between M2 and M3 are excluded as outliers (filtering process). After excluding outliers in this way, the median RSS value is determined.
  • FIG. 7A illustrates the RSS value within the calculation period from the RSS value (median value) after performing the above-described outlier processing and the distribution map of access points (distance between access points is known). It is the table
  • FIG. 7B is an approximate straight line between the distance obtained from FIG. 7A and the RSS value.
  • the constants n and A are determined by the above equation 1 (S45), the presence or absence of the next log data is checked, and if there is log data, the process returns to S41 again to select the constant n and constant A from the access point selection (S42). When the processing is completed for all log data, the calibration is terminated (S46).
  • the constant A can be obtained, for example, by providing at least one access point 1 meter away in the position measurement space 10.
  • the probe request frame within the calculation period is divided into the destination access point and the MAC address of the wireless terminal, and the outlier filtering is performed, for example, by applying outlier filtering processing as shown in FIG.
  • the value is applied to the approximate curve obtained earlier to obtain the distance between the wireless terminal 100 and the access point 110 (S5).
  • the optimum approximate curve is automatically applied according to the change in the environment of the position measurement space 10 (automatically applicable), and thus the wireless terminal 100 with high accuracy. Can be estimated.
  • the coordinate calculation engine 400 selects the three access points 110 in order of distance from the wireless terminal 100, and calculates the coordinates of the access point 110 and the distance of the wireless terminal 100 from the access point (S5).
  • the position of the wireless terminal 100 is determined by three-point positioning of the coordinates of the wireless terminal 100 obtained from the three access points 110 (S6), and the coordinates of the wireless terminal 60 are recorded in the positioning result database 60 (S7).
  • access point 1 is access point 2 ⁇ ⁇ ⁇ ⁇ (AP2)
  • access point 5 preferably uses all the access points (AP1 to AP4, AP6) as objects of the calibration process.
  • the angle between the selected access point and the access point is smaller than 15 °, the accuracy of the three-point positioning method is lowered. Therefore, select at least three access points whose angle between the access points is larger than 15 °. It is preferable to do.
  • FIG. 9 is a diagram showing the relationship between the calculation period and the shift period. As shown in FIG. 9, when setting the calculation period, it is preferable to provide calibration by shifting the calculation period by a certain period (shift period). This is because the position of the wireless terminal can be determined with high accuracy from the RSS value by setting the calculation period and the shift period.
  • the position of the wireless terminal can be detected with high accuracy even if the space of the moving wireless terminal is different or the strength of the RSS value received from the same distance changes dynamically according to the environment and time.
  • a positioning method, a positioning system, and a positioning server can be provided.

Abstract

[Problem] To provide a positioning method, positioning system, and positioning server capable of accurately detecting the position of a wireless terminal that moves in an indoor space. [Solution] The present invention is a positioning method that receives a probe request frame from a wireless terminal moving in a position measurement space by at least three access points with known coordinate values that are provided in the position measurement space and that positions the wireless terminal with the RSS value of the received probe request frame, wherein the method autoadaptively finds with the RSS value of a beacon frame that is sent and received at a predetermined interval between the access points an approximate curve that expresses the relationship between the RSS value and distance, selects at least three of the access points, applies the RSS value of the probe request frame received by the access points to the respective approximate curve obtained just prior, and determines the position of the wireless terminal by a three-point positioning method.

Description

測位方法、測位システムPositioning method, positioning system
本発明は、無線送信機能を持つ無線端末の位置を測定する測位システムに関し、特に、無線端末の位置検出の精度を高めることのできる測位方法、測位システムに関する。 The present invention relates to a positioning system that measures the position of a wireless terminal having a wireless transmission function, and more particularly to a positioning method and a positioning system that can improve the accuracy of position detection of a wireless terminal.
近年、携帯電話やスマートフォンに代表される無線端末の新しいサービスとして、無線端末の位置をリアルタイムに計測して、その周辺でサービスを提供している施設を地図上に提示する位置情報サービスが提案されている。ユーザはそうした位置情報サービスに基づいて、目的とするサービスを提供している施設の場所を知り、そこに迷うことなく行くことができる。 In recent years, as a new service for wireless terminals typified by mobile phones and smartphones, a position information service has been proposed in which the location of wireless terminals is measured in real time and the facilities providing the service in the vicinity are displayed on a map. ing. Based on such location information service, the user knows the location of the facility providing the target service and can go there without hesitation.
位置情報サービスは、ユーザにとって便利なものであるが、サービスを提供する側にとっても、その使い方によってはメリットをもたらす。例えば、位置情報サービスを提供することでユーザの動線を知ることができる。これによりその人の行動や志向を推定できるので、ユーザの位置情報はビジネスを展開していく上で重要なコンテクスト情報となる。このため、無線端末の位置の測定(測位)を高精度で行える技術は、今後、ますます重要になると予想される。 The location information service is convenient for the user, but it also provides benefits for the service provider depending on how it is used. For example, a user's flow line can be known by providing a location information service. As a result, the behavior and orientation of the person can be estimated, so that the user's position information becomes important context information when developing the business. For this reason, it is expected that a technology capable of measuring the position (positioning) of a wireless terminal with high accuracy will become increasingly important in the future.
無線端末の位置測定技術の代表的な例としては、GPS(Global Positioning System)の利用があげられる。カーナビゲーションシステムは、GPSを用いて車の位置を検出し、周囲情報や目的地までの運転経路情報を与える。GPSは様々な位置情報に基づくアプリケーションに使われているが、一方において屋外では有効であるものの、屋内環境では測位衛星の信号を十分に受信することが難しいという問題がある。また、GPSは測位精度が外乱に大きく影響される等の問題から、屋内環境における無線端末の位置の推定精度が低くなるという問題もある。さらに、屋内環境でのユーザの動線管理といったアプリケーションでは、GPSに比べ、一桁以上高い測位精度が求められる。このため、屋内での測位の精度を向上する各種技術が提案されている。 As a typical example of the position measurement technology of a wireless terminal, use of GPS (Global Positioning System) can be mentioned. A car navigation system detects the position of a vehicle using GPS, and provides surrounding information and driving route information to a destination. GPS is used for applications based on various position information, but on the other hand, although it is effective outdoors, there is a problem that it is difficult to sufficiently receive a positioning satellite signal in an indoor environment. GPS also has a problem that the accuracy of estimating the position of a wireless terminal in an indoor environment is low due to the problem that positioning accuracy is greatly affected by disturbance. Furthermore, applications such as user flow management in indoor environments require positioning accuracy that is one digit higher than GPS. For this reason, various techniques for improving the accuracy of indoor positioning have been proposed.
屋内での測位技術の一つとして、無線ローカルエリア・ネットワーク(Wireless Local Area Network:略称 WLAN)を使った測位方法がある。WLAN測位方法は、主として、到達時間(Time of Arrival,略称:TOA)測位方法と、到着時刻差(Time Difference of Arrival,略称:TDOA)測位方法と、受信信号強度識別子(Received Signal Strength Identification,略称:RSS)測位法がある。 As one of indoor positioning technologies, there is a positioning method using a wireless local area network (abbreviated as “WLAN”). WLAN positioning methods mainly include arrival time (Time of Arrival, abbreviation: TOA) positioning method, arrival time difference (Time Difference of Arrival, abbreviation: TDOA) positioning method, and received signal strength identifier (Received Signal Strength Identification, abbreviation). : RSS) positioning method.
かかるRSS測位法の一つに伝搬モデル測位法がある。伝搬モデル測位法は、空気中を伝わる信号が伝搬する距離により減衰する性質を利用して、WLANの各位置における信号強度を計算し、無線端末の位置を測位する、というものである。しかし、RSS測位方法は、屋内の雑音、反射、気温、湿度、人の混雑状況により影響を受けやすく、そのため測位結果に誤りがもたらされる、という問題がある。一方においてRSS測位方法は、簡易な測定装置で測位値が得られるというメリットがある。 One such RSS positioning method is a propagation model positioning method. In the propagation model positioning method, the signal strength at each position of the WLAN is calculated and the position of the wireless terminal is measured by utilizing the property that the signal transmitted in the air is attenuated by the propagation distance. However, the RSS positioning method has a problem that it is easily affected by indoor noise, reflection, temperature, humidity, and crowded conditions, and therefore, an error is caused in the positioning result. On the other hand, the RSS positioning method has an advantage that a positioning value can be obtained with a simple measuring device.
下記特許文献1は、WLAN測位方法における屋内の反射による測位精度の低下を防止するため、アクセスポイントと端末との間での信号が反射によって影響を及ぼされているかどうかを判断することによって、端末の測位精度を向上させる技術を開示している。具体的には、測位サーバによって測定APのセットの中のAPの位置サービス情報を取得し、測定APのセットの中の測定3APを予め設定された規則に従って選択し、端末の第1の座標を計算し、第1の座標における測定3APの任意の未測定APの計算RSS値を予め設定された伝搬モデル信号グラフに従って取得し、未測定APの計算RSS値が測定RSS値と予め設定された閾値との差より小さくない場合、未測定APの信号は反射によって影響を及ぼされていないと判断し、APの識別子に従って測定3APが全て測定されたかどうかを判断し、測定3APが全て測定された場合、第1の座標を端末の位置座標として使用し、端末を測位するというものである。 The following Patent Document 1 discloses a method for determining whether a signal between an access point and a terminal is affected by reflection in order to prevent degradation in positioning accuracy due to indoor reflection in the WLAN positioning method. Discloses a technique for improving the positioning accuracy. Specifically, the location service information of the AP in the set of measurement APs is acquired by the positioning server, the measurement 3AP in the set of measurement APs is selected according to a preset rule, and the first coordinates of the terminal are set. Calculate, obtain a calculated RSS value of any unmeasured AP of the measurement 3AP in the first coordinate according to a preset propagation model signal graph, and calculate the RSS value of the unmeasured AP as a measured RSS value and a preset threshold If it is not smaller than the difference between the measurement 3AP, it is determined that the signal of the unmeasured AP is not affected by reflection, it is determined whether all the measurement 3AP is measured according to the identifier of the AP, and all the measurement 3AP is measured The first coordinate is used as the position coordinate of the terminal, and the terminal is positioned.
下記特許文献2は、測位方法、測位システム及びプログラムにおいて、RSS値を利用して高精度の測位を実現するために、携帯端末の位置を測位する測位方法において、携帯端末で複数のアンカーから受ける現在の無線信号強度を取得し、予め求められている複数のアンカーから携帯端末までの距離と無線信号強度の関係から携帯端末の各アンカーからの距離の範囲を決定し、決定された各アンカーからの距離の範囲により、携帯端末の位置の範囲を三点測位を行う方法で第1の範囲に絞り込み、2つのアンカーの全ての組み合わせについて各組み合わせを形成する2つのアンカーから携帯端末までの距離の差の範囲から、外乱パラメータに応じた携帯端末の位置の範囲を求め、求めた携帯端末の位置の範囲を当該位置の範囲と第1の範囲との積領域で形成された第2の範囲まで絞り込み、端末を測位する技術を開示している。 Patent Document 2 listed below receives a plurality of anchors from a plurality of anchors in a mobile terminal in a positioning method for positioning the position of a mobile terminal in order to achieve highly accurate positioning using RSS values in a positioning method, a positioning system, and a program. Obtain the current wireless signal strength, determine the range of the distance from each anchor of the mobile terminal from the relationship between the distance from the plurality of anchors to the mobile terminal and the wireless signal strength obtained in advance, from each determined anchor The range of the position of the mobile terminal is narrowed down to the first range by the method of performing three-point positioning, and the distance from the two anchors to the mobile terminal that forms each combination for all combinations of the two anchors A range of the position of the mobile terminal corresponding to the disturbance parameter is obtained from the range of the difference, and the range of the position of the mobile terminal thus obtained is calculated between the range of the position and the first range. Refine to a second range that is formed in the region, it discloses a technique for positioning the terminal.
このようにRSS値に基づく位置検出技術では、受信信号強度から距離を算出するのに、その環境における距離減衰のモデル化が必要である。このため、上述した特許文献1、特許文献2は、いずれも予め、使用環境で様々な位置・距離でRSS値を実測し、距離と信号強度との近似曲線を求め、伝搬環境をモデル化している。そのため、位置推定精度は距離減衰モデルの近似精度に大きく依存する。また、距離減衰モデルを得るために事前実測を行い、かかる事前実測に基づいた距離減衰モデルをもとにして無線端末の位置を推定している。 As described above, in the position detection technique based on the RSS value, in order to calculate the distance from the received signal strength, it is necessary to model distance attenuation in the environment. For this reason, both of Patent Document 1 and Patent Document 2 described above measure RSS values at various positions and distances in the use environment in advance, obtain approximate curves of distance and signal strength, and model the propagation environment. Yes. Therefore, the position estimation accuracy greatly depends on the approximation accuracy of the distance attenuation model. Further, prior measurement is performed to obtain a distance attenuation model, and the position of the wireless terminal is estimated based on the distance attenuation model based on the prior measurement.
しかし、実環境においては、RSS値の強度は環境条件により動的に変化するため、事前実測だけでは環境の変化に対応できない、という問題がある。また、距離減衰は、空間の中央や壁際など場所によって異なるため、一つの距離減衰モデルでモデル化した場合、場所による距離減衰モデルの不一致が原因となり、推定精度が低下する、という問題がある。 However, in the actual environment, the strength of the RSS value changes dynamically depending on the environmental conditions, so that there is a problem that it is not possible to cope with changes in the environment only by prior measurement. In addition, distance attenuation varies depending on the location such as the center of the space or near the wall. Therefore, when modeling with one distance attenuation model, there is a problem that the estimation accuracy is reduced due to the mismatch of the distance attenuation models depending on the location.
特開2013-221943号公報JP 2013-221943 A 特開2012-255673号公報JP 2012-255673 A
 そこで、本発明の課題は、屋内空間を移動する無線端末の位置をRSS値に基づいて検出する技術において、移動する無線端末の空間が異なっても、また環境や時刻によって等距離から受信するRSS値の強度が動的に変化しても、高精度に無線端末の位置が検出可能な測位方法、及び測位システム、ならびに測位サーバを提供することにある。 Accordingly, an object of the present invention is to detect the position of a wireless terminal that moves in an indoor space based on the RSS value, even if the space of the moving wireless terminal is different, and RSS that is received from the same distance depending on the environment and time. An object of the present invention is to provide a positioning method, a positioning system, and a positioning server that can detect the position of a wireless terminal with high accuracy even if the intensity of the value dynamically changes.
 請求項1に記載の発明は、位置測定空間を移動する無線端末からのプローブ要求フレームを、前記位置測定空間内に設けられ、その座標値が既知の複数のアクセスポイントで受信し、受信した前記プローブ要求フレームのRSS値と距離との関係を表す近似曲線により、前記無線端末を測位する測位方法において、
前記アクセスポイント間で、所定の間隔で送受信されるビーコンフレームのRSS値により、RSS値と距離との関係を表す近似曲線を自動適用的にもとめ、複数の前記アクセスポイントを選択し、前記アクセスポイントが受信する前記プローブ要求フレームのRSS値を、前記近似曲線にそれぞれ適用し、前記無線端末の位置を測位することを特徴とする測位方法
According to the first aspect of the present invention, a probe request frame from a wireless terminal moving in a position measurement space is provided in the position measurement space, and the coordinate values are received by a plurality of known access points. In the positioning method for positioning the wireless terminal by an approximate curve representing the relationship between the RSS value of the probe request frame and the distance,
Based on the RSS value of the beacon frame transmitted / received at a predetermined interval between the access points, an approximate curve representing the relationship between the RSS value and the distance is automatically applied, a plurality of the access points are selected, and the access points Positioning the position of the wireless terminal by applying the RSS value of the probe request frame received by each to the approximate curve.
請求項2に記載の発明は、請求項1に記載の測位方法であって、少なくとも3つの前記アクセスポイントを選択し、前記アクセスポイントが受信する前記プローブ要求フレームのRSS値を前記近似曲線に自動適用的に適用し、3点測位法により前記無線端末の位置を測位することを特徴とする。 The invention according to claim 2 is the positioning method according to claim 1, wherein at least three of the access points are selected, and the RSS value of the probe request frame received by the access points is automatically set to the approximate curve. Applicably applied, the position of the wireless terminal is measured by a three-point positioning method.
 請求項3に記載の発明は、請求項1又は2に記載の測位方法であって、前記近似曲線を求める前記ビーコンフレームのRSS値は、所定の計算期間内に得られた複数の前記RSS値のうち、予め設定された規則に従って除外したRSS値を処理し数値化し算出することを特徴とする。 The invention according to claim 3 is the positioning method according to claim 1 or 2, wherein the RSS value of the beacon frame for obtaining the approximate curve is a plurality of RSS values obtained within a predetermined calculation period. Of these, the RSS value excluded according to a preset rule is processed, digitized, and calculated.
 請求項4に記載の発明は、請求項1又は2に記載の測位方法であって、近似曲線に適用する前記プローブ要求フレームのRSS値は、所定の計算期間内に得られた複数の前記RSS値のうち、予め設定された規則に従って除外したRSS値を処理し数値化したものであることを特徴とする。 Invention of Claim 4 is the positioning method of Claim 1 or 2, Comprising: The RSS value of the said probe request | requirement flame | frame applied to an approximated curve is the said some RSS obtained within the predetermined | prescribed calculation period. Among the values, the RSS values excluded according to a preset rule are processed and digitized.
 請求項5に記載の発明は、請求項1から4のいずれかに記載の測位方法であって、前記近似曲線は、下記数式1により求めることを特徴とする。
Figure JPOXMLDOC01-appb-I000002
(数式1)
ここで、
RSS値:受信信号強度 (dBm),D:距離 (m),定数n:信号が減衰する割合
定数A:送信先アクセスポインから1メートル離れたところのRSS値
A fifth aspect of the present invention is the positioning method according to any one of the first to fourth aspects, wherein the approximate curve is obtained by the following mathematical formula 1.
Figure JPOXMLDOC01-appb-I000002
(Formula 1)
here,
RSS value: Received signal strength (dBm), D: Distance (m), constant n: Rate constant at which the signal attenuates A: RSS value 1 meter away from the destination access point
 請求項6に記載の発明は、請求項1から5のいずれかに記載の測位方法であって、前記選択されたアクセスポイント間の距離は、10メートルを超えないことを特徴とする。 The invention according to claim 6 is the positioning method according to any one of claims 1 to 5, wherein the distance between the selected access points does not exceed 10 meters.
 請求項7に記載の発明は、請求項3から6のいずれかに記載の測位方法であって、前記計算期間を所定の時間ずらして前記計算期間を複数回繰り返し前記複数のRSS値を得ることを特徴とする。 The invention according to claim 7 is the positioning method according to any one of claims 3 to 6, wherein the calculation period is shifted by a predetermined time and the calculation period is repeated a plurality of times to obtain the plurality of RSS values. It is characterized by.
 請求項8に記載の発明は、位置測定空間を移動する無線端末からのプローブ要求フレームを受信するその座標値が既知の複数のアクセスポイントと、前記アクセスポイントが受信した前記プローブ要求フレームを前記アクセスポイント及び/又は前記位置測定空間ごとにアクセスログとして記録するアクセスログ収集サーバと、前記アクセスログ収集サーバに記録された前記プローブ要求フレームのRSS値と距離との関係を表す近似曲線により、前記無線端末の位置を測位する測位サーバとを備えた測位システムにおいて、
前記アクセスポイントは、他のアクセスポイントが送信するビーコンフレームとそのRSS値とを受信する受信部を含み、
前記アクセスログ収集サーバは、前記アクセスポイントが受信した前記RSS値とビーコンフレームとを、前記アクセスポイント及び/又は前記位置測定空間ごとに記録する記録部を含み、
前記測位サーバは、前記記録部に記録されているビーコンフレームのRSS値と前記アクセスポイントの座標値から、RSS値と距離との関係を表す近似曲線を自動適用的に算出するとともに、前記プローブ要求フレームのRSS値を前記近似曲線に適用し、前記無線端末の座標を計算する座標計算エンジンを備えたことを特徴とする測位システムである。
According to an eighth aspect of the present invention, a plurality of access points for receiving a probe request frame from a wireless terminal moving in a position measurement space, the coordinate values of which are known, and the probe request frame received by the access point are accessed. An access log collection server that records as an access log for each point and / or the position measurement space, and an approximate curve that represents a relationship between an RSS value and a distance of the probe request frame recorded in the access log collection server. In a positioning system equipped with a positioning server that measures the position of a terminal,
The access point includes a receiving unit that receives a beacon frame transmitted by another access point and its RSS value,
The access log collection server includes a recording unit that records the RSS value and beacon frame received by the access point for each access point and / or the location measurement space,
The positioning server automatically and adaptively calculates an approximate curve representing a relationship between an RSS value and a distance from an RSS value of a beacon frame recorded in the recording unit and a coordinate value of the access point, and the probe request A positioning system comprising a coordinate calculation engine that applies an RSS value of a frame to the approximate curve and calculates coordinates of the wireless terminal.
請求項9に記載の発明は、請求項8に記載の測位システムであって、前記座標計算エンジンは、所定の計算期間に得られた複数の前記ビーコンフレームのRSS値のうち、予め設定された規則に従って除外した以外のRSS値を所定の条件で処理し数値化し、前記近似曲線を求める手段を備えたことを特徴とする。 The invention according to claim 9 is the positioning system according to claim 8, wherein the coordinate calculation engine is set in advance among RSS values of the plurality of beacon frames obtained in a predetermined calculation period. An RSS value other than those excluded according to the rules is processed under a predetermined condition and converted into a numerical value to obtain the approximate curve.
請求項10に記載の発明は、請求項8に記載の測位システムであって、前記座標計算エンジンは、所定の計算期間に得られた複数の前記プローブ要求フレームのRSS値のうち、予め設定された規則に従って除外した以外のRSS値を所定の条件で処理し数値化し、前記近似曲線に適用し、前記無線端末の位置を測位する手段を備えたことを特徴とする。 The invention according to claim 10 is the positioning system according to claim 8, wherein the coordinate calculation engine is set in advance among RSS values of the plurality of probe request frames obtained in a predetermined calculation period. An RSS value other than those excluded according to the rules is processed under a predetermined condition, digitized, applied to the approximate curve, and means for positioning the position of the wireless terminal is provided.
 請求項11に記載の発明は、請求項8から10のいずれかに記載の測位システムであって、前記座標計算エンジンは、前記計算期間を所定の時間ずらしながら前記RSS値を処理・特定する手段を備えたことを特徴とする。 The invention according to claim 11 is the positioning system according to any one of claims 8 to 10, wherein the coordinate calculation engine processes and specifies the RSS value while shifting the calculation period by a predetermined time. It is provided with.
 上述したように本発明によれば、屋内空間を移動する無線端末の位置をRSS値に基づいて検出する技術において、移動する無線端末の空間が異なっても、また環境や時刻によって等距離から受信する地の強度が動的に変化しても、高精度に位置を検出可能な測位方法、及び測位システム、ならびに測位サーバを提供することができる。 As described above, according to the present invention, in the technology for detecting the position of a wireless terminal moving in an indoor space based on the RSS value, even if the space of the moving wireless terminal is different, it is received from the same distance depending on the environment and time. It is possible to provide a positioning method, a positioning system, and a positioning server capable of detecting a position with high accuracy even when the strength of the ground to be changed dynamically.
本発明の一実施の形態である測位システム1の構成図である。It is a lineblock diagram of positioning system 1 which is one embodiment of the present invention. 無線端末100からのRSS値を用いて、無線端末100の位置を測位する測位システムを構成する各装置の機能を模式的に示した図である。It is the figure which showed typically the function of each apparatus which comprises the positioning system which measures the position of the radio | wireless terminal 100 using the RSS value from the radio | wireless terminal 100. FIG. アクセスポイント110が、アクセスログ収集サーバ30に送信するデータ構造を示した図である。6 is a diagram illustrating a data structure that an access point 110 transmits to an access log collection server 30. FIG. 座標計算処理フローチャートである。It is a coordinate calculation process flowchart. キャリブレーションの処理フローを示したフローチャートである。It is the flowchart which showed the processing flow of calibration. 外れ値フィルタリング処理を模式的に示した図である。It is the figure which showed the outlier filtering process typically. 距離とRSS値との関係を求めた図である。It is the figure which calculated | required the relationship between distance and an RSS value. アクセスポイント間の距離により選択するアクセスポイントを示した図である。It is the figure which showed the access point selected by the distance between access points. 計算期間とシフト期間との関係を示した図である。It is the figure which showed the relationship between a calculation period and a shift period.
 以下、本発明の一実施の形態について図面を参照して説明する。図1は、本発明の一実施の形態である測位システム1の構成図である。測位システム1により、位置測定空間10、例えばモール街の1F、あるいは2Fフロアー等であるが、そのような場所を移動する無線端末100の位置を推定することができる。また、その動線を管理することができる。なお、位置測定空間10には、少なくとも3つ以上のアクセスポイント110が設けられていることが好ましい。3点測位方式により無線端末100の位置を推定するためである。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a positioning system 1 according to an embodiment of the present invention. The positioning system 1 can estimate the position of the radio terminal 100 moving in such a location, such as the position measurement space 10, for example, the 1F or 2F floor of a mall street. Moreover, the flow line can be managed. The position measurement space 10 is preferably provided with at least three or more access points 110. This is because the position of the wireless terminal 100 is estimated by the three-point positioning method.
 無線端末100は位置測定空間10内において、アクセスポイント110に対しプローブ要求フレームを送信する。アクセスポイント110はこれを受信し無線端末100を認証し、WLANネットワーク20への接続を許可する。これにより無線端末100は、WLANサーバやインターネットにアクセスすることができる。 The wireless terminal 100 transmits a probe request frame to the access point 110 in the position measurement space 10. The access point 110 receives this, authenticates the wireless terminal 100, and permits connection to the WLAN network 20. As a result, the wireless terminal 100 can access the WLAN server and the Internet.
 WLANネットワーク20には、アクセスログ収集サーバ30と測位サーバ40とが接続している。アクセスログ収集サーバ30は、無線端末100がアクセスポイント110に送信したプローブ要求フレーム(Probe Request Frame)に含まれるデータを位置測定空間10ごとに分類して、アクセスログデータベース50に蓄積する。また、アクセスログ収集サーバ30は後述するビーコンフレーム(Beacon Frame)に含まれるデータを同様にアクセスログデータベース50に蓄積する。 The access log collection server 30 and the positioning server 40 are connected to the WLAN network 20. The access log collection server 30 classifies the data included in the probe request frame (Probe Request Frame) transmitted from the wireless terminal 100 to the access point 110 for each position measurement space 10 and stores the data in the access log database 50. In addition, the access log collection server 30 similarly accumulates data included in a beacon frame (beacon frame) described later in the access log database 50.
 測位サーバ40は、アクセスログデータベース50に蓄積されたアクセスログデータに基づいて、無線端末100の座標計算を行い、その端末の測位結果を位置測位空間10ごとに分類して、測位結果データベース60に出力する。 The positioning server 40 calculates the coordinates of the wireless terminal 100 based on the access log data stored in the access log database 50, classifies the positioning results of the terminal for each position positioning space 10, and stores them in the positioning result database 60. Output.
 図2は、無線端末100がアクセスポイント110に対して送信するプローブ要求フレームに含まれる受信信号強度識別子(Received Signal Strength Identification,略称:RSS))を用いて、無線端末100の位置を測位する測位システム1を構成する各装置の機能を示したブロック図である。また、図3はアクセスポイント110が、アクセスログ収集サーバ30に送信するデータ構造を示した図である。 FIG. 2 shows positioning in which the position of the wireless terminal 100 is measured using a received signal strength identifier (Received Signal Strength Identification, abbreviated as RSS) included in a probe request frame transmitted from the wireless terminal 100 to the access point 110. 3 is a block diagram illustrating functions of devices included in the system 1. FIG. FIG. 3 is a diagram showing a data structure that the access point 110 transmits to the access log collection server 30.
図2において、無線端末100は自身が位置する空間に設置されているアクセスポイント110に対し、プローブ要求フレームを送信する。各アクセスポイント110は無線端末100から送信されてきたプローブ要求フレームを受信し、無線端末100からのプローブ要求フレームを受信したときのRSS値、フレーム種別、受信時刻、無線端末のMACアドレス(Media Access Control address)等を記録する。 In FIG. 2, the wireless terminal 100 transmits a probe request frame to the access point 110 installed in the space where the wireless terminal 100 is located. Each access point 110 receives the probe request frame transmitted from the wireless terminal 100, and when receiving the probe request frame from the wireless terminal 100, the RSS value, the frame type, the reception time, the MAC address of the wireless terminal (Media Access Record Control (address) etc.
 また、各アクセスポイント110は、無線端末100からのプローブ要求フレームに対しプローブ応答フレーム(Probe Response Frame)を送る。また、アクセスポイントは、他のアクセスポイントから所定の間隔で送信されてくるビーコンフレームを受信する受信部を備えている。即ち、従来、無線端末100のみが受信していたビーコンフレームを各アクセスポイントが受信できる機能を備えたことで、座標値が既知のアクセスポイント間で送受信されるビーコンフレームのRSS値を知ることができる。これにより動的に変化する距離とRSS値との関係を自動適用的に求めることができる。 Further, each access point 110 transmits a probe response frame (Probe Response Frame) in response to the probe request frame from the wireless terminal 100. In addition, the access point includes a receiving unit that receives beacon frames transmitted from other access points at predetermined intervals. That is, by providing a function that each access point can receive a beacon frame that has been received only by the wireless terminal 100 in the past, it is possible to know the RSS value of a beacon frame transmitted / received between access points with known coordinate values. it can. Thereby, the relationship between the dynamically changing distance and the RSS value can be automatically applied.
 アクセスポイント110は、プローブ要求フレーム、ビーコンフレームを受信した時刻、自分のIPアドレス、プローブ要求フレームかビーコンフレームのいずれのフレームであるかの種別を表すフレームタイプ、プローブ要求フレームを発信した無線端末のMACアドレス、そして受信したRSS値を、図3に示すようなデータ構造にしてアクセスログ収集サーバ30が備えるアクセスログ収集部300に送信する。 The access point 110 receives the probe request frame and the beacon frame, its own IP address, the frame type indicating the type of the probe request frame or the beacon frame, and the wireless terminal that has transmitted the probe request frame. The MAC address and the received RSS value are transmitted to the access log collection unit 300 provided in the access log collection server 30 in a data structure as shown in FIG.
アクセスログ収集部300は、アクセスポイント110から送信されてきた、IPアドレス、受信したプローブ要求フレーム又はビーコンフレームの種別等を、位置測定空間10ごとに分類して、アクセスログデータベース50に記録する。 The access log collection unit 300 classifies the IP address, the type of the received probe request frame or beacon frame transmitted from the access point 110 for each position measurement space 10 and records it in the access log database 50.
 測位サーバ40が備える座標計算エンジン400は、アクセスログデータベース50に記録されたデータに基づいて無線端末100の座標を計算し、その結果を測位結果データベース60に記録する。座標計算エンジン400によりアクセスポイントと無線端末の位置との対応関係を示す位置対応表600が得られる。 The coordinate calculation engine 400 provided in the positioning server 40 calculates the coordinates of the wireless terminal 100 based on the data recorded in the access log database 50 and records the result in the positioning result database 60. The coordinate calculation engine 400 obtains a position correspondence table 600 indicating the correspondence between the access point and the position of the wireless terminal.
 図4は、座標計算エンジン400が、アクセスログデータベース50に記録されたデータに基づいて、無線端末100の座標計算を行う全体処理の流れを示す座標計算処理フローチャートである。先ず、アクセスポイント110の座標をマッピングする(S1)。なお、無線端末100の測位は3点測位法により行うため、少なくとも3つ以上のアクセスポイントの座標を設定する。 FIG. 4 is a coordinate calculation processing flowchart showing the overall processing flow in which the coordinate calculation engine 400 calculates the coordinates of the wireless terminal 100 based on the data recorded in the access log database 50. First, the coordinates of the access point 110 are mapped (S1). In addition, since the positioning of the wireless terminal 100 is performed by the three-point positioning method, the coordinates of at least three or more access points are set.
 次に、無線端末100がアクセスポイント110にアクセスしたログであるアクセスログを時系列順に処理する。かかる処理は一定の期間、例えば5秒間であれば、5秒間に集まったアクセスログを、無線端末100毎(MACアドレス毎)に一括して処理する(S2)。計算期間の設定は、後述するフィルタリング処理でエラー信号を除外しやすくするためである。 Next, an access log that is a log that the wireless terminal 100 has accessed the access point 110 is processed in time series. If such processing is performed for a certain period, for example, 5 seconds, the access logs collected in 5 seconds are collectively processed for each wireless terminal 100 (for each MAC address) (S2). The setting of the calculation period is to make it easy to exclude error signals in a filtering process described later.
 次に、座標計算エンジン400はアクセスログデータを読出し(S3)、アクセスポイント110ごとにキャリブレーションを実行する(S4)。かかるキャリブレーションを所定間隔で実行することにより、屋内空間を移動する無線端末100の位置測定空間10が異なっても、またそのときの環境によって等距離から受信するRSS値の強度が変化しても、高精度に無線端末100の位置を推定することができる。 Next, the coordinate calculation engine 400 reads the access log data (S3), and executes calibration for each access point 110 (S4). By performing such calibration at predetermined intervals, even if the position measurement space 10 of the wireless terminal 100 moving in the indoor space is different, and even if the strength of the RSS value received from the same distance changes depending on the environment at that time The position of the wireless terminal 100 can be estimated with high accuracy.
 図5は、キャリブレーションの処理フローを示したフローチャートである。キャリブレーションは先ず、位置測定空間10に設置されているアクセスポイント110を一つ選択する(S41)。次に、選択したアクセスポイント110を送信元とするビーコンフレームのログを全て取得する(S42)。 FIG. 5 is a flowchart showing a calibration processing flow. In the calibration, first, one access point 110 installed in the position measurement space 10 is selected (S41). Next, all beacon frame logs having the selected access point 110 as a transmission source are acquired (S42).
 選択したアクセスポイント110を送信先として送信したビーコンフレームを送信先のアクセスポイント110ごとに分類し、RSS値の外れ値を除外する外れ値フィルタリング処理を実行する(S43)。 The beacon frames transmitted with the selected access point 110 as the transmission destination are classified for each access point 110 of the transmission destination, and an outlier filtering process for excluding outliers of the RSS value is executed (S43).
ここで、外れ値フィルタリング処理には、例えば偏差を不偏標準偏差で割った検定、正規分布を仮定して、スミルノフ・グラブス (Smirnov‐Grubbs) 検定、トンプソン検定など、環境条件に応じたフィルタリング処理が好ましい。本実施の形態においては、図6に示すような外れ値フィルタリング処理を行った。 Here, outlier filtering processing includes filtering processing according to environmental conditions such as Smirnov-Grubbs test and Thompson test, assuming that the deviation is divided by unbiased standard deviation, normal distribution, etc. preferable. In the present embodiment, outlier filtering processing as shown in FIG. 6 is performed.
図6に示す外れ値フィルタリング処理は、計算期間内において取得した全てのビーコンフレーム(S42)のRSS値を昇順にソートし、RSS値の全体中央値(M1)を求める。次に、RSS値の最小値(RSS1)と全体中央値(M1)との中央値(M2)と、全体中央値(M1)とRSS値の最大値(RSSn)との中央値(M3)とを求め、M2とM3との間に含まれないRSS値を外れ値として除外する(フィルタリング処理)というものである。こうして外れ値を除外した後、RSS値の中央値を決定する。 In the outlier filtering process shown in FIG. 6, the RSS values of all beacon frames (S42) acquired within the calculation period are sorted in ascending order to obtain the overall median value (M1) of the RSS values. Next, the median value (M2) of the minimum RSS value (RSS1) and the overall median value (M1), and the median value (M3) of the overall median value (M1) and the maximum RSS value (RSSn) And RSS values not included between M2 and M3 are excluded as outliers (filtering process). After excluding outliers in this way, the median RSS value is determined.
計算期間内におけるアクセスポイント110間のRSS値の中央値が求められたら、空間伝搬損失モデル(The log-distance path loss model)を利用して、RSS値と距離の関係分布を作成する(S44)。 When the median RSS value between the access points 110 within the calculation period is obtained, a relationship distribution between the RSS value and the distance is created using a spatial propagation loss model (The log-distance path loss model) (S44). .
 図7(a)は計算期間内のRSS値について、上述した外れ値処理を行った後のRSS値(中央値)とアクセスポイントの分布マップ(アクセスポイント間の距離が既知)とから、距離とRSS値との関係を求めた表である。また、図7(b)は図7(a)から求めた距離とRSS値との近似直線である。 FIG. 7A illustrates the RSS value within the calculation period from the RSS value (median value) after performing the above-described outlier processing and the distribution map of access points (distance between access points is known). It is the table | surface which calculated | required the relationship with RSS value. FIG. 7B is an approximate straight line between the distance obtained from FIG. 7A and the RSS value.
 図7に示す距離とRSS値との関係は、最少二乗法を使い、下記数式1により求めた。
Figure JPOXMLDOC01-appb-I000003
 (数式1)
ここで、RSS値:受信信号強度 (dBm),D:距離 (m),定数n:信号が減衰する割合
定数A:送信先アクセスポインから1メートル離れたところのRSS値
The relationship between the distance and the RSS value shown in FIG. 7 was obtained by the following formula 1 using the least square method.
Figure JPOXMLDOC01-appb-I000003
(Formula 1)
Where RSS value: received signal strength (dBm), D: distance (m), constant n: rate constant at which the signal attenuates A: RSS value 1 meter away from the destination access point
 上記の数式1により定数nとAとを決定し(S45)、次のログデータの有無を調べ、ログデータがあれば、再度、S41に戻りアクセスポイントの選定(S42)から定数n,定数Aを決定し、全てのログデータについて処理が完了したらキャリブレーションを終了する(S46)。なお、定数Aについては、例えば、1メートル離れたアクセスポイントを位置測位空間10に少なくとも一ヶ所設けることで求めることができる。 The constants n and A are determined by the above equation 1 (S45), the presence or absence of the next log data is checked, and if there is log data, the process returns to S41 again to select the constant n and constant A from the access point selection (S42). When the processing is completed for all log data, the calibration is terminated (S46). The constant A can be obtained, for example, by providing at least one access point 1 meter away in the position measurement space 10.
次に、計算期間内のプローブ要求フレームを送信先アクセスポイント、無線端末のMACアドレスごとに分けて、例えば図6に示すような外れ値フィルタリング処理を適用してRSS値外れ値を除去し、その値を先に求めた近似曲線に適用して、無線端末100とアクセスポイント110との間の距離を求める(S5)。 Next, the probe request frame within the calculation period is divided into the destination access point and the MAC address of the wireless terminal, and the outlier filtering is performed, for example, by applying outlier filtering processing as shown in FIG. The value is applied to the approximate curve obtained earlier to obtain the distance between the wireless terminal 100 and the access point 110 (S5).
ここで、プローブ要求フレームのRSS値を適用する近似曲線は、位置測定空間10の環境が変化に応じ自動的に最適な近似曲線が適用される(自動適用的)ため、高精度に無線端末100の位置を推定することができる。 Here, as the approximate curve to which the RSS value of the probe request frame is applied, the optimum approximate curve is automatically applied according to the change in the environment of the position measurement space 10 (automatically applicable), and thus the wireless terminal 100 with high accuracy. Can be estimated.
座標計算エンジン400は、例えば、無線端末100と距離が近い順に3つのアクセスポイント110を選択し、そのアクセスポイント110の座標、そのアクセスポイントからの無線端末100の距離を算出する(S5)。 For example, the coordinate calculation engine 400 selects the three access points 110 in order of distance from the wireless terminal 100, and calculates the coordinates of the access point 110 and the distance of the wireless terminal 100 from the access point (S5).
3つのアクセスポイント110から得られた無線端末100の座標を3点測位により無線端末100の位置を決定し(S6)、測位結果データベース60に無線端末60の座標を記録する(S7)。 The position of the wireless terminal 100 is determined by three-point positioning of the coordinates of the wireless terminal 100 obtained from the three access points 110 (S6), and the coordinates of the wireless terminal 60 are recorded in the positioning result database 60 (S7).
RSS値を距離に変換する場合には、距離が長くなるにつれて誤差が大きくなる傾向がある。従って、例えば、図8に示すように、d3で表される距離より遠いアクセスポイントの選択は許可しないと設定した場合には、アクセスポイント1(AP1)は、アクセスポイント2 (AP2)、アクセスポイント4(AP4),アクセスポイント5(AP5)のみをキャリブレーションの処理の対象とすることが好ましい。これに対して、アクセスポイント5(AP5)は全てのアクセスポイント(AP1~AP4,AP6)をキャリブレーション処理の対象とすることが好ましい。 When converting an RSS value into a distance, the error tends to increase as the distance increases. Therefore, for example, as shown in FIG. 8, when it is set that the selection of an access point farther than the distance represented by d3 is not permitted, access point 1 (AP1) is access point 2 ポ イ ン ト (AP2), access point It is preferable that only 4 (AP4) and access point 5 (AP5) are subjected to calibration processing. On the other hand, the access point 5 (AP5) preferably uses all the access points (AP1 to AP4, AP6) as objects of the calibration process.
また、選択したアクセスポイントとアクセスポイントとの角度が15°より小さくなると3点測位法の精度が低下することから、アクセスポイント間の角度が15°より大きい角度になるアクセスポイントを少なくとも3つ選択することが好ましい。 In addition, if the angle between the selected access point and the access point is smaller than 15 °, the accuracy of the three-point positioning method is lowered. Therefore, select at least three access points whose angle between the access points is larger than 15 °. It is preferable to do.
図9は、計算期間とシフト期間との関係を示した図である。図9に示すように計算期間の設定するときに、計算期間を一定期間ずらす(シフト期間)を設け、キャリブレーションすることは好ましい。計算期間とシフト期間を定めておくことにより、RSS値から高精度に無線端末の位置を測位することができるためである。 FIG. 9 is a diagram showing the relationship between the calculation period and the shift period. As shown in FIG. 9, when setting the calculation period, it is preferable to provide calibration by shifting the calculation period by a certain period (shift period). This is because the position of the wireless terminal can be determined with high accuracy from the RSS value by setting the calculation period and the shift period.
 本発明によれば、移動する無線端末の空間が異なっても、また環境や時刻によって等距離から受信するRSS値の強度が動的に変化しても、高精度に無線端末の位置が検出可能な測位方法、及び測位システム、ならびに測位サーバを提供することができる。 According to the present invention, the position of the wireless terminal can be detected with high accuracy even if the space of the moving wireless terminal is different or the strength of the RSS value received from the same distance changes dynamically according to the environment and time. A positioning method, a positioning system, and a positioning server can be provided.
1   測位システム
10  位置測定空間
20  WLANネットワーク
30  アクセスログ収集サーバ
40  測位サーバ
50  アクセスログデータベース
60  測位結果データベース
100 無線端末
300 アクセスログ収集部
400 座標計算エンジン
600 位置対応表
DESCRIPTION OF SYMBOLS 1 Positioning system 10 Position measurement space 20 WLAN network 30 Access log collection server 40 Positioning server 50 Access log database 60 Positioning result database 100 Wireless terminal 300 Access log collection part 400 Coordinate calculation engine 600 Position correspondence table

Claims (11)

  1. 位置測定空間を移動する無線端末からのプローブ要求フレームを、前記位置測定空間内に設けられ、その座標値が既知の複数のアクセスポイントで受信し、受信した前記プローブ要求フレームのRSS値と距離との関係を表す近似曲線により、前記無線端末を測位する測位方法において、
    前記アクセスポイント間で、所定の間隔で送受信されるビーコンフレームのRSS値により、RSS値と距離との関係を表す近似曲線を自動適用的にもとめ、複数の前記アクセスポイントを選択し、前記アクセスポイントが受信する前記プローブ要求フレームのRSS値を、前記近似曲線にそれぞれ適用し、前記無線端末の位置を測位することを特徴とする測位方法
    A probe request frame from a wireless terminal moving in the position measurement space is received in a plurality of access points provided in the position measurement space and whose coordinate values are known, and the RSS value and distance of the received probe request frame In a positioning method for positioning the wireless terminal by an approximate curve representing the relationship of
    Based on the RSS value of the beacon frame transmitted / received at a predetermined interval between the access points, an approximate curve representing the relationship between the RSS value and the distance is automatically applied, a plurality of the access points are selected, and the access points Positioning the position of the wireless terminal by applying the RSS value of the probe request frame received by each to the approximate curve.
  2. 少なくとも3つの前記アクセスポイントを選択し、前記アクセスポイントが受信する前記プローブ要求フレームのRSS値を前記近似曲線に適用し、3点測位法により前記無線端末の位置を測位することを特徴とする請求項1に記載の測位方法。 At least three access points are selected, an RSS value of the probe request frame received by the access point is applied to the approximate curve, and the position of the wireless terminal is measured by a three-point positioning method. Item 4. The positioning method according to item 1.
  3.  前記近似曲線を求める前記ビーコンフレームのRSS値は、所定の計算期間内に得られた複数の前記RSS値のうち、予め設定された規則に従って除外したRSS値を処理し数値化し算出することを特徴とする請求項1又は2に記載の測位方法。 The RSS value of the beacon frame for obtaining the approximate curve is calculated by processing and quantifying an RSS value excluded in accordance with a preset rule among the plurality of RSS values obtained within a predetermined calculation period. The positioning method according to claim 1 or 2.
  4.  近似曲線に適用する前記プローブ要求フレームのRSS値は、所定の計算期間内に得られた複数の前記RSS値のうち、予め設定された規則に従って除外したRSS値を処理し数値化したものであることを特徴とする請求項1又は2に記載の測位方法。 The RSS value of the probe request frame applied to the approximate curve is obtained by processing and digitizing an RSS value excluded according to a preset rule from among the plurality of RSS values obtained within a predetermined calculation period. The positioning method according to claim 1 or 2, characterized in that.
  5. 前記近似曲線は、下記数式1により求めることを特徴とする請求項1から4のいずれかに記載の測位方法。
    Figure JPOXMLDOC01-appb-I000001
    (数式1)
    ここで、RSS値:受信信号強度 (dBm),D:距離 (m),定数n:信号が減衰する割合
    定数A:送信先アクセスポインから1メートル離れたところのRSS値
    The positioning method according to claim 1, wherein the approximate curve is obtained by the following mathematical formula 1.
    Figure JPOXMLDOC01-appb-I000001
    (Formula 1)
    Where RSS value: received signal strength (dBm), D: distance (m), constant n: rate constant at which the signal attenuates A: RSS value 1 meter away from the destination access point
  6.  前記選択されたアクセスポイント間の距離は、10メートルを超えないことを特徴とする請求項1から5のいずれかに記載の測位方法。 The positioning method according to any one of claims 1 to 5, wherein a distance between the selected access points does not exceed 10 meters.
  7.  前記計算期間を所定の時間ずらして前記計算期間を複数回繰り返し前記複数のRSS値を得ることを特徴とする請求項3から6のいずれかに記載の測位方法。 The positioning method according to any one of claims 3 to 6, wherein the plurality of RSS values are obtained by repeating the calculation period a plurality of times by shifting the calculation period by a predetermined time.
  8.  位置測定空間を移動する無線端末からのプローブ要求フレームを受信するその座標値が既知の複数のアクセスポイントと、前記アクセスポイントが受信した前記プローブ要求フレームを前記アクセスポイント及び/又は前記位置測定空間ごとにアクセスログとして記録するアクセスログ収集サーバと、前記アクセスログ収集サーバに記録された前記プローブ要求フレームのRSS値と距離との関係を表す近似曲線により、前記無線端末の位置を測位する測位サーバとを備えた測位システムにおいて、
    前記アクセスポイントは、他のアクセスポイントが送信するビーコンフレームとそのRSS値とを受信する受信部とを含み、
    前記アクセスログ収集サーバは、前記アクセスポイントが受信した前記RSS値とビーコンフレームとを、前記アクセスポイント及び/又は前記位置測定空間ごとに記録する記録部を含み、
    前記測位サーバは、前記記録部に記録されているビーコンフレームのRSS値と前記アクセスポイントの座標値から、RSS値と距離との関係を表す近似曲線を自動適用的に算出するとともに、前記プローブ要求フレームのRSS値を前記近似曲線に適用し、前記無線端末の座標を計算する座標計算エンジンを備えたことを特徴とする測位システム。
    A plurality of access points whose coordinate values are known for receiving probe request frames from wireless terminals moving in the position measurement space, and the probe request frames received by the access points for each of the access points and / or the position measurement spaces An access log collecting server that records as an access log, and a positioning server that measures the position of the wireless terminal by an approximate curve that represents a relationship between an RSS value and a distance of the probe request frame recorded in the access log collecting server; In the positioning system with
    The access point includes a beacon frame transmitted by another access point and a reception unit that receives the RSS value,
    The access log collection server includes a recording unit that records the RSS value and beacon frame received by the access point for each access point and / or the location measurement space,
    The positioning server automatically and adaptively calculates an approximate curve representing a relationship between an RSS value and a distance from an RSS value of a beacon frame recorded in the recording unit and a coordinate value of the access point, and the probe request A positioning system comprising a coordinate calculation engine that applies an RSS value of a frame to the approximate curve and calculates coordinates of the wireless terminal.
  9. 前記座標計算エンジンは、所定の計算期間に得られた複数の前記ビーコンフレームのRSS値のうち、予め設定された規則に従って除外した以外のRSS値を所定の条件で処理し数値化し、前記近似曲線を求める手段を備えたことを特徴とする請求項8に記載の測位システム。 The coordinate calculation engine processes RSS values other than those excluded in accordance with a preset rule among a plurality of RSS values of the beacon frames obtained during a predetermined calculation period, converts them into predetermined values, and calculates the approximate curve The positioning system according to claim 8, further comprising means for obtaining
  10. 前記座標計算エンジンは、所定の計算期間に得られた複数の前記プローブ要求フレームのRSS値のうち、予め設定された規則に従って除外した以外のRSS値を所定の条件で処理し数値化し、前記近似曲線に適用し、前記無線端末の位置を測位する手段を備えたことを特徴とする請求項8に記載の測位システム。 The coordinate calculation engine processes the RSS values other than those excluded in accordance with a preset rule from among the RSS values of the plurality of probe request frames obtained in a predetermined calculation period under a predetermined condition, and converts the values into numerical values. 9. The positioning system according to claim 8, further comprising means for measuring a position of the wireless terminal applied to a curve.
  11.  前記座標計算エンジンは、前記計算期間を所定の時間ずらしながら前記RSS値を処理・特定する手段を備えたことを特徴とする請求項9又は10に記載の測位システム。 11. The positioning system according to claim 9 or 10, wherein the coordinate calculation engine includes means for processing and specifying the RSS value while shifting the calculation period by a predetermined time.
PCT/JP2016/067975 2015-06-19 2016-06-16 Positioning method and positioning system WO2016204243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-123577 2015-06-19
JP2015123577A JP2017009368A (en) 2015-06-19 2015-06-19 Positioning method, and positioning system

Publications (1)

Publication Number Publication Date
WO2016204243A1 true WO2016204243A1 (en) 2016-12-22

Family

ID=57545975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067975 WO2016204243A1 (en) 2015-06-19 2016-06-16 Positioning method and positioning system

Country Status (2)

Country Link
JP (1) JP2017009368A (en)
WO (1) WO2016204243A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490831A (en) * 2017-09-12 2019-03-19 中国石油天然气股份有限公司 Storage tank bottom plate on-line checking robot localization method and system
WO2022158070A1 (en) * 2021-01-21 2022-07-28 パナソニックIpマネジメント株式会社 Positioning method, program, and positioning system
CN116347437A (en) * 2023-05-22 2023-06-27 深圳市优博生活科技有限公司 Method and device for implementing exposure elimination protocol based on industrial client equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240111014A1 (en) * 2020-12-11 2024-04-04 Nec Corporation Search apparatus, aggregation apparatus, search system, search method, and non-transitory computer readable medium
JPWO2022259665A1 (en) * 2021-06-10 2022-12-15
WO2023089708A1 (en) * 2021-11-17 2023-05-25 日本電信電話株式会社 Position measurement device, position measurement method, and program
WO2023089709A1 (en) * 2021-11-17 2023-05-25 日本電信電話株式会社 Position measurement device, position measurement method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6990428B1 (en) * 2003-07-28 2006-01-24 Cisco Technology, Inc. Radiolocation using path loss data
JP2006300918A (en) * 2005-03-25 2006-11-02 Oki Electric Ind Co Ltd Localization system and method
JP2010236866A (en) * 2009-03-30 2010-10-21 Mitsubishi Heavy Ind Ltd Terminal position detection system and sailor position management system
US20130267257A1 (en) * 2012-04-10 2013-10-10 Qualcomm Incorporated Access point measurements for received signal prediction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979516B2 (en) * 2007-08-31 2012-07-18 三菱レイヨン株式会社 Image reading method and apparatus
JP5404580B2 (en) * 2010-11-05 2014-02-05 日本電信電話株式会社 Image processing apparatus, image processing method, and recording medium recording image processing program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6990428B1 (en) * 2003-07-28 2006-01-24 Cisco Technology, Inc. Radiolocation using path loss data
JP2006300918A (en) * 2005-03-25 2006-11-02 Oki Electric Ind Co Ltd Localization system and method
JP2010236866A (en) * 2009-03-30 2010-10-21 Mitsubishi Heavy Ind Ltd Terminal position detection system and sailor position management system
US20130267257A1 (en) * 2012-04-10 2013-10-10 Qualcomm Incorporated Access point measurements for received signal prediction

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAOKI MIWA ET AL.: "An Accurate Localization Scheme in Adhoc Wireless Positioning System for Information-oriented Construction", IEICE TECHNICAL REPORT, vol. 112, no. 44, 14 May 2012 (2012-05-14), pages 21 - 26 *
TAKASHI ONIKURA ET AL.: "Musen LAN no Tanmatsu-gawa Sokui to Kichikyoku-gawa Sokui o Mochiita Sokui Seido Kaizen Shuho", IPSJ SIG NOTES UBIQUITOUS COMPUTING SYSTEM(UBI, vol. 2015 -UB, 4 May 2015 (2015-05-04), pages 1 - 8 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490831A (en) * 2017-09-12 2019-03-19 中国石油天然气股份有限公司 Storage tank bottom plate on-line checking robot localization method and system
WO2022158070A1 (en) * 2021-01-21 2022-07-28 パナソニックIpマネジメント株式会社 Positioning method, program, and positioning system
CN116347437A (en) * 2023-05-22 2023-06-27 深圳市优博生活科技有限公司 Method and device for implementing exposure elimination protocol based on industrial client equipment
CN116347437B (en) * 2023-05-22 2023-08-04 深圳市优博生活科技有限公司 Method and device for implementing exposure elimination protocol based on industrial client equipment

Also Published As

Publication number Publication date
JP2017009368A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2016204243A1 (en) Positioning method and positioning system
KR101466411B1 (en) Calculation of quality of wlan access point characterization for use in a wlan positioning system
KR101975383B1 (en) Locating electromagnetic signal sources
US9639557B2 (en) Positioning system
US8509819B2 (en) Information processing apparatus and correction method
US8903647B2 (en) Apparatus and method for performing map matching
US10935627B2 (en) Identifying potentially manipulated radio signals and/or radio signal parameters
KR101352006B1 (en) Device and method for collecting information related to infrastructure, and positioning method and system using the same
US20120142366A1 (en) Determining positions in a wireless radio system
CN110325819B (en) Accurate altitude estimation for indoor positioning
KR20170046665A (en) Method and apparatus for real-time, mobile-based positioning according to sensor and radio frequency measurements
KR20140124418A (en) Method and apparatus for locating a mobile device using the mobile device orientation
JP2005176386A (en) Mobile device
US7362270B2 (en) System and method to perform network node localization training using a mobile node
KR20130095805A (en) Self-positioning of a wireless station
US10955518B2 (en) Method for generating an indoor environment model and a method for determining position data for a location in an indoor environment
KR102034082B1 (en) Positioning environment analysis apparatus, positioning performance projection method and system of terminal using the same
US20140185518A1 (en) SYSTEM AND METHOD FOR WiFi POSITIONING
TW201329486A (en) Positioning method
KR20150094665A (en) Providing and utilizing maps in location determination based on rssi and rtt data
KR101709411B1 (en) Method for positioning based on weighted triangulation and method for indoor positioning using the same
US10506546B2 (en) Method of locating an access point to a communication network
CN107135483B (en) Method for determining relative distance change trend, indoor positioning method and device thereof
CN114144690A (en) Apparatus and method for automatically marking high-precision indoor locations and determining location information
US10547964B2 (en) Method and device for estimating accuracy of a position determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811717

Country of ref document: EP

Kind code of ref document: A1