WO2012008298A1 - イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ - Google Patents

イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ Download PDF

Info

Publication number
WO2012008298A1
WO2012008298A1 PCT/JP2011/064774 JP2011064774W WO2012008298A1 WO 2012008298 A1 WO2012008298 A1 WO 2012008298A1 JP 2011064774 W JP2011064774 W JP 2011064774W WO 2012008298 A1 WO2012008298 A1 WO 2012008298A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
represented
isoprene oligomer
enzyme
Prior art date
Application number
PCT/JP2011/064774
Other languages
English (en)
French (fr)
Inventor
ゆき乃 宮城
市川 直哉
典正 大谷
Original Assignee
住友ゴム工業株式会社
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社, 国立大学法人山形大学 filed Critical 住友ゴム工業株式会社
Priority to BR112013000786A priority Critical patent/BR112013000786A2/pt
Priority to CN2011800355183A priority patent/CN103025785A/zh
Priority to KR1020137002529A priority patent/KR20130043172A/ko
Priority to EP11806628.1A priority patent/EP2594597A1/en
Priority to US13/809,616 priority patent/US9371342B2/en
Publication of WO2012008298A1 publication Critical patent/WO2012008298A1/ja
Priority to US15/133,084 priority patent/US9657313B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • B60C13/001Decorating, marking or the like
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/04Chloro-alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/23Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and carboxyl groups, other than cyano groups, bound to the same unsaturated acyclic carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/02Acyclic alcohols with carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/098Esters of polyphosphoric acids or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/141Esters of phosphorous acids
    • C07F9/143Esters of phosphorous acids with unsaturated acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/002Nitriles (-CN)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P9/00Preparation of organic compounds containing a metal or atom other than H, N, C, O, S or halogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to an isoprene oligomer, polyisoprene, a production method thereof, a rubber composition containing the isoprene oligomer and / or polyisoprene, and a pneumatic tire using the rubber composition.
  • fillers of various materials and shapes have been introduced into rubber compositions in order to give new properties to the properties inherent to rubber.
  • desired properties are developed.
  • fillers such as silica and carbon black are introduced into a rubber phase that is an organic substance to improve characteristics such as wear resistance, low heat generation, and wet grip performance. .
  • the rubber contained in the rubber phase is used for the purpose of enhancing the affinity between the two and further improving the low heat build-up and wet grip performance.
  • the molecule is subjected to a treatment of reacting a compound having a nitrogen atom-containing group and a chlorosulfenyl group, and a functional group having an affinity for the filler is introduced into the rubber molecule.
  • modified rubber modified diene polymer
  • An object of the present invention is to solve the above-mentioned problems and to provide an isoprene oligomer and polyisoprene in which modification is applied substantially only to the terminal portion of the molecule.
  • Another object of the present invention is to provide a rubber composition containing the isoprene oligomer and / or the polyisoprene, and a pneumatic tire using the rubber composition for each member (for example, tread, sidewall) of the tire. .
  • the present invention is an isoprene oligomer comprising a trans structure part and a cis structure part represented by the following formula (1), wherein at least one atom or atomic group contained in the trans structure part is another atom or atomic group.
  • m represents an integer of 1 to 30.
  • Y represents a hydroxyl group, a formyl group, a carboxy group, an ester group, a carbonyl group or the following formula (2). Represents the group represented.)
  • the transformer structure part is preferably any of the following formulas (a) to (s).
  • the isoprene oligomer is represented by the following formula (3), and at least one atom or atomic group contained in the isoprene unit in the following formula (3) is substituted with another atom or atomic group. And is preferably obtained by biosynthesis from isopentenyl diphosphate.
  • p represents an integer of 1 to 10.
  • the biosynthesis is preferably performed using an enzyme having prenyltransferase activity.
  • the enzyme having prenyl transferase activity is preferably a protein described in any one of [1] to [3] below.
  • a protein comprising the amino acid sequence represented by any one of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22
  • SEQ ID NOs: 2, 4 In the amino acid sequence represented by any of SEQ ID NOs: 6, 8, 10, 12, 14, 16, 18, 20, and 22, a sequence including substitution, deletion, insertion, or addition of one or more amino acids
  • the present invention is also an allylic diphosphate represented by the following formula (3), wherein at least one atom or atomic group contained in the isoprene unit in the following formula (3) is substituted with another atom or atomic group: And a method for producing the isoprene oligomer biosynthesized from isopentenyl diphosphate.
  • formula (3) p represents an integer of 1 to 10.
  • the biosynthesis is preferably performed using an enzyme having prenyltransferase activity.
  • the present invention also provides a polyisoprene composed of a trans structure part and a cis structure part represented by the following formula (4), wherein at least one of atoms or atomic groups contained in the trans structure part is another atom or atom: Relates to polyisoprene substituted by groups.
  • n represents an integer of 1 to 10.
  • q represents an integer of 30 to 40000.
  • Y represents a hydroxyl group, a formyl group, a carboxy group, an ester group, a carbonyl group, or the following formula (2). Represents the group represented.
  • At least one atom or atomic group contained in the VI moiety in the following formula (4-1) is substituted, and the atom or atomic group contained in the VII moiety in the following formula (4-1) is not substituted. preferable.
  • the polyisoprene is preferably obtained by biosynthesis from the isoprene oligomer and isopentenyl diphosphate.
  • the present invention also relates to a method for producing the polyisoprene, which is biosynthesized from the isoprene oligomer and isopentenyl diphosphate.
  • the present invention also relates to a rubber composition containing the above isoprene oligomer and / or the above polyisoprene.
  • the present invention also relates to a pneumatic tire produced using the rubber composition.
  • the isoprene oligomer of the present invention is an isoprene oligomer comprising a trans structure part and a cis structure part represented by the above formula (1), and at least one of atoms or atomic groups contained in the trans structure part is another atom. Or it is an isoprene oligomer substituted by an atomic group.
  • the polyisoprene of the present invention is a polyisoprene composed of a trans structure part and a cis structure part represented by the above formula (4), and at least one of atoms or atomic groups contained in the trans structure part is another Is a polyisoprene substituted by an atom or atomic group.
  • the isoprene oligomer of the present invention and the polyisoprene of the present invention are substantially modified only at the terminal portion of the molecule (rubber molecule), and the properties inherent to the molecule (rubber molecule) are inhibited.
  • Excellent compatibility with fillers such as silica Therefore, by blending the isoprene oligomer of the present invention and / or the polyisoprene of the present invention into a rubber composition, a rubber composition in which rubber molecules and a filler are combined at a higher level than before can be obtained.
  • the rubber composition for each member of the tire for example, tread, sidewall
  • a pneumatic tire excellent in low heat generation and wet grip performance can be provided.
  • an enzyme such as prenyltransferase is allowed to act on a mixture of a starting substrate such as farnesyl diphosphate (FPP) and a monomer such as isopentenyl diphosphate.
  • FPP farnesyl diphosphate
  • a monomer such as isopentenyl diphosphate.
  • an isoprene oligomer in which about 8 isoprene units are addition-polymerized with respect to the starting substrate is formed.
  • a latex component containing an enzyme that additionally polymerizes isopentenyl diphosphate with the isoprene oligomer polyisoprene in which many isopentenyl diphosphates are linked to the oligomer is generated. It has been known.
  • the starting substrate and monomer for biosynthesizing rubber molecules (polyisoprene)
  • the structure of the starting substrate and monomer to be made was limited.
  • the starting substrate was limited to naturally occurring dimethylallyl diphosphate, geranyl diphosphate, farnesyl diphosphate, geranyl geranyl diphosphate, and the like, due to limitations due to the enzyme used to generate the oligomer.
  • the biomolecule is once biosynthesized (polyisoprene).
  • a functional group having affinity for the filler was introduced into the rubber molecule by performing a treatment of reacting a compound having a nitrogen atom-containing group and a chlorosulfenyl group.
  • the present invention uses isoprene oligomers with functionalities added to the terminal portions by using farnesyl diphosphate or the like whose structure is partially modified as the starting substrate when producing isoprene oligomers or polyisoprenes. This is based on the finding that polyisoprene can be produced.
  • the present invention is a case where the desired structure is introduced to other parts by maintaining the structure of the I part of the following formula (I) with respect to farnesyl diphosphate or the like which is a naturally occurring starting substrate.
  • isoprene oligomers can be produced by using prenyl transferase, which is a naturally occurring oligomer-forming enzyme, or an enzyme obtained by mutating a part thereof. The reason for this is not necessarily clear, but it is thought that prenyl transferase adsorbs to the structure of the I part of the following formula (I) of the starting substrate and is relatively insensitive to the structure of the other part.
  • isoprene oligomers and polyisoprenes having terminal portions having desired characteristics, and isoprene oligomers with various functions added without impairing the characteristics of isoprene oligomers or polyisoprenes themselves. It is possible to provide polyisoprene.
  • the isoprene oligomer of the present invention is an isoprene oligomer comprising a trans structure part and a cis structure part represented by the following formula (1), and at least one of atoms or atomic groups contained in the trans structure part is another atom. Or it is substituted by an atomic group.
  • a trans structure part means the repeating part (A part in following formula (1)) of the isoprene unit of a trans structure.
  • the cis structure part means a repeating part of the isoprene unit of the cis structure (() m part (B part) in the following formula (1)).
  • the group represented by the following formula (2) has three hydroxyl groups bonded to the phosphorus atom, but part or all of these hydroxyl groups are dissociated in an aqueous solution. (For example, it becomes a group represented by the following formula (5)).
  • the group represented by the following formula (2) is a concept including a group in which a part or all of such a hydroxyl group is dissociated.
  • the modification of the terminal portion of the molecule means that a desired functional group is introduced into a predetermined portion of the trans structure portion present at the end of the molecule (rubber molecule), or This means that a different structure is introduced into a predetermined part of the trans structure part present at the end of the molecule (rubber molecule).
  • n represents an integer of 1 to 10.
  • m represents an integer of 1 to 30.
  • Y represents a hydroxyl group, a formyl group, a carboxy group, an ester group, a carbonyl group or the following formula (2). Represents the group represented.
  • the isoprene oligomer of the present invention has a structure close to that of natural rubber and has high compatibility with rubber molecules. Further, the isoprene oligomer of the present invention is modified substantially only at the terminal portion of the molecule. That is, the isoprene oligomer of the present invention has a hydroxyl group, a formyl group, a carboxy group, an ester group, a carbonyl group or a group represented by the above formula (2) located at the terminal of the cis structure part, and further a trans structure part.
  • the isoprene oligomer of the present invention is highly compatible with rubber and has a strong interaction with fillers such as silica.
  • a rubber composition in which molecules and a filler are combined is obtained. For example, low heat build-up, wet grip performance, and wear resistance of the rubber composition can be improved.
  • a polar group or the like is present only at the terminal part of the cis structure part or the part near the terminal of the trans structure part. Therefore, compared to the case where the main chain portion has a polar group or the like or the case where only the terminal portion of the cis structure portion has a polar group or the like, the dispersion of the filler such as silica is not disturbed by the inherent properties of the isoprene oligomer. For example, the effect of improving low heat build-up, wet grip performance, and wear resistance is high.
  • the isoprene oligomer of the present invention exhibits excellent antibacterial activity. This is because at least one atom or atomic group contained in the trans structure part constituting the isoprene oligomer is substituted with another atom or atomic group, so that the structure differs from that of a normal isoprene oligomer existing in nature. This is presumed to be due to the effects of inhibiting the enzyme or coenzyme possessed, inhibition of nucleic acid synthesis, inhibition of cell membrane synthesis, inhibition of cytoplasmic membrane synthesis, destruction of cell membrane, destruction of cytoplasmic membrane, etc.
  • N in the formula (1) represents an integer of 1 to 10 (preferably 1 to 4, more preferably 1 to 3).
  • M in the formula (1) represents an integer of 1 to 30 (preferably 1 to 10, more preferably 1 to 8).
  • Y in the formula (1) is represented by a hydroxyl group (—OH), a formyl group (—CHO), a carboxy group (—COOH), an ester group (—COOR), a carbonyl group (—COR) or the above formula (2). Represents a group.
  • R in the ester group (—COOR) and carbonyl group (—COR) represents an alkyl group having 1 to 30 carbon atoms (preferably 1 to 17 carbon atoms).
  • alkyl group having 1 to 30 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
  • Y in formula (1) is preferably a hydroxyl group or a carboxy group because it exhibits excellent antibacterial properties and has a strong interaction with a filler such as silica.
  • At least one atom or atomic group contained in the trans structure part in the above formula (1) is substituted with another atom or atomic group.
  • the atom or atomic group (atom or atomic group before being substituted) contained in the trans structure part include a hydrogen atom, a methyl group, a methylene group, a carbon atom, and a methine group.
  • a nitrogen atom As said other atom, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, a carbon atom etc. are mentioned, for example.
  • the nitrogen atom is preferred for antibacterial properties because it has a strong intermolecular force and causes a strong interaction with enzymes and cell membranes.
  • Examples of the other atomic groups include an acetoxy group, an alkoxy group (preferably an alkoxy group having 1 to 3 carbon atoms, more preferably a methoxy group), a hydroxyl group, an aryl group (preferably a phenyl group), and an alkyl group (preferably Examples thereof include an alkyl group having 1 to 5 carbon atoms, more preferably an ethyl group and a tert-butyl group), an acetyl group, an N-alkyl-acetamino group (the alkyl preferably has 1 to 5 carbon atoms), an azide group, and the like. .
  • N-alkyl-acetamino group (more preferably N-methyl-acetamino group) is preferred for antibacterial properties because nitrogen atoms have strong intermolecular forces and cause strong interaction with enzymes and cell membranes.
  • Group, N-butyl-acetamino group) and azide group are preferable.
  • At least one of the atoms or atomic groups contained in the trans structure part is substituted with another atom or atomic group.
  • the substitution is represented by the following formula (1- It is preferable that at least one atom or atomic group contained in the II moiety in 1) is substituted, and the atom or atomic group contained in the III moiety in the following formula (1-1) is not substituted. This is because the inventors maintained the structure of the I moiety of the above formula (I) with respect to farnesyl diphosphate and the like, which are naturally occurring starting substrates, and introduced the desired structure to other parts.
  • an isoprene oligomer can be produced by using prenyltransferase, which is a naturally occurring oligomer-forming enzyme, or an enzyme in which a part thereof is mutated.
  • prenyltransferase which is a naturally occurring oligomer-forming enzyme, or an enzyme in which a part thereof is mutated.
  • trans structure part in the above formula (1) include, for example, structures represented by the following formulas (a) to (s). Among them, the following formulas (c), (d), (e), (f), (k), (l), ((1), ( r) is preferred. In addition, a structure represented by the following formulas (g) to (q) is preferable because of excellent antibacterial properties, and a structure represented by the following formula (k), (l), or (q) is more preferable.
  • the method for producing an isoprene oligomer of the present invention is represented, for example, by the following formula (3), and at least one atom or atomic group contained in the isoprene unit in the following formula (3) is substituted with another atom or atomic group.
  • a method of biosynthesis from allylic diphosphate hereinafter also referred to as allylic diphosphate derivative
  • isopentenyl diphosphate hereinafter also referred to as allylic diphosphate derivative
  • the allylic diphosphate derivative has three hydroxyl groups bonded to a phosphorus atom, but in an aqueous solution, part or all of these hydroxyl groups are dissociated (for example, the above-mentioned Like a group represented by formula (5)).
  • the allylic diphosphate derivative is a concept including a compound in which a part or all of such a hydroxyl group is dissociated. (In formula (3), p represents an integer of 1 to 10.)
  • P in the formula (3) represents an integer of 1 to 10 (preferably 1 to 4, more preferably 1 to 3).
  • the atom or atomic group (the atom or atomic group before substitution) contained in the isoprene unit in the formula (3) is an atom contained in the trans structure part in the above formula (1) or Examples are the same as the atomic group (the atom or atomic group before being substituted).
  • the other atom or atomic group replacing the atom or atomic group contained in the isoprene unit in the formula (3) is the same as the other atom or other atomic group described for the formula (1). Can be mentioned.
  • substitution is substituted so that the structure of I part of the said formula (I) may be maintained. That is, at least one atom or atomic group contained in the IV moiety in the following formula (3-1) is substituted, and an atom or atomic group contained in the V moiety in the following formula (3-1) is not substituted. It is preferable.
  • an isoprene oligomer can be suitably produced by using prenyltransferase, which is a naturally occurring oligomer-forming enzyme, or an enzyme obtained by mutating a part thereof.
  • P in the formula (3-1) is the same as p in the formula (3).
  • allylic diphosphate derivative examples include compounds represented by the following formulas (A) to (S).
  • OPP has three hydroxyl groups bonded to phosphorus atoms, but part or all of these hydroxyl groups are dissociated in an aqueous solution (for example, in the above formula (5)). To be represented).
  • OPP is a concept including a group in which a part or all of such hydroxyl groups are dissociated.
  • allylic diphosphate derivatives represented by the above formulas (A) to (S) include dimethylallyl diphosphate, geranyl diphosphate, farnesyl diphosphate, geranylgeranyl diphosphate, geraniol, farnesol, and geranyl.
  • a person skilled in the art can produce from geraniol or the like with reference to the method described in the Examples.
  • Examples of the method for biosynthesizing the isoprene oligomer of the present invention from an allylic diphosphate derivative and isopentenyl diphosphate include a method using an enzyme having prenyl transferase activity. Specifically, an allylic diphosphate derivative and isopentenyl diphosphate may be reacted in the presence of an enzyme having prenyl transferase activity.
  • an enzyme having prenyl transferase activity is a new catalyst that increases the number of isoprene units by 1 by catalyzing a condensation reaction between an allylic substrate (allylic diphosphate) and isopentenyl diphosphate.
  • a reaction in which isopentenyl diphosphate is sequentially linked to an allylic substrate (allylic diphosphate) in the Z-form (the newly increased isoprene unit is in a cis structure)
  • an enzyme that catalyzes the following reaction may be mentioned.
  • Examples of the organism having an enzyme having prenyl transferase activity include, for example, Micrococcus luteus B-P26 (Micrococcus luteus B-P26), Escherichia coli, Saccharomyces cerevisiae, and Arabidopsis sariana (Saccharomyces cerevisiae). Arabidopsis thaliana, Hevea brasiliensis, Periploca sepium, Bacilus stearothermophilus, Sulfolobus acidocaldarius, ATCC49426, etc.
  • the isoprene oligomer of the present invention is obtained by reacting an allylic diphosphate derivative with isopentenyl diphosphate in the presence of an enzyme having prenyltransferase activity.
  • an enzyme having prenyl transferase activity a culture of the above organism, an organism separated from the culture, a processed product of the organism, an enzyme purified from the culture or the organism, a genetic engineering technique
  • a culture of an organism (transformant) transformed so as to express an enzyme having prenyltransferase activity (this enzyme includes a mutant enzyme described later), an organism separated from the culture, It means a situation where a processed product of the organism, the culture, or an enzyme purified from the organism is present.
  • the organism transformed so as to express an enzyme having prenyltransferase activity is a transformant produced by a conventionally known genetic engineering technique, and the production method will be described later.
  • the organism may be cultured in an appropriate medium.
  • the medium for this is not particularly limited as long as the organism can grow, and may be a normal medium containing a normal carbon source, nitrogen source, inorganic ions, and, if necessary, an organic nutrient source.
  • any of the above organisms can be used as the carbon source.
  • sugars such as glucose, fructose, maltose and amylose, alcohols such as sorbitol, ethanol and glycerol, fumaric acid and citric acid
  • Organic acids such as acetic acid and propionic acid and salts thereof
  • carbohydrates such as paraffin or mixtures thereof
  • Nitrogen sources include ammonium salts of inorganic salts such as ammonium sulfate and ammonium chloride, ammonium salts of organic acids such as ammonium fumarate and ammonium citrate, nitrates such as sodium nitrate and potassium nitrate, peptone, yeast extract, meat extract, corn steep Organic nitrogen compounds such as liquor or a mixture thereof can be used.
  • nutrient sources used in normal media such as inorganic salts, trace metal salts, vitamins, hormones, and the like can be used by appropriately mixing them.
  • the culture may be performed for about 12 to 480 hours under aerobic conditions while appropriately limiting the pH and temperature within the range of pH 5 to 8 and temperature 20 to 60 ° C. .
  • the culture of the organism is, for example, a culture solution obtained by culturing the organism under the above-described culture conditions, a culture filtrate (culture supernatant) obtained by separating the organism (organism) from the culture solution by filtration or the like. Is mentioned.
  • Examples of organisms separated from the culture include organisms (organisms) separated from the culture solution by filtration, centrifugation, or the like.
  • Examples of the processed product of the organism include a crushed organism obtained by homogenizing the organism separated from the culture, and a crushed organism obtained by ultrasonic treatment.
  • Examples of the enzyme purified from the culture or the organism include known purification operations such as salting out, ion exchange chromatography, affinity chromatography, and gel filtration chromatography of the enzyme present in the culture or the organism. It is an enzyme obtained by performing.
  • the purity of the purified enzyme is not particularly limited.
  • the isoprene oligomer of the present invention By reacting an allylic diphosphate derivative with isopentenyl diphosphate in the presence of an enzyme having prenyltransferase activity, the isoprene oligomer of the present invention can be obtained. What is necessary is just to react by adding the culture of the said biological body, a refinement
  • the reaction temperature may be, for example, 20 to 60 ° C.
  • the reaction time may be, for example, 1 to 16 hours
  • the pH may be, for example, 5 to 8.
  • magnesium chloride, a surfactant, 2-mercaptoethanol and the like may be added.
  • Y in the above formula (1) is usually a group represented by the above formula (2) or a hydroxyl group. This hydroxyl group is generated when the group represented by the above formula (2) is hydrolyzed.
  • the isoprene oligomer in which Y in the above formula (1) is a formyl group can be obtained, for example, by oxidizing an isoprene oligomer in which Y in the above formula (1) is a group represented by the above formula (2).
  • the isoprene oligomer in which Y in the above formula (1) is a carboxy group can be obtained, for example, by oxidizing an isoprene oligomer in which Y in the above formula (1) is a group represented by the above formula (2).
  • the isoprene oligomer in which Y in the above formula (1) is an ester group is obtained by oxidizing and esterifying, for example, an isoprene oligomer in which Y in the above formula (1) is a group represented by the above formula (2). can get.
  • the isoprene oligomer in which Y in the above formula (1) is a carbonyl group is obtained by, for example, oxidizing and esterifying an isoprene oligomer in which Y in the above formula (1) is a group represented by the above formula (2). can get.
  • the isoprene oligomer of the present invention is obtained by biosynthesis except for organic synthesis of an allylic diphosphate derivative which is an initiation substrate, it can take into account the depletion of petroleum resources and environmental problems.
  • the original substrate (starting substrate) of the enzyme (an enzyme having prenyl transferase activity) possessed by the organism is allylic diphosphate.
  • the allylic diphosphate derivative used as an initiation substrate in the present invention originally functions as an inhibitor of an enzyme produced by the organism. Therefore, the enzyme produced by the organism often has low enzyme activity for the allylic diphosphate derivative (particularly the compounds represented by the formulas (G) to (Q)). Therefore, in the present invention, it is preferable to use a mutant enzyme having improved enzyme activity with respect to the allylic diphosphate derivative.
  • an organism (transformant) transformed so as to express the mutant enzyme may be prepared by a genetic engineering technique.
  • the inventors of the present invention have produced a mutant enzyme of the above-mentioned undecaprenyl diphosphate synthase derived from Micrococcus luteus BP26 and succeeded in improving the enzyme activity for the allylic diphosphate derivative.
  • the three-dimensional structure of the undecaprenyl diphosphate synthase derived from Micrococcus luteus B-P26 is already known (database PDB (RCSB Protein Data Bank), ID: 1f75). Therefore, the present inventors perform docking simulation based on the information of this three-dimensional structure, and change the side chain length with respect to the amino acid located in the vicinity of the hydrocarbon portion of the diphosphate of the allylic diphosphate. Based on the design concept that the enzyme activity for the allylic diphosphate derivative can be improved by performing mutation so as to change the charge, a mutant enzyme was prepared. Specifically, it is preferable to perform any one of the following mutations (1) to (4).
  • Asparagine at position 31 is replaced with alanine, glutamine, glycine and aspartic acid
  • Leucine at position 91 is replaced with asparagine, aspartic acid, glycine and lysine
  • Asparagine at position 77 is alanine, glutamine, glycine, Substitution with aspartic acid
  • Mutant enzyme N31A substitution of asparagine at position 31 with alanine (base sequence and amino acid sequence are shown in SEQ ID NOs: 3 and 4, respectively)
  • Mutant enzyme N77A Asparagine at position 77 is substituted with alanine (base sequence and amino acid sequence are shown in SEQ ID NOs: 5 and 6, respectively)
  • Mutant enzyme L91N substitution of leucine at position 91 with asparagine (base sequence and amino acid sequence are shown in SEQ ID NOs: 7 and 8, respectively)
  • Mutant enzyme L91D substitution of leucine at position 91 with aspartic acid (base sequence and amino acid sequence are shown in SEQ ID NOs: 9 and 10, respectively)
  • Mutant enzyme N31Q Asparagine at position 31 is replaced with glutamine (base sequence and amino acid sequence are shown in SEQ ID NOs: 11 and 12, respectively)
  • Mutant enzyme N77Q substitution of asparagine at position 77 with glutamine (base sequence and amino acid sequence are shown in SEQ ID NOs:
  • enzyme having prenyl transferase activity include [1] below.
  • an enzyme may have enzyme activity even when it contains substitution, deletion, insertion, or addition of one or more amino acids in the original amino acid sequence.
  • specific examples of the enzyme having prenyl transferase activity include the following [2].
  • Substitution or deletion of one or more amino acids in the amino acid sequence represented by any one of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 It is composed of a sequence including a loss, insertion, or addition, and is represented by the following formula (3), and at least one atom or atomic group contained in the isoprene unit in the following formula (3) is replaced by another atom or atomic group
  • amino acids preferably 1 or 100 amino acids, still more preferably Is 1 or 75 amino acids, particularly preferably 1 or 50 amino acids, most preferably 1 or 25 amino acids, more most preferably 1 or 12 amino acids, still most preferably 1 or 5 amino acids, Most preferably, it is an amino acid sequence including substitution, deletion, insertion, or addition of 1 or 3 amino acids.
  • a protein having an amino acid sequence having a high sequence identity with the amino acid sequence of an enzyme having prenyltransferase activity may have the same activity.
  • specific examples of the enzyme having prenyl transferase activity include the following [3]. [3] Amino acid sequence having 45% or more sequence identity with the amino acid sequence represented by any one of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 And a protein having an activity of catalyzing a reaction between an allylic diphosphate derivative and isopentenyl diphosphate
  • SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 , 22 is preferably 45% or more, more preferably 60% or more, still more preferably 70% or more, particularly preferably 80% or more, most preferably. Is 90% or more, more preferably 95% or more, still more preferably 98% or more, and most preferably 99% or more.
  • sequence identity of amino acid sequences and base sequences is determined by the algorithm BLAST [Pro. Natl. Acad. Sci. USA, 90, 5873 (1993)] and FASTA [Methods Enzymol. , 183, 63 (1990)].
  • a transformant expressing the protein can be obtained by a conventionally known method. And the protein is produced using the transformant. Whether or not the protein can be used to catalyze the reaction of an allylic diphosphate derivative and isopentenyl diphosphate by HPLC (High Performance Liquid Chromatography), TLC (Thin-Layer Chromatography), etc. Or the method of confirming by quantifying and qualifying a product is mentioned.
  • DNA encoding an enzyme having prenyltransferase activity examples include the following [1] to [3].
  • [3] DNA having a base sequence complementary to the base sequence represented by any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 is stringent That encodes a protein that hybridizes under mild conditions and has an activity of catalyzing the reaction between an allylic diphosphate derivative and isopentenyl diphosphate
  • hybridize refers to a step in which DNA hybridizes to DNA having a specific base sequence or a part of the DNA. Therefore, the DNA having the specific base sequence or a part of the base sequence of the DNA is useful as a probe for Northern or Southern blot analysis, or can be used as an oligonucleotide primer for PCR (Polymerase Chain Reaction) analysis. It may be DNA. Examples of DNA used as a probe include DNA of at least 100 bases, preferably 200 bases or more, more preferably 500 bases or more, but may be DNA of at least 10 bases, preferably 15 bases or more. .
  • the above stringent conditions include, for example, a filter in which DNA is immobilized and probe DNA, 50% formamide, 5 ⁇ SSC (750 mM sodium chloride, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6). ) After incubation overnight at 42 ° C. in a solution containing 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g / l denatured salmon sperm DNA, for example 0.2 ⁇ SSC solution at about 65 ° C. Among them, conditions for washing the filter can be mentioned, but lower stringent conditions can also be used.
  • Stringent conditions can be changed by adjusting the concentration of formamide (the lower the formamide concentration, the lower the stringency), and changing the salt concentration and temperature conditions.
  • low stringent conditions for example, 6 ⁇ SSCE (20 ⁇ SSCE is 3 mol / l sodium chloride, 0.2 mol / l sodium dihydrogen phosphate, 0.02 mol / l EDTA, pH 7.4), 0 After overnight incubation at 37 ° C. in a solution containing 5% SDS, 30% formamide, 100 ⁇ g / l denatured salmon sperm DNA, 50 ° C. 1 ⁇ SSC, 0.1% SDS solution The conditions of using and washing can be mentioned.
  • examples of lower stringent conditions include conditions under which hybridization is performed using a solution having a high salt concentration (for example, 5 ⁇ SSC) under the above-described low stringency conditions and then washed.
  • the various conditions described above can also be set by adding or changing a blocking reagent used to suppress the background of hybridization experiments.
  • the addition of the blocking reagent described above may be accompanied by a change in hybridization conditions in order to adapt the conditions.
  • DNA that can hybridize under the above stringent conditions for example, when calculated based on the above parameters using a program such as BLAST and FASTA, SEQ ID NOs: 1, 3, 5, 7, 9, 11 , 13, 15, 17, 19, and 21 and at least 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, particularly preferably 80% or more.
  • SEQ ID NOs: 1, 3, 5, 7, 9, 11 , 13, 15, 17, 19, and 21 and at least 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, particularly preferably 80% or more.
  • DNA that hybridizes with the above DNA under stringent conditions encodes a protein having an activity of catalyzing the reaction between an allylic diphosphate derivative and isopentenyl diphosphate.
  • a recombinant DNA that expresses the DNA is prepared, an organism obtained by introducing the recombinant DNA into a host cell is cultured, and the protein is purified from the obtained culture. Then, using the protein, whether or not the reaction between the allylic diphosphate derivative and isopentenyl diphosphate can be catalyzed is confirmed by quantifying and qualifying the substrate or product by HPLC, TLC, etc. The method of doing is mentioned.
  • mutant enzyme and the DNA encoding the mutant enzyme are: Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols in BioProsthetics. Nucleic Acids Research, 10, 6487 (1982), Proc. Natl. Acad. Sci. USA, 79, 6409 (1982), Gene, 34, 315 (1985), Nucleic Acids Research, 13, 4431 (1985), Proc. Natl. Acad. Sci.
  • the nucleotide sequence represented by SEQ ID NO: 1 (micrococcus luteus BP26-derived undecaprenyl diphosphate synthase) It can be obtained by introducing a site-specific mutation into the base sequence).
  • Transformant Next, a method for producing an organism (transformant) transformed so as to express an enzyme having prenyltransferase activity will be briefly described. Here, a method for producing a transformant transformed so as to mainly express the mutant enzyme will be briefly described. Such a transformant can be produced by a conventionally known method if the above design concept is determined.
  • a primer is designed so that the mutation can be introduced into the target site.
  • the base sequence of the primer include the base sequences described in the Examples (see SEQ ID NOs: 23 to 42 in the Sequence Listing).
  • a DNA containing the base sequence represented by SEQ ID NO: 1 (the base sequence of Micrococcus luteus B-P26-derived undecaprenyl diphosphate synthase) is used as a template DNA, and PCR is performed using the above primers.
  • SEQ ID NO: 1 the base sequence of Micrococcus luteus B-P26-derived undecaprenyl diphosphate synthase
  • PCR is performed using the above primers.
  • the obtained linear DNA is inserted downstream of the promoter of an appropriate expression vector using an appropriate restriction enzyme or the like to produce a recombinant DNA.
  • a transformant can be obtained by introducing the recombinant DNA into a host cell suitable for the expression vector.
  • a DNA containing the base sequence represented by SEQ ID NO: 1 (the base sequence of Micrococcus luteus B-P26-derived undecaprenyl diphosphate synthase) downstream of the promoter of an appropriate expression vector is appropriately used.
  • a restriction enzyme or the like is inserted, and the expression vector is used as a template DNA, and a DNA into which a mutation is introduced by PCR or the like using the above primers is circularized with a polymerase to produce a recombinant DNA.
  • a transformant can be obtained by introducing the recombinant DNA into a host cell suitable for the expression vector.
  • the base sequence represented by SEQ ID NO: 1 (micrococcus luteus B-P26-derived undecaprenyl diphosphate synthase base downstream of the promoter of an appropriate expression vector) DNA containing the sequence) is inserted using an appropriate restriction enzyme or the like to produce recombinant DNA.
  • a transformant can be obtained by introducing the recombinant DNA into a host cell suitable for the expression vector.
  • DNA containing the known base sequence represented by SEQ ID NO: 1 (the base sequence of Undecaprenyl diphosphate synthase derived from Micrococcus luteus B-P26) has been described.
  • An enzyme having another prenyltransferase activity derived from an organism, or a DNA encoding an enzyme having prenyltransferase activity derived from an organism other than the aforementioned organism may be used.
  • DNA encoding an enzyme having prenyltransferase activity is identified by screening using a known technique, for example, using a part of the base sequence represented by SEQ ID NO: 1 as a probe. You can separate them.
  • a method for isolating a target DNA molecule using the DNA molecule as a probe is described in Molecular Cloning, 2nd edition, Cold Spring Harbor press (1989) and the like. Further, by purifying an enzyme having prenyltransferase activity derived from the above-described organisms by the purification operation as described above, and determining the amino acid sequence of the purified enzyme, the DNA encoding the enzyme can be identified and isolated. Good.
  • Any host cell can be used as long as it can express the gene of interest, such as a microorganism, yeast, animal cell, insect cell, or plant cell.
  • the expression vector one that can autonomously replicate in the host cell or can be integrated into a chromosome and that contains a promoter at a position where the recombinant DNA can be transcribed can be used.
  • the recombinant DNA can autonomously replicate in the prokaryote, and at the same time, a DNA encoding a promoter, a ribosome binding sequence, an enzyme having prenyltransferase activity, transcription It is preferably a recombinant DNA constituted by a termination sequence. Moreover, the gene which controls a promoter may be contained.
  • Expression vectors include pColdI (Takara Bio), pCDF-1b, pRSF-1b (Novagen), pMAL-c2x (New England Biolabs), pGEX-4T-1 (GE Healthcare Bio) Science), pTrcHis (Invitrogen), pSE280 (Invitrogen), pGEMEX-1 (Promega), pQE-30 (Qiagen), pET-3 to pET-52 (Novagen), pKYP10 (JP 58-110600), pKYP200 [Agric. Biol. Chem., 48, 669 (1984)], pLSA1 [Agric. Biol.
  • any promoter that functions in a host cell such as Escherichia coli may be used.
  • trp promoter P trp
  • T7 promoter T7 promoter
  • lac promoter P lac
  • P L promoter P L promoter
  • P R promoter promoters from P SE such promoters, E. coli or phage, such as, SPO1 promoter, SPO2 promoter, penP promoter Etc.
  • artificially designed and modified promoters such as a promoter in which two P trp are connected in series, tac promoter, lacT7 promoter, let I promoter, and the like can also be used.
  • xylA promoter (Appl. Microbiol. Biotechnol., 35, 594-599 (1991)] for expression in microorganisms belonging to the genus Bacillus and P54- for expression in microorganisms belonging to the genus Corynebacterium 6 Promoter [Appl. Microbiol. Biotechnol., 53, 674-679 (2000)] etc. can also be used. It is preferable to use a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the initiation codon is adjusted to an appropriate distance (eg, 6 to 18 bases).
  • Prokaryotes include Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, Pseudomonas, Agrobacterium (Agrobacterium), Alicyclobacillus, Anabena, Anacystis, Arthrobacter, Azotobacter, Chromatium, Erwinia, Methylobacterium genus, Formidium genus, Rhodobacter genus, Rhodopseudomonas genus, Rhodospirillum genus, Scenedesmus genus, Streptomyces genus, Streptomyces genus Shinekokka Microorganisms belonging to the genus (Synechoccus), Zymomonas, etc., for example, Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli DH5 ⁇ ,
  • Agrobacterium radiobacter Agrobacterium rhizogenes, Agrobacterium rubi, Anabaena cylindrica, Anabaena doliolum ), Anabaena flos-aquae, Arthrobacter aurescens, Arthrobacter citreus, Arthrobacter globformis, Arthrobacter globformis Hydrocarboglutamicus (Arthrobacter hydrocarboglutamicus), Arthrobacter mysorens, Arthrobacter nicotianae, Arthrobacter paraffine (Arthrobacter paraffine) us), Arthrobacter protophormiae, Arthrobacter roseoparaffinus, Arthrobacter sulfureus, Arthrobacter ureafaciens, Arthrobacter ureafaciens Chromatium buderi, Chromatium tepidum, Chromatium vinosum, Chromatium warmingii, Chromatium fluviatiler, E.
  • Erwinia carotovora Erwinia ananas, Erwinia herbicola, Erwinia punctata, Erwinia tele (Erwinia terreus), Methylobacterium rhodesianum, Methylobacterium extorquens, Phormidium sp.
  • Rhodobacter capsule Rhodobacter capsule
  • Rhodobacter sphaeroides Rhodopseudomonas blastica, Rhodopseudomonas marina, Rhodopseudomona rum Rum, Rumdo spirumum, Rhodopseudomonas blastica
  • Rhodospirillum salinarum Streptomyces ambofaciens, Stre Streptomyces aureofaciens, Streptomyces aureus, Streptomyces fungicidicus, Streptomyces griseochromogenes, Streptomyces grisseochromogenes Streptomyces griseus, Streptomyces lividans, Streptomyces olivogriseus, Streptomyces rameus, Streptomyces tanashiensis (Streptomyces tanashiensis), Streptomyces tanash
  • any method can be used as long as it is a method for introducing DNA into the above host cell.
  • a method using calcium ions [Proc. Natl. Acad. Sci., USA, 69, 2110 (1972)], protoplast method (JP-A 63-248394), electroporation method [Nucleic Acids Res., 16, 6127 (1988)], heat shock method and the like.
  • YEp13 ATCC37115
  • YEp24 ATCC37051
  • YCp50 ATCC37419
  • pHS19 pHS15 etc.
  • Any promoter may be used as long as it functions in yeast strains.
  • PHO5 promoter PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, heat shock polypeptide promoter And promoters such as MF ⁇ 1 promoter and CUP 1 promoter.
  • Host cells include the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, Examples include yeast strains belonging to the genus Candida and the like, specifically, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Examples include Trichosporon pullulans, Schwanniomyces alluvius, Pichia pastoris, Candida utilis.
  • any method can be used as long as it introduces DNA into yeast.
  • electroporation method [Methods Enzymol., 194, 182 (1990)]
  • spheroplast method Proc. Natl. Acad. Sci., USA, 81, 4889 (1984)
  • lithium acetate method [J. Bacteriol., 153, 163 (1983)] and the like.
  • examples of expression vectors include pcDNAI, pcDM8 (commercially available from Funakoshi), pAGE107 (Japanese Patent Laid-Open No. 3-22979), pAS3-3 (Japanese Patent Laid-Open No. 2-227075), pCDM8 [Nature, 329, 840 (1987)], pcDNAI / Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 [J. Biochem, 101, 1307 (1987)], pAGE210, pAMo, pAMoA and the like can be used.
  • CMV cytomegalovirus
  • SV40 early promoter or metallothionein promoter SV40 early promoter or metallothionein promoter
  • retrovirus Promoter heat shock promoter
  • SR ⁇ promoter SR ⁇ promoter
  • an IE gene enhancer of human CMV may be used together with a promoter.
  • Host cells include mouse myeloma cells, rat myeloma cells, mouse hybridoma cells, human cells such as Namalwa cells or Namalva KJM-1 cells, human fetal kidney cells, human leukemia cells, African green monkey kidney cells CHO cells that are Chinese hamster cells, HBT5637 (Japanese Patent Laid-Open No. 63-299), and the like.
  • mouse myeloma cells SP2 / 0, NSO, etc.
  • rat myeloma cells as YB2 / 0, etc.
  • human fetal kidney cells as HEK293 (ATCC CRL-1573)
  • human leukemia cells as BALL-1, etc.
  • Africa Examples of green monkey kidney cells include COS-1 and COS-7.
  • any method can be used as long as it is a method for introducing DNA into animal cells.
  • electroporation method [Cytotechnology, 3, 133 (1990)]
  • calcium phosphate method Japanese Patent Laid-Open No. Hei. 2-227075
  • lipofection method [Proc. Natl. Acad. Sci., USA, 84, 7413 (1987)]
  • insect cells When insect cells are used as hosts, for example, Baculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company, New York (1992), Current Protocols in Molecular Biology, Molecular Biology, A Laboratory Proteins can be produced by the methods described in Manual, Bio / Technology, 6, 47 (1988).
  • the recombinant gene transfer vector and baculovirus are co-introduced into insect cells to obtain the recombinant virus in the insect cell culture supernatant, and then the recombinant virus is further infected into insect cells to produce proteins.
  • the gene transfer vector used in the method include pVL1392, pVL1393, pBlueBacIII (all manufactured by Invitrogen) and the like.
  • baculovirus for example, Autographa californica nuclear polyhedrosis virus, which is a virus that infects the night stealing insects, can be used.
  • insect cells podocytes of Spodoptera frugiperda, ovary cells of Trichoplusia ni, cultured cells derived from silkworm ovary, and the like can be used.
  • Spodoptera frugiperda ovary cells are Sf9, Sf21 (Baculovirus Expression Vectors A Laboratory Manual), etc., Trichopulcia ni ovary cells are High 5, BTI-TN-5B1-4 (manufactured by Invitrogen)
  • Examples of cultured cells derived from silkworm ovary include Bombyx mori N4.
  • Examples of a method for co-introducing the recombinant gene introduction vector and the baculovirus into insect cells for preparing a recombinant virus include, for example, the calcium phosphate method (JP-A-2-27075), the lipofection method [Proc. Natl. Acad Sci., USA, 84, 7413 (1987)].
  • expression vectors include Ti plasmids and tobacco mosaic virus vectors. Any promoter may be used as long as it functions in plant cells. Examples thereof include cauliflower mosaic virus (CaMV) 35S promoter and rice actin 1 promoter.
  • CaMV cauliflower mosaic virus
  • host cells include plant cells such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat and barley.
  • any method can be used as long as it is a method for introducing DNA into plant cells.
  • a method using Agrobacterium JP 59-140885, JP 60). -70080, WO94 / 00977
  • electroporation method Japanese Patent Laid-Open No. 60-251887
  • method using particle gun (gene gun) Patent No. 2606856, Patent No. 2517813
  • Patent No. 2606856 Patent No. 2517813
  • the host may be any microorganism, yeast, animal cell, insect cell, plant cell, etc., preferably a microorganism, more preferably a microorganism belonging to the genus Escherichia, more preferably a microorganism belonging to Escherichia coli. be able to.
  • a protein with a sugar or sugar chain added can be obtained.
  • the obtained transformant is cultured in a medium, and an enzyme having prenyltransferase activity can be produced by producing and accumulating an enzyme having prenyltransferase activity in the culture. Moreover, you may refine
  • the method of culturing the transformant in a medium can be performed according to a usual method used for culturing a host.
  • the culture may be performed according to the medium composition and culture conditions described above.
  • the polyisoprene of the present invention comprises a trans structure part and a cis structure part represented by the following formula (4), and at least one atom or atomic group contained in the trans structure part is substituted with another atom or atomic group.
  • a trans structure part means the repeating part (C part in following formula (4)) of the isoprene unit of a trans structure.
  • the cis structure part means a repeating part of the isoprene unit of the cis structure (() q part (D part) in the following formula (4)).
  • n represents an integer of 1 to 10.
  • q represents an integer of 30 to 40000.
  • Y represents a hydroxyl group, a formyl group, a carboxy group, an ester group, a carbonyl group, or the following formula (2). Represents the group represented.
  • the polyisoprene of the present invention has a structure close to that of natural rubber and has high compatibility with rubber molecules.
  • the polyisoprene of the present invention is modified only at the end portion of the molecule. That is, the polyisoprene of the present invention has a hydroxyl group, a formyl group, a carboxy group, an ester group, a carbonyl group or a group represented by the above formula (2) located at the terminal of the cis structure part, and further a trans structure part. Since at least one atom or atomic group contained therein is substituted with another atom or atomic group, the interaction with a filler such as silica is strong without impairing the inherent properties of polyisoprene.
  • the polyisoprene of the present invention is highly compatible with rubber and has a strong interaction with a filler such as silica.
  • a rubber composition in which molecules and a filler are combined is obtained. For example, low heat build-up, wet grip performance, and wear resistance of the rubber composition can be improved.
  • a polar group or the like is present only at the terminal part of the cis structure part or the part near the terminal of the trans structure part. Therefore, compared to the case where the main chain portion has a polar group or the like, or the case where only the terminal portion of the cis structure portion has a polar group or the like, the dispersion of the filler such as silica without impairing the inherent properties of polyisoprene. For example, the effect of improving low heat build-up, wet grip performance, and wear resistance is high.
  • N in the above formula (4) is the same as n in the above formula (1).
  • Q in the above formula (4) represents an integer of 30 to 40000 (preferably 15000 to 30000, more preferably 15000 to 20000).
  • Y in the above formula (4) is the same as Y in the above formula (1).
  • Y is preferably a hydroxyl group or a carboxy group because of strong interaction with a filler such as silica.
  • the atom or atomic group contained in the trans structure part is the atom or atomic group contained in the trans structure part in the above formula (1) (the atom before substitution) Or the same group as the atomic group).
  • Examples of the other atoms or atomic groups include the same atoms as those described for the above formula (1) or other atomic groups.
  • At least one of the atoms or atomic groups contained in the trans structure part is substituted with another atom or atomic group.
  • the substitution is the same as that described for the isoprene oligomer in the following formula (4-1). It is preferable that at least one atom or atomic group contained in the VI part in the inside is substituted, and an atom or atomic group contained in the VII part in the following formula (4-1) is not substituted.
  • N, q, and Y in formula (4-1) are the same as n, q, and Y in formula (4).
  • transformer structure in the above formula (4) include, for example, structures represented by the above formulas (a) to (s). Among them, the above formulas (c), (d), (e), (e), because the interaction with a filler such as silica is stronger and the effect of improving low heat build-up, wet grip performance, and wear resistance is high.
  • a structure represented by (f), (k), (l), or (r) is preferable.
  • Examples of the method for producing the polyisoprene of the present invention include a method of biosynthesis from the isoprene oligomer of the present invention and isopentenyl diphosphate.
  • the polyisoprene of the present invention is obtained by biosynthesis except for organic synthesis of an allylic diphosphate derivative which is an initiating substrate, it can be considered for depletion of petroleum resources and environmental problems.
  • natural rubber latex has catalyzed the condensation reaction between isoprene oligomers and isopentenyl diphosphates, and isoprene oligomers are sequentially converted to isopentenyl diphosphates in the Z form (the newly increased isoprene units are in cis structure). It is known that an enzyme having activity for catalyzing the following reaction to produce polyisoprene, a rubber elongation factor, and the like are contained.
  • polyisoprene can be produced using this enzyme, rubber elongation factor or the like. That is, as a method for biosynthesizing the polyisoprene of the present invention from the isoprene oligomer of the present invention and isopentenyl diphosphate, for example, a method of using an enzyme or a rubber elongation factor contained in natural rubber latex can be mentioned. It is done. Alternatively, an enzyme cloned from natural rubber latex or a rubber elongation factor may be used.
  • the isoprene oligomer of the present invention and isopentenyl diphosphate may be reacted in the presence of the enzyme and / or the rubber elongation factor.
  • the reaction is performed by adding natural rubber latex, an enzyme separated from natural rubber latex, a rubber elongation factor, or the like into a solution containing the isoprene oligomer of the present invention and isopentenyl diphosphate.
  • the reaction temperature may be, for example, 20 to 40 ° C.
  • the reaction time may be, for example, 1 to 72 hours
  • the pH may be, for example, 6 to 8.
  • magnesium chloride, a surfactant, 2-mercaptoethanol and the like may be added.
  • Y in the above formula (4) is usually a group or a hydroxyl group represented by the above formula (2). This hydroxyl group is generated when the group represented by the above formula (2) is hydrolyzed.
  • the polyisoprene in which Y in the above formula (4) is a formyl group can be obtained, for example, by oxidizing polyisoprene in which Y in the above formula (4) is a group represented by the above formula (2).
  • the polyisoprene in which Y in the above formula (4) is a carboxy group can be obtained, for example, by oxidizing polyisoprene in which Y in the above formula (4) is a group represented by the above formula (2).
  • the polyisoprene in which Y in the above formula (4) is an ester group is obtained by, for example, oxidizing and esterifying polyisoprene in which Y in the above formula (4) is a group represented by the above formula (2). can get.
  • the polyisoprene in which Y in the above formula (4) is a carbonyl group is obtained by, for example, oxidizing and esterifying polyisoprene in which Y in the above formula (4) is a group represented by the above formula (2). can get.
  • the origin of the above natural rubber latex is not particularly limited.
  • para rubber tree Hevea brasiliensis
  • Indian rubber tree Ficus elastica
  • oak tree rubber tree Ficus lyrata
  • Benjamin rubber tree Fecus benjamina
  • Indian bodaiju Ficus religiosa
  • Bengalbodaiju Ficus benghalensis
  • Kitashichitake Liscos chrysorrheus
  • para rubber tree is preferred because the rubber produced has a high molecular weight and contains a large amount of rubber.
  • the natural rubber latex is obtained by, for example, scratching (tapping) a groove of a para rubber tree trunk with a knife or the like and collecting the natural rubber latex flowing out from the cut milk duct.
  • Enzymes and rubber elongation factors separated from natural rubber latex include, for example, serum, serum, bottom fraction, rubber fraction, etc., separated by centrifuging natural rubber latex. Can be mentioned.
  • the serum, liquid low phase, and rubber phase contain the enzyme, the rubber elongation factor, and the like.
  • the rubber composition of the present invention contains the isoprene oligomer of the present invention and / or the polyisoprene of the present invention. Therefore, the rubber composition of the present invention is excellent in low heat generation, wet grip performance, and wear resistance.
  • the polyisoprene of the present invention can be used as a rubber component.
  • the content of the polyisoprene of the present invention is preferably 20% by mass or more, more preferably 40% by mass or more, still more preferably 60% by mass or more, and may be 100% by mass in 100% by mass of the rubber component. .
  • examples thereof include diene rubbers such as rubber (CR) and acrylonitrile butadiene rubber (NBR).
  • a rubber component may be used independently and may use 2 or more types together. Of these, NR and BR are preferable.
  • the content of NR in 100% by mass of the rubber component is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more. Yes, it may be 100% by mass.
  • the content of the isoprene oligomer of the present invention is preferably 1 part by mass or more, more preferably 2 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 1 part by mass, the effect obtained by blending the isoprene oligomer may not be sufficiently obtained.
  • the content of the isoprene oligomer is preferably 20 parts by mass or less, more preferably 15 parts by mass or less. If it exceeds 20 parts by mass, the strength may decrease and the wear resistance may also decrease.
  • filler examples include silica, carbon black, clay, calcium carbonate, and the like.
  • silica As a filler, it is preferable to use silica as a filler.
  • silica By blending silica, the effect obtained by blending the isoprene oligomer of the present invention and / or the polyisoprene of the present invention is sufficiently obtained.
  • the silica is not particularly limited, and examples thereof include dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid), and the like, but wet process silica is preferable because of its large number of silanol groups.
  • the present invention it is also preferable to use carbon black as a filler. Also in this case, the effect obtained by blending the isoprene oligomer of the present invention and / or the polyisoprene of the present invention is sufficiently obtained.
  • the rubber composition of the present invention includes compounding agents generally used in the production of rubber compositions such as silane coupling agents, zinc oxide, stearic acid, various anti-aging agents, and oil softening.
  • a vulcanizing agent such as an agent, wax, sulfur, a vulcanization accelerator, and the like can be appropriately blended.
  • the above components are kneaded using a rubber kneader such as an open roll or a Banbury mixer, and then vulcanized. Can be manufactured.
  • a rubber kneader such as an open roll or a Banbury mixer
  • the rubber composition of the present invention can be suitably used for tire components (for example, treads, sidewalls, undertreads, plies, breakers, carcass).
  • the pneumatic tire of the present invention can be produced by a usual method using the rubber composition. That is, the rubber composition is extruded in accordance with the shape of each member (for example, tread, sidewall) of the tire at an unvulcanized stage, molded by a normal method on a tire molding machine, and other tires Laminate together with the members to form an unvulcanized tire.
  • This unvulcanized tire can be heated and pressurized in a vulcanizer to produce a tire.
  • the olefin at the 10-position was oxidized using m-chloroated benzoic acid in anhydrous dichloromethane to obtain an epoxy form (compound represented by (aii) below) (yield 9%).
  • the epoxy was oxidized with orthoperiodic acid in anhydrous tetrahydrofuran to obtain an aldehyde compound (compound represented by (iii) below) (yield 28%).
  • a Grignard reagent was prepared using magnesium and butane bromide, and the aldehyde form was added to the Grignard reagent to obtain a secondary alcohol form (compound represented by (aiv) below) (yield 68). %).
  • the TBDPS protecting group was deprotected using n-tetrabutylammonium hydrate in anhydrous tetrahydrafuran to obtain a diol (compound represented by (dvi) below) (yield 80%).
  • the primary hydroxyl group was substituted with chlorine using N-chlorosuccinimide and dimethyl sulfide in an anhydrous dichloromethane solvent at -40 ° C. or lower to obtain a chloride (compound represented by (dvii) below) (yield). 80%).
  • the TBDPS protecting group was deprotected using n-tetrabutylammonium hydrate in anhydrous tetrahydrafuran to obtain a diol (compound represented by (vi) below) (yield 91%).
  • the primary hydroxyl group was substituted with chlorine using N-chlorosuccinimide and dimethyl sulfide in an anhydrous dichloromethane solvent at -40 ° C. or lower to obtain a chloride (compound represented by (evi) below) (yield). 70%).
  • the TBDPS group of (fiv) was eliminated to produce a diol (fv) (yield 93%).
  • the diol form (fv) is obtained by chlorinating a hydroxyl group present at the allylic position of diol using N-chlorosuccinimide and dimethylol sulfide in an anhydrous dichloromethane solvent at ⁇ 40 ° C. to obtain a chloride (fvi). (Yield 69%).
  • the alcohol was reacted in chloromethyl ethyl ether and diisopropylethylamine amine in dichloromethane to obtain a compound represented by the following (hiii) in which a methoxymethyl ether group was introduced into the hydroxyl group at the 8-position (yield 76%) ).
  • the acetyl group was converted to a hydroxyl group with potassium hydroxide to obtain an alcohol form (compound represented by (hiv) below) (yield 95%).
  • Chloride was obtained by chlorinating the hydroxyl group of the alcohol form using N-chlorosuccinimide (yield: 30%).
  • triphosphoric acid is triphosphorylated with tris (tetra-n-butyl) ammonium hydrogen diphosphate, and a compound (compound represented by the above formula (H)) represented by the following (hvi), which is a target substance, is obtained using a cellulose column. Obtained (yield 77%). Confirmation of intermediates and final products in each synthesis step was performed using TLC and instrumental analysis (IR, NMR).
  • the ester moiety was irreversibly hydrolyzed with potassium hydroxide in anhydrous methanol to obtain a primary alcohol (compound represented by (kvi) below) (yield 76%).
  • the primary hydroxyl group was substituted with chlorine using N-chlorosuccinimide and dimethyl sulfide in an anhydrous dichloromethane solvent at -40 ° C. or lower to obtain a chloride (compound represented by (kvii) below) (yield). 67%).
  • Primer sense primer 5′-gac gga gca ggc cga tgg gca aa-3 ′ for preparing mutant enzyme N31A
  • Primer sense primer 5′-act gaa gca tgg tct cgt cct aaa g-3 ′ (SEQ ID NO: 25) for production of mutant enzyme N77A
  • Primer sense primer 5′-gat gaa aaa ccc ggg tga ttt ttt aa-3 ′ for production of mutant enzyme L91N Antisense primer 5'-ca
  • pET22b pET22b / MLU-UPS
  • Micrococcus luteus B-P26-derived undecaprenyl diphosphate synthase hereinafter also referred to as wild-type enzyme
  • PET22b / MLU-UPS was transferred from Professor Toshitoshi Furuyama of Tohoku University Institute of Multidisciplinary Research for Advanced Materials. 10 ⁇ l Pfu polymerase buffer 2 ⁇ l, dsDNA template 2-20 ng, sense primer 50 ng, antisense primer 50 ng, 2.5 mM each dNTP 0.4 ⁇ l, ddH 2 O up to 20 ⁇ l Mix and perform PCR reaction.
  • the PCR reaction was performed at 95 ° C. for 30 sec for 1 cycle and 95 ° C. for 30 sec-55 ° C. for 1 min-68 ° C. for 8 min for 15 cycles.
  • 0.4 ⁇ l of Dpn I was added to the PCR reaction solution, and Dpn I treatment was performed at 37 ° C. for 1 hour.
  • E. Dpn I treatment solution 1-10 ⁇ l by E.C. E. coli DH5 ⁇ was transformed, and the transformant was applied to an LB agar medium containing 50 ⁇ g / mL ampicillin and cultured overnight at 37 ° C. to select a transformant.
  • the transformant was cultured overnight in an LB medium containing 50 ⁇ g / ml ampicillin, and a plasmid was prepared from the obtained culture solution by the alkaline SDS method. The plasmid was confirmed for mutagenesis using a sequencer.
  • 1 mL of the obtained culture solution is inoculated into a 500 mL Erlenmeyer flask containing 100 mL of LB medium containing 50 ⁇ g / mL ampicillin, shaken at 37 ° C. for 3 hours, and then added with IPTG to 0.1 mmol / L And cultured with shaking at 30 ° C. for 18 hours.
  • the culture solution was centrifuged to obtain wet cells.
  • a protein having prenyltransferase activity was purified from the supernatant obtained by crushing the wet cells obtained above by sonication and then centrifuged, using HisTrap (manufactured by Amersham). Purification of the purified protein was confirmed by SDS-PAGE.
  • Examples and Comparative Examples Comparison of wild-type and mutant-type enzyme activities (relative activity by substrate)
  • the reaction was carried out under the following conditions, and the activity of each mutant enzyme against each starting substrate was determined from the wild-type enzyme (Micrococcus luteus B-P26-derived enzyme).
  • the activity of decaprenyl diphosphate synthase was expressed as an index with 100 as the activity.
  • the purified protein 500ng, 50mM Tris-HCl Buffer ( pH7.5), 40mM magnesium chloride, 40mM TritonX-100,25mM 2- mercaptoethanol, 12.5 [mu] M starting substrate, 50 ⁇ M [1- 14 C] isopentenyl diphosphate, A reaction solution containing was prepared and reacted in waterbath at 37 ° C. for 1 hour. After the reaction, the activity of each enzyme was measured by quantifying the value of liquid scintillation and TLC.
  • the latex component a serum prepared by ultracentrifugating latex obtained from para rubber tree was used.
  • the isoprene oligomer used was prepared under the same conditions as in the examples (preparation of isoprene oligomers) using the mutant enzyme N31A and the like, and each starting substrate (farnesyl diphosphate, each starting material prepared in Production Examples 1 to 11).
  • the isoprene oligomer obtained using the substrate was used.
  • the starting substrate farnesyl diphosphate, a compound represented by the above formula (S), a compound represented by the above formula (B), a compound represented by the above formula (C), the above formula ( D), a compound represented by the above formula (E), a compound represented by the above formula (R), a compound represented by the above formula (P), represented by the above formula (H).
  • Example (Preparation of isoprene oligomer) The isoprene oligomers obtained by using the mutant enzyme N31A and the like in isoprene oligomer (0), isoprene oligomer (S), isoprene oligomer (B), isoprene oligomer (C), isoprene oligomer (D), isoprene oligomer, respectively.
  • the isoprene oligomer includes isoprene oligomer (0), isoprene oligomer (S), isoprene oligomer (B), isoprene oligomer (C), isoprene oligomer (D), isoprene oligomer (E), isoprene oligomer (R), isoprene oligomer.
  • Staphylococcus aureus strain into a test tube containing 2 ml of liquid medium (Polypepton 10 g / L, Yeast extract 2 g / L, MgSO4 ⁇ 7H2O 1 g / L, pH 7.0), and incubate at 30 ° C and 150 rpm for 5 hours , solid medium (Polypepton 10g / L, Yeast extract 2g, MgSO 4 ⁇ 7H 2 O 1g / L, Agar 15g / L, pH7.0) was inoculated into confirmed the next day colonies were cultured overnight at 30 ° C. .
  • liquid medium Polypepton 10g / L, Yeast extract 2 g / L, MgSO4 ⁇ 7H2O 1 g / L, pH 7.0
  • One colony on a solid medium was inoculated into a test tube containing 4 ml of a liquid medium, and cultured overnight at 30 ° C. to prepare a preculture.
  • 100 ⁇ l of the preculture was added to a new test tube containing 4 ml of liquid medium, and cultured at 30 ° C. and 150 rpm.
  • the culture solution was adjusted to 10 5 cfu / ml and used for the antibacterial test.
  • MIC was measured by the minimum growth inhibitory concentration (MIC) method, which is an experimental method for investigating the activity of general antimicrobial substances.
  • MIC concentration of the end-modified isoprene oligomer compound at which the fungus did not grow was defined as MIC.
  • the MIC was similarly determined for other bacteria.
  • Table 7 shows the isoprene oligomer and MIC used.
  • an isoprene oligomer was prepared using farnesyl diphosphate and a synthesized starting substrate (a compound represented by the above formula (K) and a compound represented by the above formula (F)).
  • the detail (n, m, Y in Formula (1)) of the obtained isoprene oligomer was determined by the method similar to an Example (preparation of an isoprene oligomer).
  • polyisoprene was prepared using the isoprene oligomer (isoprene oligomer (F), isoprene oligomer (K), isoprene oligomer (0)) obtained in Production Examples 14 to 16.
  • isoprene oligomer (F), isoprene oligomer (K), isoprene oligomer (0)) obtained in Production Examples 14 to 16.
  • the detail (n, q, Y in Formula (4)) of the obtained polyisoprene was determined by the method similar to an Example (preparation of polyisoprene).
  • NR TSR20 BR: BR01 manufactured by JSR Corporation Carbon black: Diamond black (N220) manufactured by Mitsubishi Chemical Corporation Isoprene oligomer (F), isoprene oligomer (K), isoprene oligomer (0): isoprene oligomer polyisoprene (F), polyisoprene (K-1), polyisoprene (K-2) obtained in Production Examples 14 to 16
  • Polyisoprene (0) Polyisoprenoidated zinc obtained in Production Examples 17 to 20: Zinc oxide No. 1 manufactured by Mitsui Mining & Smelting Co., Ltd.
  • Stearic acid Stearic acid anti-aging agent manufactured by NOF Corporation: Large NOCRACK 6C (N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine) manufactured by Uchinoseki Chemical Co., Ltd.
  • Wax Sunnock wax manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Sulfur Powder sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd.
  • NS Noxera-NS (N-tert- manufactured by Ouchi Shinsei Chemical Co., Ltd.) Butyl-2-benzothiazylsulfenamide)
  • Silica NIPSEAL AQ (wet silica) manufactured by Nippon Silica Co., Ltd.
  • Silane coupling agent Si266 (bis (3-triethoxysilylpropyl) disulfide) manufactured by Degussa Vulcanization accelerator DPG: Noxeller D (N, N-diphenylguanidine) manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Examples 12 to 21 and Comparative Examples 2 to 6 According to the formulation shown in Tables 8 and 9, materials other than sulfur and a vulcanization accelerator were kneaded using a 1.7 L Banbury mixer to obtain a kneaded product. Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was vulcanized at 150 ° C. for 30 minutes at a pressure of 80 kgf / cm 2 using a steam vulcanizing press to obtain a vulcanized rubber composition.
  • the isoprene oligomer can be produced by using prenyltransferase, which is a naturally occurring oligomer-forming enzyme, or an enzyme obtained by mutating a part of the enzyme, and the structure of the I part of the above formula (I) is not maintained. In order to show that the enzyme reaction does not proceed when the substrate is used, the following experiment was conducted.
  • a trans ester (compound represented by (vi) below) was obtained using 84% sodium hydride and diethylphosphonoacetic acid ethyl ester in anhydrous tetrahydrafuran (yield 84%).
  • reduction was performed using anhydrous diisobutyllithium hydride and methanol in anhydrous dichloromethane and anhydrous hexane to obtain an alcohol form (compound represented by (vii) below) (yield 19%).
  • Geraniol was synthesized as a starting material. Chlorination of the hydroxyl group of geraniol using N-chlorosuccinimide (NCS) and dimethyl sulfide (DMS) in anhydrous dichloromethane under a nitrogen atmosphere gave the chloride (compound represented by (i) below) (yield) 94%).
  • NCS N-chlorosuccinimide
  • DMS dimethyl sulfide
  • Farnesol was synthesized as a starting material.
  • the hydroxyl group of farnesol was chlorinated using N-chlorosuccinimide (NCS) and dimethyl sulfide (DMS) in anhydrous dichloromethane under a nitrogen atmosphere to obtain chloride (compound represented by (i) below) (yield) 91%).
  • NCS N-chlorosuccinimide
  • DMS dimethyl sulfide
  • reaction liquid containing 500 ng of enzyme, 50 mM Tris-HCl Buffer (pH 7.5), 40 mM magnesium chloride, 40 mM Triton X-100, 25 mM 2-mercaptoethanol, 12.5 ⁇ M starting substrate, 50 ⁇ M [1- 14 C] isopentenyl diphosphate,
  • the reaction liquid containing was prepared and it was made to react with water bath of 37 degreeC for 1 hour. After the reaction, the enzyme activity for each starting substrate was measured by quantifying the value of liquid scintillation and TLC.
  • Micrococcus luteus B- In order to show that the same tendency as in the case of P26-derived undecaprenyl diphosphate synthase is observed, using Bacillus stearothermophilus-derived farnesyl diphosphate synthase, Sulfolobus acidocaldararius-derived geranylgeranyl diphosphate synthase, The following experiment was conducted.
  • Bacillus stearothermophilus-derived farnesyl diphosphate synthase was prepared. Using plasmid pET22b (pET22b / BsFPS) in which farnesyl diphosphate synthase derived from Bacillus stearothermophilus (Bacillus stearothermophilus) was incorporated, E. coli E. coli was treated in the same manner as described above. E. coli BL21 (DE3) was transformed. PET22b / BsFPS was transferred from Professor Furuyama, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University. E. E.
  • coli BL21 (DE3) / pET22b / BsFPS was inoculated into a test tube containing 3 mL of LB medium containing 50 ⁇ g / mL ampicillin and cultured at 37 ° C. for 5 hours with shaking.
  • 1 mL of the obtained culture solution is inoculated into a 500 mL Erlenmeyer flask containing 100 mL of LB medium containing 50 ⁇ g / mL ampicillin, shaken at 37 ° C. for 3 hours, and then added with IPTG to 0.1 mmol / L And cultured with shaking at 30 ° C. for 18 hours.
  • the culture solution was centrifuged to obtain wet cells.
  • the wet cells obtained above are disrupted by sonication and then centrifuged from the supernatant obtained by using HisTrap (manufactured by Amersham) with a protein having prenyltransferase activity (Bacillus stearothermophilus-derived farnesyl dilin) Acid synthase) was purified. Purification of the purified protein was confirmed by SDS-PAGE.
  • Sulfolobus acidocaldarius-derived geranylgeranyl diphosphate synthase was prepared.
  • a plasmid pET22b (pET22b / SaGGPS) in which a geranylgeranyl diphosphate synthase derived from Sulfolobus acidocaldarius (sulfobus acid cardarius) was incorporated was used in the same manner as described above for E. coli E. coli.
  • E. coli BL21 (DE3) was transformed.
  • PET22b / SaGGPS was transferred from Professor Tokuzo Nishino, graduate School of Engineering, Tohoku University. E. E.
  • coli BL21 (DE3) / pET22b / SaGGPS was inoculated into a test tube containing 3 mL of LB medium containing 50 ⁇ g / mL ampicillin, and cultured with shaking at 37 ° C. for 5 hours.
  • 1 mL of the obtained culture solution is inoculated into a 500 mL Erlenmeyer flask containing 100 mL of LB medium containing 50 ⁇ g / mL ampicillin, shaken at 37 ° C. for 3 hours, and then added with IPTG to 0.1 mmol / L And cultured with shaking at 30 ° C. for 18 hours.
  • the culture solution was centrifuged to obtain wet cells.
  • the wet cells obtained above are disrupted by sonication and then centrifuged from the supernatant obtained by using HisTrap (manufactured by Amersham), a protein having a prenyltransferase activity (Sulfolobus acidocaldarius-derived geranylgeranil dilin) Acid synthase) was purified. Purification of the purified protein was confirmed by SDS-PAGE.
  • the starting substrate 1 to 4 the compound represented by the above formula (B), the compound represented by the above formula (C), the above formula A compound represented by (G), a compound represented by the above formula (K), a compound represented by the above formula (F), a compound represented by the above formula (I), and a compound represented by the above formula (Q).
  • the reaction was conducted under the following conditions using the following compounds: farnesyl diphosphate (FPP) and geranyl diphosphate (GPP).
  • the activity of the enzyme for farnesyl diphosphate or geranyl diphosphate is defined as 100, starting substrates 1 to 4, the compound represented by the above formula (B), the compound represented by the above formula (C), the above formula A compound represented by (G), a compound represented by the above formula (K), a compound represented by the above formula (F), a compound represented by the above formula (I), and a compound represented by the above formula (Q).
  • Tables 12 and 13 show the relative activities of the enzymes with respect to these compounds.
  • SEQ ID NO: 1 Base sequence of undecaprenyl diphosphate synthase (wild type enzyme) derived from Micrococcus luteus BP 26
  • SEQ ID NO: 2 Amino acid sequence of undecaprenyl diphosphate synthase (wild type enzyme) derived from Micrococcus luteus BP 26
  • SEQ ID NO: 3 Nucleotide enzyme N31A nucleotide sequence
  • SEQ ID NO: 4 Mutant enzyme N31A amino acid sequence
  • SEQ ID NO: 5 Mutant enzyme N77A nucleotide sequence
  • SEQ ID NO: 6 Mutant enzyme N77A amino acid sequence
  • SEQ ID NO: 7 Mutant Nucleotide sequence of enzyme L91N SEQ ID NO: 8: amino acid sequence of mutant enzyme L91N SEQ ID NO: 9: nucleotide sequence of mutant enzyme L91D SEQ ID NO: 10: amino acid sequence of mutant enzyme L91D SEQ ID NO: 11: nucleotide sequence of mutant enzyme N31Q

Abstract

下記式(1)で表されるトランス構造部、シス構造部からなるイソプレンオリゴマーであって、前記トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているイソプレンオリゴマー、並びに、該イソプレンオリゴマーとイソペンテニル二リン酸から生合成されたポリイソプレンに関する。また、該イソプレンオリゴマー及び/又は該ポリイソプレンを配合したゴム組成物、並びに該ゴム組成物をタイヤの各部材(例えば、トレッド、サイドウォール)に用いた空気入りタイヤを提供する。 (式(1)中、nは1~10の整数を表す。mは1~30の整数を表す。Yは、水酸基、ホルミル基、カルボキシ基、エステル基、カルボニル基又は下記式(2)で表される基を表す。)

Description

イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ
本発明は、イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、イソプレンオリゴマー及び/又はポリイソプレンを含むゴム組成物、並びに該ゴム組成物を用いた空気入りタイヤに関する。
従来より、ゴム製品においては、本来的にゴムが有する特性に対して新たな特性を付与することを目的として、その用途に応じて様々な材質や形状の充填剤等をゴム組成物中に導入することで、所望の特性を発現させることが行われている。例えば、自動車用のタイヤにおいては、有機物であるゴム相の中にシリカ、カーボンブラック等の充填剤を導入し、耐摩耗性、低発熱性、ウェットグリップ性能等の特性の向上が図られている。
このようなゴム組成物においてゴム相に対して充填剤等を混合する際には、両者の親和性を高め、低発熱性やウェットグリップ性能等をより向上させる目的で、ゴム相に含まれるゴム分子に対して、例えば、チッ素原子含有基を有し、かつクロロスルフェニル基を有する化合物を反応させる処理等を行い、充填剤に対して親和性を示す官能基をゴム分子内に導入した変性ゴム(変性ジエン系重合体)を使用することが行われていた(例えば、特許文献1、2)。
しかしながら、ゴム分子に所定の官能基を導入する方法によっては、ゴム分子内の所定の位置に当該官能基を導入することが困難である結果、特にゴム分子を成す主鎖のランダムな位置に官能基が導入されることが知られている。このように主鎖に所定の官能基が導入されたゴム分子を用いた場合、ゴム分子と充填剤の結合状態がランダムとなって所望の効果が得られ難くなるばかりでなく、当該官能基が導入された箇所においてはゴムとしての特性が低下する結果、ゴム全体としての特性が損なわれるという問題があった。
特開2000-001573号公報 特開2000-001575号公報
本発明は、前記課題を解決し、実質的に分子の末端部分のみに変性が加えられたイソプレンオリゴマー、ポリイソプレンを提供することを目的とする。また、該イソプレンオリゴマー及び/又は該ポリイソプレンを配合したゴム組成物、並びに該ゴム組成物をタイヤの各部材(例えば、トレッド、サイドウォール)に用いた空気入りタイヤを提供することを目的とする。
本発明は、下記式(1)で表されるトランス構造部、シス構造部からなるイソプレンオリゴマーであって、上記トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているイソプレンオリゴマーに関する。
Figure JPOXMLDOC01-appb-C000011
(式(1)中、nは1~10の整数を表す。mは1~30の整数を表す。Yは、水酸基、ホルミル基、カルボキシ基、エステル基、カルボニル基又は下記式(2)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000012
下記式(1-1)中のII部分に含まれる原子又は原子団の少なくとも1つが置換され、下記式(1-1)中のIII部分に含まれる原子又は原子団は置換されていないことが好ましい。
Figure JPOXMLDOC01-appb-C000013
上記トランス構造部が下記式(a)~(s)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000014
上記イソプレンオリゴマーは、下記式(3)で表され、下記式(3)中のイソプレン単位に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているアリル性二リン酸と、イソペンテニル二リン酸から生合成されて得られることが好ましい。
Figure JPOXMLDOC01-appb-C000015
(式(3)中、pは1~10の整数を表す。)
上記生合成をプレニルトランスフェラーゼ活性を有する酵素を用いて行うことが好ましい。
上記プレニルトランスフェラーゼ活性を有する酵素が、以下の[1]~[3]のいずれかに記載の蛋白質であることが好ましい。
[1]配列番号2,4,6,8,10,12,14,16,18,20,22のいずれかの配列番号で表されるアミノ酸配列からなる蛋白質
[2]配列番号2,4,6,8,10,12,14,16,18,20,22のいずれかの配列番号で表されるアミノ酸配列において、1若しくは複数個のアミノ酸の置換、欠失、挿入、又は付加を含む配列からなり、かつ下記式(3)で表され、下記式(3)中のイソプレン単位に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているアリル性二リン酸と、イソペンテニル二リン酸との反応を触媒する活性を有する蛋白質
[3]配列番号2,4,6,8,10,12,14,16,18,20,22のいずれかの配列番号で表されるアミノ酸配列と45%以上の配列同一性を有するアミノ酸配列からなり、かつ下記式(3)で表され、下記式(3)中のイソプレン単位に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているアリル性二リン酸と、イソペンテニル二リン酸との反応を触媒する活性を有する蛋白質
Figure JPOXMLDOC01-appb-C000016
(式(3)中、pは1~10の整数を表す。)
本発明はまた、下記式(3)で表され、下記式(3)中のイソプレン単位に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているアリル性二リン酸と、イソペンテニル二リン酸から生合成する上記イソプレンオリゴマーの製造方法に関する。
Figure JPOXMLDOC01-appb-C000017
(式(3)中、pは1~10の整数を表す。)
上記生合成をプレニルトランスフェラーゼ活性を有する酵素を用いて行うことが好ましい。
本発明はまた、下記式(4)で表されるトランス構造部、シス構造部からなるポリイソプレンであって、上記トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているポリイソプレンに関する。
Figure JPOXMLDOC01-appb-C000018
(式(4)中、nは1~10の整数を表す。qは30~40000の整数を表す。Yは、水酸基、ホルミル基、カルボキシ基、エステル基、カルボニル基又は下記式(2)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000019
下記式(4-1)中のVI部分に含まれる原子又は原子団の少なくとも1つが置換され、下記式(4-1)中のVII部分に含まれる原子又は原子団は置換されていないことが好ましい。
Figure JPOXMLDOC01-appb-C000020
上記ポリイソプレンは、上記イソプレンオリゴマーと、イソペンテニル二リン酸から生合成されて得られることが好ましい。
本発明はまた、上記イソプレンオリゴマーと、イソペンテニル二リン酸から生合成する上記ポリイソプレンの製造方法に関する。
本発明はまた、上記イソプレンオリゴマー及び/又は上記ポリイソプレンを含むゴム組成物に関する。
本発明はまた、上記ゴム組成物を用いて作製した空気入りタイヤに関する。
本発明のイソプレンオリゴマーは、上記式(1)で表されるトランス構造部、シス構造部からなるイソプレンオリゴマーであって、上記トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているイソプレンオリゴマーである。また、本発明のポリイソプレンは、上記式(4)で表されるトランス構造部、シス構造部からなるポリイソプレンであって、上記トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているポリイソプレンである。従って、本発明のイソプレンオリゴマー、及び本発明のポリイソプレンは、実質的に分子(ゴム分子)の末端部分のみに変性が加えられており、分子(ゴム分子)が本来有する特性を阻害されることなくシリカ等の充填剤との親和性に優れる。よって、本発明のイソプレンオリゴマー及び/又は本発明のポリイソプレンをゴム組成物に配合することにより、従来よりも高い次元でゴム分子と充填剤が複合したゴム組成物が得られ、例えば、低発熱性、ウェットグリップ性能に優れたゴム組成物を提供できる。また、該ゴム組成物をタイヤの各部材(例えば、トレッド、サイドウォール)に使用することにより、例えば、低発熱性、ウェットグリップ性能に優れた空気入りタイヤを提供することができる。
人工的にゴム分子(ポリイソプレン)を生合成する工程においては、ファルネシル二リン酸(FPP)等の開始基質とイソペンテニル二リン酸等のモノマーの混合物にプレニルトランスフェラーゼ等の酵素を作用させることで、開始基質に対して8個程度のイソプレン単位が付加重合したイソプレンオリゴマーが生成する。その後、当該イソプレンオリゴマーに対して更にイソペンテニル二リン酸を付加重合する酵素を含有するラテックス成分を混合することで、オリゴマーに対して多数のイソペンテニル二リン酸が連なったポリイソプレンが生成することが知られている。
このように、開始基質に対してモノマーを順次結合させてゴム分子とする各過程においては、天然の酵素による付加重合が不可欠である。
このため、ゴム分子(ポリイソプレン)を生合成する際の開始基質やモノマーとしては、当該使用する酵素が反応を触媒するものを使用する必要がある結果、ゴム分子(ポリイソプレン)の原料として使用される開始基質やモノマーの構造が限定されていた。特に開始基質に関しては、オリゴマーを生成させるための酵素に起因する制限により、天然に存在するジメチルアリル二リン酸、ゲラニル二リン酸、ファルネシル二リン酸、ゲラニルゲラニル二リン酸等に限定されていた。
この結果、人工的に生合成されるゴム分子(ポリイソプレン)においても、その構造の自由度が限定され、天然ゴムにない機能性を付加するための自由な分子設計が困難であった。
このため、例えば、官能基等が導入されたゴム分子(ポリイソプレン)を得たい場合には、原料として合成ゴムを用いる場合と同様に、一旦生合成されたゴム分子(ポリイソプレン)に対して、例えば、チッ素原子含有基を有し、かつクロロスルフェニル基を有する化合物を反応させる処理等を行い、充填剤に対して親和性を示す官能基をゴム分子内に導入されていた。
これに対し、本発明はイソプレンオリゴマーやポリイソプレンを製造する際の開始基質として構造の一部が変性されたファルネシル二リン酸等を使用することで、末端部に機能性を付加したイソプレンオリゴマーやポリイソプレンの製造が可能であることを見出したことに基づくものである。
特に、本発明は天然に存在する開始基質であるファルネシル二リン酸等に対して下記式(I)のI部分の構造を維持することで、その他の部分に所望の構造を導入した場合であっても、天然に存在するオリゴマー生成酵素であるプレニルトランスフェラーゼや、その一部を変異した酵素を用いることで、イソプレンオリゴマーが生成可能であることを見出したことに基づくものである。この理由は必ずしも明らかではないが、プレニルトランスフェラーゼが開始基質の下記式(I)のI部分の構造に吸着を生じ、他の部分の構造には比較的鈍感であるためと考えられる。
Figure JPOXMLDOC01-appb-C000021
当該知見に基づけば、所望の特性を有する末端部を有するイソプレンオリゴマーやポリイソプレンを提供することが可能となり、イソプレンオリゴマーやポリイソプレン自体の特性を損なうことなく、様々な機能を付加したイソプレンオリゴマーやポリイソプレンを提供することが可能となる。
(イソプレンオリゴマー)
本発明のイソプレンオリゴマーは、下記式(1)で表されるトランス構造部、シス構造部からなるイソプレンオリゴマーであって、上記トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されている。なお、トランス構造部は、トランス構造のイソプレン単位の繰り返し部(下記式(1)中のA部分)を意味する。また、シス構造部は、シス構造のイソプレン単位の繰り返し部(下記式(1)中の()部分(B部分))を意味する。また、本明細書において、下記式(2)で表される基は、リン原子に結合する3個の水酸基を有しているが、水溶液中では、これらの水酸基の一部又は全部が解離する(例えば、下記式(5)で表される基となる)。本明細書において、下記式(2)で表される基とは、このような水酸基の一部又は全部が解離している基も含む概念である。
なお、本明細書において、分子(ゴム分子)の末端部分を変性とは、分子(ゴム分子)の末端に存在するトランス構造部の所定の部分に所望の官能基が導入されていること、又は、分子(ゴム分子)の末端に存在するトランス構造部の所定の部分に異なる構造が導入されていることをいう。
Figure JPOXMLDOC01-appb-C000022
(式(1)中、nは1~10の整数を表す。mは1~30の整数を表す。Yは、水酸基、ホルミル基、カルボキシ基、エステル基、カルボニル基又は下記式(2)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
本発明のイソプレンオリゴマーは、天然ゴムに近い構造を有しており、ゴム分子との相溶性が高い。また、本発明のイソプレンオリゴマーは、実質的に分子の末端部分のみに変性が加えられている。すなわち、本発明のイソプレンオリゴマーは、シス構造部の末端に位置する水酸基、ホルミル基、カルボキシ基、エステル基、カルボニル基又は上記式(2)で表される基を有し、さらに、トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているため、イソプレンオリゴマーが本来有する特性を阻害されることなくシリカ等の充填剤との相互作用が強い。このように、本発明のイソプレンオリゴマーは、ゴムとの相溶性が高く、さらに、シリカ等の充填剤との相互作用が強いため、ゴム組成物に配合することにより、従来よりも高い次元でゴム分子と充填剤が複合したゴム組成物が得られ、例えば、ゴム組成物の低発熱性、ウェットグリップ性能、耐摩耗性を向上できる。
本発明のイソプレンオリゴマーは、シス構造部の末端部分やトランス構造部の末端に近い部分にのみ極性基等が存在する。そのため、主鎖部分に極性基等を有する場合やシス構造部の末端部分のみに極性基等を有する場合に比べて、イソプレンオリゴマーが本来有する特性を阻害されることなくシリカ等の充填剤の分散性が高く、例えば、低発熱性、ウェットグリップ性能、耐摩耗性の向上効果が高い。
また、本発明のイソプレンオリゴマーは、優れた抗菌活性を示す。これは、イソプレンオリゴマーを構成するトランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているため、自然界に存在する通常のイソプレンオリゴマーと構造が異なり、菌が有する酵素もしくは補酵素の阻害、核酸合成の阻害、細胞膜合成の阻害、細胞質膜の合成の阻害、細胞膜の破壊、細胞質膜の破壊等の作用を有するためであると推測される。
式(1)のnは1~10(好ましくは1~4、より好ましくは1~3)の整数を表す。
式(1)のmは1~30(好ましくは1~10、より好ましくは1~8)の整数を表す。
式(1)のYは、水酸基(-OH)、ホルミル基(-CHO)、カルボキシ基(-COOH)、エステル基(-COOR)、カルボニル基(―COR)又は上記式(2)で表される基を表す。
エステル基(-COOR)、カルボニル基(―COR)のRは、炭素数1~30(好ましくは炭素数1~17)のアルキル基を表す。炭素数1~30のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられる。
式(1)のYとしては、優れた抗菌性を示すこと、及びシリカ等の充填剤との相互作用が強いことから、水酸基、カルボキシ基が好ましい。
上記式(1)中のトランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されている。
トランス構造部中に含まれる原子又は原子団(置換される前の原子又は原子団)としては、例えば、水素原子、メチル基、メチレン基、炭素原子、メチン基等が挙げられる。
上記他の原子としては、例えば、窒素原子、酸素原子、硫黄原子、ケイ素原子、炭素原子等が挙げられる。なかでも、窒素原子は強い分子間力を有し、酵素や細胞膜との強い相互作用を生じるという理由から、抗菌性に関しては窒素原子が好ましい。
上記他の原子団としては、例えば、アセトキシ基、アルコキシ基(好ましくは炭素数1~3のアルコキシ基、より好ましくはメトキシ基)、水酸基、アリール基(好ましくはフェニル基)、アルキル基(好ましくは炭素数1~5のアルキル基、より好ましくはエチル基、tert-ブチル基)、アセチル基、N-アルキルーアセトアミノ基(アルキルの炭素数は好ましくは1~5)、アジド基等が挙げられる。
なかでも、窒素原子は強い分子間力を有し、酵素や細胞膜との強い相互作用を生じるという理由から、抗菌性に関しては、N-アルキルーアセトアミノ基(より好ましくはN-メチルーアセトアミノ基、N-ブチルーアセトアミノ基)、アジド基が好ましい。
上記トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているが、当該置換は、トランス構造部のイソプレン単位の繰り返し部のうち、下記式(1-1)中のII部分に含まれる原子又は原子団の少なくとも1つが置換され、下記式(1-1)中のIII部分に含まれる原子又は原子団は置換されていないことが好ましい。これは、本発明者らが天然に存在する開始基質であるファルネシル二リン酸等に対して上記式(I)のI部分の構造を維持することで、その他の部分に所望の構造を導入した場合であっても、天然に存在するオリゴマー生成酵素であるプレニルトランスフェラーゼや、その一部を変異した酵素を用いることで、イソプレンオリゴマーが生成可能であることを見出したことに基づくものである。
Figure JPOXMLDOC01-appb-C000025
(式(1-1)中のn、m、Yは式(1)中のn、m、Yと同一である。)
上記式(1)中のトランス構造部の具体例としては、例えば、下記式(a)~(s)で表される構造が挙げられる。なかでも、低発熱性、ウェットグリップ性能、耐摩耗性の向上効果が高いという理由から、下記式(c)、(d)、(e)、(f)、(k)、(l)、(r)が好ましい。また、抗菌性に優れるという理由から、下記式(g)~(q)で表される構造が好ましく、下記式(k)、(l)、又は(q)で表される構造がより好ましい。
Figure JPOXMLDOC01-appb-C000026
(イソプレンオリゴマーの製造方法)
本発明のイソプレンオリゴマーの製造方法としては、例えば、下記式(3)で表され、下記式(3)中のイソプレン単位に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているアリル性二リン酸(以下では、アリル性二リン酸誘導体ともいう)と、イソペンテニル二リン酸から生合成する方法が挙げられる。また、本明細書において、アリル性二リン酸誘導体は、リン原子に結合する3個の水酸基を有しているが、水溶液中では、これらの水酸基の一部又は全部が解離する(例えば、上記式(5)で表される基のようになる)。本明細書において、アリル性二リン酸誘導体とは、このような水酸基の一部又は全部が解離している化合物も含む概念である。
Figure JPOXMLDOC01-appb-C000027
(式(3)中、pは1~10の整数を表す。)
式(3)のpは1~10(好ましくは1~4、より好ましくは1~3)の整数を表す。
本明細書において、式(3)中のイソプレン単位に含まれる原子又は原子団(置換される前の原子又は原子団)としては、上記式(1)中のトランス構造部中に含まれる原子又は原子団(置換される前の原子又は原子団)と同様のものが挙げられる。
本明細書において、式(3)中のイソプレン単位に含まれる原子又は原子団を置換する他の原子又は原子団としては、上記式(1)について説明した他の原子又は他の原子団と同様のものが挙げられる。
なお、置換は、上述の通り、上記式(I)のI部分の構造を維持するように置換されていることが好ましい。すなわち、下記式(3-1)中のIV部分に含まれる原子又は原子団の少なくとも1つが置換され、下記式(3-1)中のV部分に含まれる原子又は原子団は置換されていないことが好ましい。これにより、天然に存在するオリゴマー生成酵素であるプレニルトランスフェラーゼや、その一部を変異した酵素を用いることで、イソプレンオリゴマーが好適に製造可能である。
Figure JPOXMLDOC01-appb-C000028
(式(3-1)中のpは式(3)中のpと同一である。)
アリル性二リン酸誘導体の具体例としては、例えば、下記式(A)~(S)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000029
なお、本明細書において、OPPは、リン原子に結合する3個の水酸基を有しているが、水溶液中では、これらの水酸基の一部又は全部が解離する(例えば、上記式(5)で表される基となる)。本明細書において、OPPとは、このような水酸基の一部又は全部が解離している基も含む概念である。
上記式(A)~(S)等で表されるアリル性二リン酸誘導体は、例えば、ジメチルアリル二リン酸、ゲラニル二リン酸、ファルネシル二リン酸、ゲラニルゲラニル二リン酸、ゲラニオール、ファルネソール、ゲラニルゲラニオール等から、実施例に記載の方法を参考に当業者であれば製造できる。
アリル性二リン酸誘導体と、イソペンテニル二リン酸とから本発明のイソプレンオリゴマーを生合成する方法としては、例えば、プレニルトランスフェラーゼ活性を有する酵素を用いて行う方法が挙げられる。具体的には、アリル性二リン酸誘導体と、イソペンテニル二リン酸とをプレニルトランスフェラーゼ活性を有する酵素の存在下に反応させればよい。
なお、本明細書において、プレニルトランスフェラーゼ活性を有する酵素とは、アリル性基質(アリル性二リン酸)とイソペンテニル二リン酸との間の縮合反応を触媒し、イソプレン単位が1単位増えた新たなアリル性二リン酸を合成することにより、アリル性基質(アリル性二リン酸)に順次イソペンテニル二リン酸をZ型(新たに増えたイソプレン単位がシス構造)に連結していく反応を触媒する活性を有する酵素を意味する。例えば、以下の反応を触媒する酵素が挙げられる。
Figure JPOXMLDOC01-appb-C000030
上記プレニルトランスフェラーゼ活性を有する酵素は、既に多くの存在が確認されている(例えば、Z-ノナプレニル二リン酸合成酵素(Ishii,K.et al.,(1986)Biochem,J.,233,773.)、ウンデカプレニル二リン酸(UPP)合成酵素(Takahashi,I.and Ogura,K.(1982)J.Biochem.,92,1527.;Keenman,M.V.and Allen,C.M.(1974)Arch.Biochem.Biophys.,161,375.)等)。各々の酵素により生成できる最大のイソプレン単位の数(上記式(1)のm)が決まっているため、目的のイソプレン単位数(上記式(1)のm)に応じて使用する酵素を変更すればよい。
上記プレニルトランスフェラーゼ活性を有する酵素を有する生物としては、例えば、ミクロコッカス・ルテウスB-P26(Micrococcus luteus B-P26)、エシェヒリア・コリ(Escherichia coli)、サッカロマイセス・セレビジア(Saccharomyces cerevisiae)、アラビドプシス・サリアーナ(Arabidopsis thaliana)、ヘベア・ブラジリエンシス(Hevea brasiliensis)、ペリプロカ・セピウム(Periploca sepium)、バチルス・ステアロサーモフィルス(Bachillus Stearothermophilus)、スルフォロバス・アシドカルダリウス(Sulfolobus acidocaldarius、ATCC49426)等が挙げられる。
アリル性二リン酸誘導体と、イソペンテニル二リン酸とをプレニルトランスフェラーゼ活性を有する酵素の存在下に反応させることにより、本発明のイソプレンオリゴマーが得られる。プレニルトランスフェラーゼ活性を有する酵素の存在下とは、上記生物の培養物、該培養物より分離した生物体、該生物体の処理物、該培養物若しくは該生物体から精製した酵素、遺伝子工学的手法によりプレニルトランスフェラーゼ活性を有する酵素(この酵素には後述の変異型酵素も含まれる)を発現するように形質転換された生物体(形質転換体)の培養物、該培養物より分離した生物体、該生物体の処理物、該培養物若しくは該生物体から精製した酵素等が存在する状況を意味する。
なお、プレニルトランスフェラーゼ活性を有する酵素を発現するように形質転換された生物体とは、従来公知の遺伝子工学的手法により作製された形質転換体であって、作製方法は、後述する。
上記生物の生物体を得るには、当該生物を適当な培地で培養すればよい。このための培地はその生物が増殖し得るものであれば特に制限はなく、通常の炭素源、窒素源、無機イオン、更に必要に応じ有機栄養源を含む通常の培地でよい。
例えば、炭素源としては上記生物が利用可能であればいずれも使用でき、具体的には、グルコース、フラクトース、マルトース、アミロース等の糖類、ソルビトール、エタノール、グリセロール等のアルコール類、フマル酸、クエン酸、酢酸、プロピオン酸等の有機酸類及びこれらの塩類、パラフィン等の炭水化物類あるいはこれらの混合物等を使用することができる。
窒素源としては、硫酸アンモニウム、塩化アンモニウム等の無機塩のアンモニウム塩、フマル酸アンモニウム、クエン酸アンモニウム等の有機酸のアンモニウム塩、硝酸ナトリウム、硝酸カリウム等の硝酸塩、ペプトン、酵母エキス、肉エキス、コーンスティープリカー等の有機窒素化合物あるいはこれらの混合物を使用することができる。
他に無機塩類、微量金属塩、ビタミン類、ホルモン等、通常の培地に用いられる栄養源を適宜混合して用いることができる。
培養条件にも格別の制限はなく、例えば、好気的条件下にてpH5~8、温度20~60℃の範囲でpHおよび温度を適当に制限しつつ12~480時間程度培養を行えばよい。
上記生物の培養物とは、例えば、上述の培養条件にて上記生物を培養した培養液や、該培養液から生物(生物体)をろ過等により分離した培養ろ液(培養上澄液)等が挙げられる。また、上記培養物より分離した生物体とは、例えば、培養液からろ過や遠心分離等により分離された生物体(生物)等が挙げられる。
上記生物体の処理物とは、例えば、上記培養物より分離した生物体をホモジナイズした生物体破砕物、超音波処理した生物体破砕物等が挙げられる。
上記培養物又は上記生物体から精製した酵素とは、例えば、上記培養物又は上記生物体に存在する酵素を塩析、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー、ゲルろ過クロマトグラフィー等の公知の精製操作を行うことにより得られる酵素である。なお、精製酵素の純度は、特に限定されない。
アリル性二リン酸誘導体と、イソペンテニル二リン酸とをプレニルトランスフェラーゼ活性を有する酵素の存在下に反応させることにより、本発明のイソプレンオリゴマーが得られるが、具体的には、例えば、アリル性二リン酸誘導体と、イソペンテニル二リン酸とを含む溶液中に上記生物体の培養物や精製酵素等を添加することにより反応を行えばよい。また、反応温度は、例えば、20~60℃、反応時間は、例えば、1~16時間、pHは、例えば5~8とすればよい。また、必要に応じて、塩化マグネシウム、界面活性剤、2-メルカプトエタノール等を添加してもよい。
上記反応により得られる本発明のイソプレンオリゴマーは、通常、上記式(1)のYが上記式(2)で表される基又は水酸基である。この水酸基は上記式(2)で表される基が加水分解されることにより生じる。
また、上記式(1)のYがホルミル基であるイソプレンオリゴマーは、例えば、上記式(1)のYが上記式(2)で表される基であるイソプレンオリゴマーを酸化することにより得られる。
また、上記式(1)のYがカルボキシ基であるイソプレンオリゴマーは、例えば、上記式(1)のYが上記式(2)で表される基であるイソプレンオリゴマーを酸化することにより得られる。
また、上記式(1)のYがエステル基であるイソプレンオリゴマーは、例えば、上記式(1)のYが上記式(2)で表される基であるイソプレンオリゴマーを酸化、エステル化することにより得られる。
また、上記式(1)のYがカルボニル基であるイソプレンオリゴマーは、例えば、上記式(1)のYが上記式(2)で表される基であるイソプレンオリゴマーを酸化、エステル化することにより得られる。
本発明のイソプレンオリゴマーは、開始基質であるアリル性二リン酸誘導体を有機合成する以外は、生合成により得られるため、石油資源の枯渇や環境問題に配慮できる。
(プレニルトランスフェラーゼ活性を有する酵素)
次に、プレニルトランスフェラーゼ活性を有する酵素について説明する。
上記生物が有するプレニルトランスフェラーゼ活性を有する酵素の一例として、ミクロコッカス・ルテウスB-P26(Micrococcus luteus B-P26)(Dr.L.Jeffries, Walton Oaks Experimental Station Vitamins, Ltd.より入手可能)由来のウンデカプレニル二リン酸合成酵素の塩基配列及びアミノ酸配列をそれぞれ配列表配列番号1,2に示す。ミクロコッカス・ルテウスB-P26由来のウンデカプレニル二リン酸合成酵素の塩基配列及びアミノ酸配列は、公知であり、データベースDDBJ(DNA Data Bank of Japan)に収録されている(accetion no. AB004319(塩基配列)、accetion no.BAA31993.1(アミノ酸配列))。
上記生物が有する酵素(プレニルトランスフェラーゼ活性を有する酵素)の本来の基質(開始基質)は、アリル性二リン酸である。そして、本発明において開始基質として使用する上記アリル性二リン酸誘導体は、本来、上記生物が生産する酵素の阻害剤として機能するものである。従って、上記生物が生産する酵素では、上記アリル性二リン酸誘導体(特に、上記式(G)~(Q)で表される化合物)に対する酵素活性が低い場合が多い。そのため、本発明では、上記アリル性二リン酸誘導体に対する酵素活性を向上させた変異型酵素を使用することが好ましい。
変異型酵素を使用する場合には、遺伝子工学的手法により、変異型酵素を発現するように形質転換された生物体(形質転換体)を作製すればよい。
本発明者らは、上記ミクロコッカス・ルテウスB-P26由来ウンデカプレニル二リン酸合成酵素の変異型酵素を作製し、上記アリル性二リン酸誘導体に対する酵素活性を向上させることに成功した。
ミクロコッカス・ルテウスB-P26由来ウンデカプレニル二リン酸合成酵素の立体構造は、既に公知となっている(データベースPDB(RCSB Protein Data Bank)、ID:1f75)。従って、本発明者らは、この立体構造の情報を基に、ドッキングシミュレーションを行い、アリル性二リン酸の二リン酸の炭化水素部分近傍に位置するアミノ酸に関して、側鎖の長さを変えるもしくは電荷を変えるように変異を行えば、上記アリル性二リン酸誘導体に対する酵素活性を向上できるとの設計思想に基づいて、変異型酵素を作製した。具体的には、以下の(1)~(4)のいずれかの変異を行うことが好ましい。
(1)31位のアスパラギンをアラニン、グルタミン、グリシン、アスパラギン酸に置換
(2)91位のロイシンをアスパラギン、アスパラギン酸、グリシン、リジンに置換
(3)77位のアスパラギンをアラニン、グルタミン、グリシン、アスパラギン酸に置換
(4)95位のフェニルアラニンをアラニン、トリプトファン、グリシン、アスパラギン酸、アルギニンに置換
具体的には、以下の変異型酵素を作製した。
変異型酵素N31A:31位のアスパラギンをアラニンに置換(塩基配列及びアミノ酸配列をそれぞれ配列表配列番号3,4に示す)
変異型酵素N77A:77位のアスパラギンをアラニンに置換(塩基配列及びアミノ酸配列をそれぞれ配列表配列番号5,6に示す)
変異型酵素L91N:91位のロイシンをアスパラギンに置換(塩基配列及びアミノ酸配列をそれぞれ配列表配列番号7,8に示す)
変異型酵素L91D:91位のロイシンをアスパラギン酸に置換(塩基配列及びアミノ酸配列をそれぞれ配列表配列番号9,10に示す)
変異型酵素N31Q:31位のアスパラギンをグルタミンに置換(塩基配列及びアミノ酸配列をそれぞれ配列表配列番号11,12に示す)
変異型酵素N77Q:77位のアスパラギンをグルタミンに置換(塩基配列及びアミノ酸配列をそれぞれ配列表配列番号13,14に示す)
変異型酵素L91G:91位のロイシンをグリシンに置換(塩基配列及びアミノ酸配列をそれぞれ配列表配列番号15,16に示す)
変異型酵素L91K:91位のロイシンをリジンに置換(塩基配列及びアミノ酸配列をそれぞれ配列表配列番号17,18に示す)
変異型酵素F95A:95位のフェニルアラニンをアラニンに置換(塩基配列及びアミノ酸配列をそれぞれ配列表配列番号19,20に示す)
変異型酵素F95W:95位のフェニルアラニンをトリプトファンに置換(塩基配列及びアミノ酸配列をそれぞれ配列表配列番号21,22に示す)
なかでも、変異型酵素N77A、変異型酵素L91D、変異型酵素L91Kが好ましい。
ここでは、野生型の酵素としてミクロコッカス・ルテウスB-P26由来ウンデカプレニル二リン酸合成酵素を用いる場合について説明したが、他のプレニルトランスフェラーゼ活性を有する酵素を野生型の酵素として用いた場合であっても、同様の手法により変異型酵素を作製できる。
プレニルトランスフェラーゼ活性を有する酵素の具体例としては、下記[1]が挙げられる。
[1]配列番号2,4,6,8,10,12,14,16,18,20,22のいずれかの配列番号で表されるアミノ酸配列からなる蛋白質
また、酵素は、元のアミノ酸配列において、1若しくは複数個のアミノ酸の置換、欠失、挿入、又は付加を含む場合であっても酵素活性を有する場合があることが知られている。従って、プレニルトランスフェラーゼ活性を有する酵素の具体例としては、下記[2]も挙げられる。
[2]配列番号2,4,6,8,10,12,14,16,18,20,22のいずれかの配列番号で表されるアミノ酸配列において、1若しくは複数個のアミノ酸の置換、欠失、挿入、又は付加を含む配列からなり、かつ下記式(3)で表され、下記式(3)中のイソプレン単位に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているアリル性二リン酸(アリル性二リン酸誘導体)と、イソペンテニル二リン酸との反応を触媒する活性を有する蛋白質
Figure JPOXMLDOC01-appb-C000031
(式(3)中、pは1~10の整数を表す。)
なお、アリル性二リン酸誘導体と、イソペンテニル二リン酸との反応を触媒する活性を維持するためには、好ましくは1若しくは複数個のアミノ酸、より好ましくは1若しくは100個のアミノ酸、更に好ましくは1若しくは75個のアミノ酸、特に好ましくは1若しくは50個のアミノ酸、最も好ましくは1若しくは25個のアミノ酸、より最も好ましくは1若しくは12個のアミノ酸、更に最も好ましくは1若しくは5個のアミノ酸、特に最も好ましくは1若しくは3個のアミノ酸の置換、欠失、挿入、又は付加を含むアミノ酸配列であることが好ましい。
また、プレニルトランスフェラーゼ活性を有する酵素のアミノ酸配列と配列同一性の高いアミノ酸配列を有する蛋白質も同様の活性を有する場合があることが知られている。従って、プレニルトランスフェラーゼ活性を有する酵素の具体例としては、下記[3]も挙げられる。
[3]配列番号2,4,6,8,10,12,14,16,18,20,22のいずれかの配列番号で表されるアミノ酸配列と45%以上の配列同一性を有するアミノ酸配列からなり、かつアリル性二リン酸誘導体と、イソペンテニル二リン酸との反応を触媒する活性を有する蛋白質
なお、アリル性二リン酸誘導体と、イソペンテニル二リン酸との反応を触媒する活性を維持するためには、配列番号2,4,6,8,10,12,14,16,18,20,22のいずれかの配列番号で表されるアミノ酸配列との配列同一性は、好ましくは45%以上、より好ましくは60%以上、更に好ましくは70%以上、特に好ましくは80%以上、最も好ましくは90%以上、より最も好ましくは95%以上、更に最も好ましくは98%以上、特に最も好ましくは99%以上である。
アミノ酸配列や塩基配列の配列同一性は、Karlin and AltschulによるアルゴリズムBLAST[Pro. Natl. Acad. Sci. USA, 90, 5873(1993)]やFASTA[Methods Enzymol., 183, 63(1990)]を用いて決定することができる。
アリル性二リン酸誘導体と、イソペンテニル二リン酸との反応を触媒する活性を有する蛋白質であることを確認する方法としては、例えば、従来公知の方法により、当該蛋白質を発現する形質転換体を作製し、該形質転換体を用いて当該蛋白質を製造する。そして、当該蛋白質を使用して、アリル性二リン酸誘導体と、イソペンテニル二リン酸との反応を触媒できるか否かをHPLC(High Performance Liquid Chromatography)、TLC(Thin-Layer Chromatography)等により基質又は生成物の定量、定性を行うことにより確認する方法が挙げられる。
(プレニルトランスフェラーゼ活性を有する酵素をコードするDNA)
また、プレニルトランスフェラーゼ活性を有する酵素をコードするDNAとしては、下記[1]~[3]が挙げられる。
[1]上記[1]~[3]の蛋白質をコードするDNA
[2]配列番号1,3,5,7,9,11,13,15,17,19,21のいずれかの配列番号で表される塩基配列からなるDNA
[3]配列番号1,3,5,7,9,11,13,15,17,19,21のいずれかの配列番号で表される塩基配列と相補的な塩基配列からなるDNAをストリンジェントな条件下でハイブリダイズし、かつアリル性二リン酸誘導体と、イソペンテニル二リン酸との反応を触媒する活性を有する蛋白質をコードするDNA
ここでいう「ハイブリダイズする」とは、特定の塩基配列を有するDNAまたは該DNAの一部にDNAがハイブリダイズする工程である。したがって、該特定の塩基配列を有するDNAまたは該DNAの一部の塩基配列は、ノーザンまたはサザンブロット解析のプローブとして有用であるか、またはPCR(Polymerase Chain Reaction)解析のオリゴヌクレオチドプライマーとして使用できる長さのDNAであってもよい。プローブとして用いるDNAとしては、少なくとも100塩基以上、好ましくは200塩基以上、より好ましくは500塩基以上のDNAを挙げることができるが、少なくとも10塩基以上、好ましくは15塩基以上のDNAであってもよい。
DNAのハイブリダイゼーション実験の方法はよく知られており、例えばモレキュラー・クローニング第2版、第3版(2001年)、Methods for General and Molecular Bacteriology, ASM Press(1994)、Immunology methods manual, Academic press(Molecular)に記載の他、多数の他の標準的な教科書に従ってハイブリダイゼーションの条件を決定し、実験を行うことができる。
上記のストリンジェントな条件とは、例えばDNAを固定化したフィルターとプローブDNAとを50%ホルムアミド、5×SSC(750mMの塩化ナトリウム、75mMのクエン酸ナトリウム)、50mMのリン酸ナトリウム(pH7.6)、5×デンハルト溶液、10%の硫酸デキストラン、および20μg/lの変性させたサケ精子DNAを含む溶液中で42℃で一晩、インキュベートした後、例えば約65℃の0.2×SSC溶液中で該フィルターを洗浄する条件を挙げることができるが、より低いストリンジェント条件を用いることもできる。ストリンジェントな条件の変更は、ホルムアミドの濃度調整(ホルムアミドの濃度を下げるほど低ストリンジェントになる)、塩濃度および温度条件の変更により可能である。低ストリンジェント条件としては、例えば6×SSCE(20×SSCEは、3mol/lの塩化ナトリウム、0.2mol/lのリン酸二水素ナトリウム、0.02mol/lのEDTA、pH7.4)、0.5%のSDS、30%のホルムアミド、100μg/lの変性させたサケ精子DNAを含む溶液中で、37℃で一晩インキュベートした後、50℃の1×SSC、0.1%SDS溶液を用いて洗浄する条件を挙げることができる。また、さらに低いストリンジェントな条件としては、上記した低ストリンジェント条件において、高塩濃度(例えば5×SSC)の溶液を用いてハイブリダイゼーションを行った後、洗浄する条件を挙げることができる。
上記した様々な条件は、ハイブリダイゼーション実験のバックグラウンドを抑えるために用いるブロッキング試薬を添加、または変更することにより設定することもできる。上記したブロッキング試薬の添加は、条件を適合させるために、ハイブリダイゼーション条件の変更を伴ってもよい。
上記したストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えばBLASTおよびFASTA等のプログラムを用いて、上記パラメータに基づいて計算したときに、配列番号1,3,5,7,9,11,13,15,17,19,21のいずれかの配列番号で表される塩基配列と少なくとも80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは99%以上の配列同一性を有する塩基配列からなるDNAを挙げることができる。
上記したDNAとストリンジェントな条件下でハイブリダイズするDNAが、アリル性二リン酸誘導体と、イソペンテニル二リン酸との反応を触媒する活性を有する蛋白質をコードするDNAであることは、従来公知の方法により、該DNAを発現する組換え体DNAを作製し、該組換え体DNAを宿主細胞に導入して得られる生物体を培養し、得られる培養物から該蛋白質を精製する。そして、当該蛋白質を使用して、アリル性二リン酸誘導体と、イソペンテニル二リン酸との反応を触媒できるか否かをHPLC、TLC等により基質又は生成物の定量、定性を行うことにより確認する方法が挙げられる。
なお、変異型酵素及び該変異型酵素をコードするDNAは、Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press(1989)、Current Protocols in Molecular Biology, John Wiley & Sons(1987-1997)、Nucleic Acids Research, 10, 6487(1982)、Proc. Natl. Acad. Sci. USA, 79, 6409(1982)、Gene, 34, 315(1985)、Nucleic Acids Research, 13, 4431(1985)、Proc. Natl. Acad. Sci. USA, 82, 488(1985)等に記載の部位特異的変異導入法を用いて、例えば配列番号1で表される塩基配列(ミクロコッカス・ルテウスB-P26由来ウンデカプレニル二リン酸合成酵素の塩基配列)に部位特異的変異を導入することにより、取得することができる。
(形質転換体)
次に、プレニルトランスフェラーゼ活性を有する酵素を発現するように形質転換された生物体(形質転換体)の作製方法について簡単に説明する。ここでは、主として上記変異型酵素を発現するように形質転換された形質転換体の作製方法について簡単に説明する。このような形質転換体は、上記設計思想が決定すれば、従来公知の方法により作製することができる。
変異を導入する場合には、まず、目的の部位に変異を導入できるように、プライマーを設計する。プライマーの塩基配列は、例えば、実施例に記載の塩基配列(配列表配列番号23~42参照)等が挙げられる。次に、例えば配列番号1で表される塩基配列(ミクロコッカス・ルテウスB-P26由来ウンデカプレニル二リン酸合成酵素の塩基配列)を含むDNAを鋳型DNAとして、上記プライマーを用いてPCR法等により変異が導入された直鎖状のDNAを増幅する。そして、得られた直鎖状のDNAを適当な制限酵素等を用いて適当な発現ベクターのプロモーターの下流に挿入し、組換え体DNAを作製する。そして、該組換え体DNAを該発現ベクターに適合した宿主細胞に導入することにより、形質転換体を得ることができる。
また、例えば、適当な発現ベクターのプロモーターの下流に、配列番号1で表される塩基配列(ミクロコッカス・ルテウスB-P26由来ウンデカプレニル二リン酸合成酵素の塩基配列)を含むDNAを適当な制限酵素等を用いて挿入し、該発現ベクターを鋳型DNAとして、上記プライマーを用いてPCR法等により変異が導入されたDNAをポリメラーゼにより環状にし、組換え体DNAを作製する。そして、該組換え体DNAを該発現ベクターに適合した宿主細胞に導入することにより、形質転換体を得ることができる。
なお、変異を導入しない場合には、例えば、適当な発現ベクターのプロモーターの下流に、配列番号1で表される塩基配列(ミクロコッカス・ルテウスB-P26由来ウンデカプレニル二リン酸合成酵素の塩基配列)を含むDNAを適当な制限酵素等を用いて挿入し、組換え体DNAを作製する。そして、該組換え体DNAを該発現ベクターに適合した宿主細胞に導入することにより、形質転換体を得ることができる。
また、上記説明では、既知の配列番号1で表される塩基配列(ミクロコッカス・ルテウスB-P26由来ウンデカプレニル二リン酸合成酵素の塩基配列)を含むDNAを用いる場合について説明したが、上記生物由来の他のプレニルトランスフェラーゼ活性を有する酵素、若しくは上記生物以外の生物由来のプレニルトランスフェラーゼ活性を有する酵素をコードするDNAを用いてもよい。この場合には、公知の手法により、例えば、配列番号1で表される塩基配列の一部をプローブとして用いて、スクリーニングすることにより、プレニルトランスフェラーゼ活性を有する酵素をコードするDNAを特定し、単離すればよい。DNA分子をプローブとして用いて、目的とするDNA分子を単離する方法については、Molecular Cloning,2nd edition,Cold Spring Harbor press(1989)等に記載されている。
また、上記生物由来のプレニルトランスフェラーゼ活性を有する酵素を上述のような精製操作により、精製し、該精製酵素のアミノ酸配列を決定することにより、該酵素をコードするDNAを特定し、単離してもよい。
宿主細胞としては、微生物、酵母、動物細胞、昆虫細胞等、植物細胞等、目的とする遺伝子を発現できるものであればいずれも用いることができる。
発現ベクターとしては、上記宿主細胞において自律複製可能ないしは染色体中への組込が可能で、上記組換え体DNAを転写できる位置にプロモーターを含有しているものを使用できる。
細菌等の原核生物を宿主細胞として用いる場合は、上記組換え体DNAは、原核生物中で自律複製可能であると同時に、プロモーター、リボソーム結合配列、プレニルトランスフェラーゼ活性を有する酵素をコードするDNA、転写終結配列により構成された組換え体DNAであることが好ましい。また、プロモーターを制御する遺伝子が含まれていてもよい。
発現ベクターとしては、pColdI(タカラバイオ社製)、pCDF-1b、pRSF-1b(いずれもノバジェン社製)、pMAL-c2x(ニューイングランドバイオラブス社製)、pGEX-4T-1(ジーイーヘルスケアバイオサイエンス社製)、pTrcHis(インビトロジェン社製)、pSE280(インビトロジェン社製)、pGEMEX-1(プロメガ社製)、pQE-30(キアゲン社製)、pET-3~pET-52(ノバジェン社製)、pKYP10(特開昭58-110600)、pKYP200[Agric. Biol. Chem., 48, 669(1984)]、pLSA1[Agric. Biol. Chem., 53, 277(1989)]、pGEL1[Proc. Natl. Acad. Sci., USA, 82, 4306(1985)]、pBluescriptII SK(+)、pBluescript II KS(-)(ストラタジーン社製)、pTrS30 [エシェリヒア・コリ JM109/pTrS30(FERM BP-5407)より調製]、pTrS32 [エシェリヒア・コリ JM109/pTrS32(FERM BP-5408)より調製]、pPAC31 (WO98/12343)、pUC19 [Gene, 33, 103(1985)]、pSTV28(タカラバイオ社製)、pUC118(タカラバイオ社製)、pPA1(特開昭63-233798)等を例示することができる。
プロモーターとしては、エシェリヒア・コリ等の宿主細胞中で機能するものであればいかなるものでもよい。例えば、trpプロモーター(Ptrp)、T7プロモーター、lacプロモーター(Plac)、PLプロモーター、PRプロモーター、PSEプロモーター等の、大腸菌やファージ等に由来するプロモーター、SPO1プロモーター、SPO2プロモーター、penPプロモーター等を挙げることができる。またPtrpを2つ直列させたプロモーター、tacプロモーター、lacT7プロモーター、let Iプロモーターのように人為的に設計改変されたプロモーター等も用いることができる。
さらにバチルス属に属する微生物中で発現させるためのxylAプロモーター[Appl. Microbiol. Biotechnol., 35, 594-599(1991)]やコリネバクテリウム(Corynebacterium)属に属する微生物中で発現させるためのP54-6プロモーター[Appl. Microbiol. Biotechnol., 53, 674-679(2000)]等も用いることができる。
リボソーム結合配列であるシャイン-ダルガノ(Shine-Dalgarno)配列と開始コドンとの間を適当な距離(例えば6~18塩基)に調節したプラスミドを用いることが好ましい。
原核生物としては、エシェリヒア属、セラチア(Serratia)属、バチルス属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属、ミクロバクテリウム属(Microbacterium)、シュードモナス(Pseudomonas)属、アグロバクテリウム(Agrobacterium)属、アリシクロバチルス属(Alicyclobacillus)、アナベナ(Anabena)属、アナシスティス(Anacystis)属、アスロバクター(Arthrobacter)属、アゾトバクター(Azotobacter)属、クロマチウム(Chromatium)属、エルビニア(Erwinia)属、メチロバクテリウム(Methylobacterium)属、フォルミディウム(Phormidium)属、ロドバクター(Rhodobacter)属、ロドシュードモナス(Rhodopseudomonas)属、ロドスピリウム(Rhodospirillum)属、セネデスムス(Scenedesmus)属、ストレプトマイセス(Streptomyces)属、シネコッカス(Synechoccus)属、ザイモモナス(Zymomonas)属等に属する微生物、例えば、エシェリヒア・コリXL1-Blue、エシェリヒア・コリ XL2-Blue、エシェリヒア・コリ DH1、エシェリヒア・コリ DH5α、エシェリヒア・コリ MC1000、エシェリヒア・コリ KY3276、エシェリヒア・コリ W1485、エシェリヒア・コリ JM109、エシェリヒア・コリ HB101、エシェリヒア・コリ No.49、エシェリヒア・コリ W3110、エシェリヒア・コリ NY49、エシェリヒア・コリ MP347、エシェリヒア・コリ NM522、エシェリヒア・コリ BL21、バチルス・サチリス(Bacillus subtilis) ATCC33712、バチルス・メガテリウム(Bacillus megaterium)、ブレビバクテリウム・アンモニアゲネス(Brevibacterium ammoniagenes)、ブレビバクテリウム・イマリオフィルム(Brevibacterium immariophilum) ATCC14068、ブレビバクテリウム・サッカロリティカム(Brevibacterium saccharolyticum) ATCC14066、ブレビバクテリウム・フラバム(Brevibacterium flavum) ATCC14067、ブレビバクテリウム・ラクトファーメンタム(Brevibacterium lactofermentum) ATCC13869、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum) ATCC13032、コリネバクテリウム・グルタミカムATCC14297、コリネバクテリウム・アセトアシドフィルム(Corynebacterium acetoacidophilum)ATCC13870、ミクロバクテリウム・アンモニアフィルム(Microbacterium ammoniaphilum) ATCC15354、セラチア・フィカリア(Serratia ficaria)、セラチア・フォンチコラ(Serratia fonticola)、セラチア・リケファシエンス(Serratia liquefaciens)、セラチア・マルセッセンス(Serratia marcescens)、シュードモナス・エスピー(Pseudomonas sp.) D-0110、アグロバクテリウム・ラジオバクター(Agrobacterium radiobacter)、アグロバクテリウム・リゾジーンズ(Agrobacterium rhizogenes)、アグロバクテリウム・ルビ(Agrobacterium rubi)、アナベナ・シリンドリカ(Anabaena cylindrica)、アナベナ・ドリオルム(Anabaena doliolum)、アナベナ・フロスアクア(Anabaena flos-aquae)、アースロバクター・オーレッセンス(Arthrobacter aurescens)、アースロバクター・シトレウス(Arthrobacter citreus)、アースロバクター・グロブフォルミス(Arthrobacter globformis)、アースロバクター・ヒドロカーボグルタミカス(Arthrobacter hydrocarboglutamicus)、アースロバクター・ミソレンス(Arthrobacter mysorens)、アースロバクター・ニコチアナ(Arthrobacter nicotianae)、アースロバクター・パラフィネウス(Arthrobacter paraffineus)、アースロバクター・プロトフォルミエ(Arthrobacter protophormiae)、アースロバクター・ロセオパラフィナス(Arthrobacter roseoparaffinus)、アースロバクター・スルフレウス(Arthrobacter sulfureus)、アースロバクター・ウレアファシエンス(Arthrobacter ureafaciens)、クロマチウム・ブデリ(Chromatium buderi)、クロマチウム・テピダム(Chromatium tepidum)、クロマチウム・ビノサム(Chromatium vinosum)、クロマチウム・ワーミンギ(Chromatium warmingii)、クロマチウム・フルビアタティレ(Chromatium fluviatile)、エルビニア・ウレドバラ(Erwinia uredovora)、エルビニア・カロトバラ(Erwinia carotovora)、エルビニア・アナス(Erwinia ananas)、エルビニア・ヘリコラ(Erwinia herbicola)、エルビニア・パンクタタ(Erwinia punctata)、エルビニア・テレウス(Erwinia terreus)、メチロバクテリウム・ロデシアナム(Methylobacterium rhodesianum)、メチロバクテリウム・エクソトルクエンス(Methylobacterium extorquens)、フォルミディウム・エスピー(Phormidium sp.) ATCC29409、ロドバクター・カプスラタス(Rhodobacter capsulatus)、ロドバクター・スフェロイデス(Rhodobacter sphaeroides)、ロドシュードモナス・ブラスチカ(Rhodopseudomonas blastica)、ロドシュードモナス・マリナ(Rhodopseudomonas marina)、ロドシュードモナス・パルストリス(Rhodopseudomonas palustris)、ロドスピリウム・リブラム(Rhodospirillum rubrum)、ロドスピリウム・サレキシゲンス(Rhodospirillum salexigens)、ロドスピリウム・サリナラム(Rhodospirillum salinarum)、ストレプトマイセス・アンボファシエンス(Streptomyces ambofaciens)、ストレプトマイセス・オーレオファシエンス(Streptomyces aureofaciens)、ストレプトマイセス・アウレウス(Streptomyces aureus)、ストレプトマイセス・フンジシディカス(Streptomyces fungicidicus)、ストレプトマイセス・グリセオクロモゲナス(Streptomyces griseochromogenes)、ストレプトマイセス・グリセウス(Streptomyces griseus)、ストレプトマイセス・リビダンス(Streptomyces lividans、ストレプトマイセス・オリボグリセウス(Streptomyces olivogriseus)、ストレプトマイセス・ラメウス(Streptomyces rameus)、ストレプトマイセス・タナシエンシス(Streptomyces tanashiensis)、ストレプトマイセス・ビナセウス(Streptomyces vinaceus)、ザイモモナス・モビリス(Zymomonas mobilis)等を挙げることができる。
組換え体DNAの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法[Proc. Natl. Acad. Sci., USA, 69, 2110(1972)]、プロトプラスト法(特開昭63-248394)、エレクトロポレーション法[Nucleic Acids Res., 16, 6127(1988)]、ヒートショック法等を挙げることができる。
酵母菌株を宿主細胞として用いる場合には、発現ベクターとして、例えば、YEp13(ATCC37115)、YEp24(ATCC37051)、YCp50(ATCC37419)、pHS19、pHS15等を用いることができる。
プロモーターとしては、酵母菌株中で機能するものであればいずれのものを用いてもよく、例えば、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、gal 1プロモーター、gal 10プロモーター、ヒートショックポリペプチドプロモーター、MFα1 プロモーター、CUP 1プロモーター等のプロモーターを挙げることができる。
宿主細胞としては、サッカロマイセス(Saccharomyces)属、シゾサッカロマイセス(Schizosaccharomyces)属、クルイベロマイセス(Kluyveromyces)属、トリコスポロン(Trichosporon)属、シワニオマイミセス(Schwanniomyces)属、ピチア(Pichia)属、またはキャンディダ(Candida)属等に属する酵母菌株を挙げることができ、具体的には、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe)、クルイベロマイセス・ラクティス(Kluyveromyces lactis)、トリコスポロン・プルランス(Trichosporon pullulans)、シワニオマイセス・アルビウス(Schwanniomyces alluvius)、ピチア・パストリス(Pichia pastoris)、キャンディダ・ウティリス(Candida utilis)等を挙げることができる。
組換え体DNAの導入方法としては、酵母にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法[Methods Enzymol., 194, 182 (1990)]、スフェロプラスト法[Proc. Natl. Acad. Sci., USA, 81, 4889(1984)]、酢酸リチウム法[J. Bacteriol., 153, 163(1983)]等を挙げることができる。
動物細胞を宿主として用いる場合には、発現ベクターとして、例えば、pcDNAI、pcDM8(フナコシ社より市販)、pAGE107(特開平3-22979)、pAS3-3(特開平2-227075)、pCDM8[Nature, 329, 840(1987)]、pcDNAI/Amp(インビトロジェン社製)、pREP4(インビトロジェン社製)、pAGE103[J. Biochem, 101, 1307(1987)]、pAGE210、pAMo、pAMoA等を用いることができる。
プロモーターとしては、動物細胞中で機能するものであればいずれも用いることができ、例えば、サイトメガロウイルス(CMV)のIE(immediate early)遺伝子のプロモーター、SV40の初期プロモーターあるいはメタロチオネインのプロモーター、レトロウイルスのプロモーター、ヒートショックプロモーター、SRαプロモーター等を挙げることができる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。
宿主細胞としては、マウス・ミエローマ細胞、ラット・ミエローマ細胞、マウス・ハイブリドーマ細胞、ヒトの細胞であるナマルバ(Namalwa)細胞またはナマルバ KJM-1細胞、ヒト胎児腎臓細胞、ヒト白血病細胞、アフリカミドリザル腎臓細胞、チャイニーズ・ハムスターの細胞であるCHO細胞、HBT5637(特開昭63-299)等を挙げることができる。
マウス・ミエローマ細胞としては、SP2/0、NSO等、ラット・ミエローマ細胞としてはYB2/0等、ヒト胎児腎臓細胞としてはHEK293(ATCC CRL-1573)、ヒト白血病細胞としてはBALL-1等、アフリカミドリザル腎臓細胞としてはCOS-1、COS-7等を挙げることができる。
組換え体DNAの導入方法としては、動物細胞にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法[Cytotechnology, 3, 133(1990)]、リン酸カルシウム法(特開平2-227075)、リポフェクション法[Proc. Natl. Acad. Sci., USA, 84, 7413(1987)]、Virology, 52, 456(1973)に記載の方法等を挙げることができる。
昆虫細胞を宿主として用いる場合には、例えばBaculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company, New York(1992)、カレント・プロトコールズ・イン・モレキュラー・バイオロジー、Molecular Biology, A Laboratory Manual、Bio/Technology, 6, 47(1988)等に記載された方法によって、蛋白質を生産することができる。
即ち、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、蛋白質を生産させることができる。
該方法において用いられる遺伝子導入ベクターとしては、例えば、pVL1392、pVL1393、pBlueBacIII(いずれもインビトロジェン社製)等を挙げることができる。
バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス(Autographa californica nuclear polyhedrosis virus)等を用いることができる。
昆虫細胞としては、スポドプテラ・フルギペルダ(Spodoptera frugiperda)の卵巣細胞、トリコプルシア・ニ(Trichoplusia ni)の卵巣細胞、カイコ卵巣由来の培養細胞等を用いることができる。
スポドプテラ・フルギペルダの卵巣細胞としてはSf9、Sf21(バキュロウイルス・イクスプレッション・ベクターズ ア・ラボラトリー・マニュアル)等、トリコプルシア・ニの卵巣細胞としてはHigh 5、BTI-TN-5B1-4(インビトロジェン社製)等、カイコ卵巣由来の培養細胞としてはボンビクス・モリ(Bombyx mori)N4等を挙げることができる。
組換えウイルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法(特開平2-227075)、リポフェクション法[Proc. Natl. Acad. Sci., USA, 84, 7413(1987)]等を挙げることができる。
植物細胞を宿主細胞として用いる場合には、発現ベクターとして、例えば、Tiプラスミド、タバコモザイクウイルスベクター等を挙げることができる。
プロモーターとしては、植物細胞中で機能するものであればいずれのものを用いてもよく、例えば、カリフラワーモザイクウイルス(CaMV)の35Sプロモーター、イネアクチン1プロモーター等を挙げることができる。
宿主細胞としては、タバコ、ジャガイモ、トマト、ニンジン、ダイズ、アブラナ、アルファルファ、イネ、コムギ、オオムギ等の植物細胞等を挙げることができる。
組換えベクターの導入方法としては、植物細胞にDNAを導入する方法であればいずれも用いることができ、例えば、アグロバクテリウム(Agrobacterium)を用いる方法(特開昭59-140885、特開昭60-70080、WO94/00977)、エレクトロポレーション法(特開昭60-251887)、パーティクルガン(遺伝子銃)を用いる方法(特許第2606856、特許第2517813)等を挙げることができる。
宿主としては、微生物、酵母、動物細胞、昆虫細胞等、植物細胞等いずれであってもよいが、好ましくは微生物、より好ましくはエシェリヒア属に属する微生物、さらに好ましくはエシェリヒア・コリに属する微生物を挙げることができる。
酵母、動物細胞、昆虫細胞または植物細胞により発現させた場合には、糖あるいは糖鎖が付加された蛋白質を得ることができる。
得られた形質転換体を培地に培養し、培養物中にプレニルトランスフェラーゼ活性を有する酵素を生成、蓄積させることにより、プレニルトランスフェラーゼ活性を有する酵素を製造することができる。また、必要に応じて、上記精製操作により酵素を精製してもよい。
上記形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の方法に従って行うことができる。例えば、上述の培地組成及び培養条件により培養を行えばよい。
(ポリイソプレン)
次に、本発明のポリイソプレンについて説明する。本発明のポリイソプレンは、下記式(4)で表されるトランス構造部、シス構造部からなり、上記トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されている。なお、トランス構造部は、トランス構造のイソプレン単位の繰り返し部(下記式(4)中のC部分)を意味する。また、シス構造部は、シス構造のイソプレン単位の繰り返し部(下記式(4)中の()部分(D部分))を意味する。
Figure JPOXMLDOC01-appb-C000032
(式(4)中、nは1~10の整数を表す。qは30~40000の整数を表す。Yは、水酸基、ホルミル基、カルボキシ基、エステル基、カルボニル基又は下記式(2)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000033
本発明のポリイソプレンは、天然ゴムに近い構造を有しており、ゴム分子との相溶性が高い。また、本発明のポリイソプレンは、実質的に分子の末端部分のみに変性が加えられている。すなわち、本発明のポリイソプレンは、シス構造部の末端に位置する水酸基、ホルミル基、カルボキシ基、エステル基、カルボニル基又は上記式(2)で表される基を有し、さらに、トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているため、ポリイソプレンが本来有する特性を阻害されることなくシリカ等の充填剤との相互作用が強い。このように、本発明のポリイソプレンは、ゴムとの相溶性が高く、さらに、シリカ等の充填剤との相互作用が強いため、ゴム組成物に配合することにより、従来よりも高い次元でゴム分子と充填剤が複合したゴム組成物が得られ、例えば、ゴム組成物の低発熱性、ウェットグリップ性能、耐摩耗性を向上できる。
本発明のポリイソプレンは、シス構造部の末端部分やトランス構造部の末端に近い部分にのみ極性基等が存在する。そのため、主鎖部分に極性基等を有する場合やシス構造部の末端部分のみに極性基等を有する場合に比べて、ポリイソプレンが本来有する特性を阻害されることなくシリカ等の充填剤の分散性が高く、例えば、低発熱性、ウェットグリップ性能、耐摩耗性の向上効果が高い。
上記式(4)のnは、上記式(1)のnと同様である。
上記式(4)のqは、30~40000(好ましくは15000~30000、より好ましくは15000~20000)の整数を表す。
上記式(4)のYは、上記式(1)のYと同様である。なお、Yとしては、シリカ等の充填剤との相互作用が強いことから、水酸基、カルボキシ基が好ましい。
トランス構造部中に含まれる原子又は原子団(置換される前の原子又は原子団)としては、上記式(1)中のトランス構造部中に含まれる原子又は原子団(置換される前の原子又は原子団)と同様のものが挙げられる。
他の原子又は原子団としては、上記式(1)について説明した他の原子又は他の原子団と同様のものが挙げられる。
上記トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているが、当該置換は、イソプレンオリゴマーについて説明したのと同様に、下記式(4-1)中のVI部分に含まれる原子又は原子団の少なくとも1つが置換され、下記式(4-1)中のVII部分に含まれる原子又は原子団は置換されていないことが好ましい。
Figure JPOXMLDOC01-appb-C000034
(式(4-1)中のn、q、Yは式(4)中のn、q、Yと同一である。)
上記式(4)中のトランス構造部の具体例としては、例えば、上記式(a)~(s)で表される構造が挙げられる。なかでも、シリカ等の充填剤との相互作用がより強く、低発熱性、ウェットグリップ性能、耐摩耗性の向上効果が高いという理由から、上記式(c)、(d)、(e)、(f)、(k)、(l)、(r)で表される構造が好ましい。
(ポリイソプレンの製造方法)
本発明のポリイソプレンの製造方法としては、例えば、本発明のイソプレンオリゴマーと、イソペンテニル二リン酸から生合成する方法が挙げられる。
本発明のポリイソプレンは、開始基質であるアリル性二リン酸誘導体を有機合成する以外は、生合成により得られるため、石油資源の枯渇や環境問題に配慮できる。
従来から、天然ゴムラテックスには、イソプレンオリゴマーとイソペンテニル二リン酸との間の縮合反応を触媒し、イソプレンオリゴマーに順次イソペンテニル二リン酸をZ型(新たに増えたイソプレン単位がシス構造)に連結していき、ポリイソプレンを生成する以下のような反応を触媒する活性を有する酵素やゴム延長因子等が含まれていることが知られている。
Figure JPOXMLDOC01-appb-C000035
本発明では、この酵素やゴム延長因子等を使用して、ポリイソプレンを製造できる。
すなわち、本発明のイソプレンオリゴマーと、イソペンテニル二リン酸から本発明のポリイソプレンを生合成する方法としては、例えば、天然ゴムラテックス中に含まれる酵素やゴム延長因子等を用いて行う方法が挙げられる。また、天然ゴムラテックスからクローニングされた酵素やゴム延長因子等を用いて行ってもよい。
すなわち、本発明のイソプレンオリゴマーと、イソペンテニル二リン酸とを上記酵素及び/又は上記ゴム延長因子の存在下で反応させればよい。具体的には、例えば、本発明のイソプレンオリゴマーと、イソペンテニル二リン酸とを含む溶液中に、天然ゴムラテックスや天然ゴムラテックスから分離した酵素、ゴム延長因子等を添加することにより反応を行えばよい。また、反応温度は、例えば、20~40℃、反応時間は、例えば、1~72時間、pHは、例えば、6~8とすればよい。また、必要に応じて、塩化マグネシウム、界面活性剤、2-メルカプトエタノール等を添加してもよい。
上記反応により得られる本発明のポリイソプレンは、通常、上記式(4)のYが上記式(2)で表される基又は水酸基である。この水酸基は上記式(2)で表される基が加水分解されることにより生じる。
また、上記式(4)のYがホルミル基であるポリイソプレンは、例えば、上記式(4)のYが上記式(2)で表される基であるポリイソプレンを酸化することにより得られる。
また、上記式(4)のYがカルボキシ基であるポリイソプレンは、例えば、上記式(4)のYが上記式(2)で表される基であるポリイソプレンを酸化することにより得られる。
また、上記式(4)のYがエステル基であるポリイソプレンは、例えば、上記式(4)のYが上記式(2)で表される基であるポリイソプレンを酸化、エステル化することにより得られる。
また、上記式(4)のYがカルボニル基であるポリイソプレンは、例えば、上記式(4)のYが上記式(2)で表される基であるポリイソプレンを酸化、エステル化することにより得られる。
上記天然ゴムラテックスの由来は、特に限定されず、例えば、パラゴムノキ(Hevea brasiliensis)、インドゴムノキ(Ficus elastica)、カシワバゴムノキ(Ficus lyrata)、ベンジャミンゴムノキ(Ficus benjamina)、インドボダイジュ(Ficus religiosa)、ベンガルボダイジュ(Ficus benghalensis)、キチチタケ(Lactarius chrysorrheus)等が挙げられる。なかでも、生産されているゴムの分子量が大きい、ラテックス中に含まれるゴム分量が多いという理由から、パラゴムノキが好ましい。
天然ゴムラテックスは、例えば、パラゴムノキの幹にナイフ等を用いて溝状に傷をつけて(タッピング)、切断された乳管から流出する天然ゴムラテックスを回収することにより得られる。
天然ゴムラテックスから分離した酵素、ゴム延長因子とは、例えば、天然ゴムラテックスを遠心分離することにより分離されたしょう液(Serum)や液低相(bottom fraction)やゴム相(rubber fraction)等が挙げられる。しょう液や液低相やゴム相には、上記酵素や上記ゴム延長因子等が含まれている。
(ゴム組成物)
本発明のゴム組成物は、本発明のイソプレンオリゴマー及び/又は本発明のポリイソプレンを含む。よって、本発明のゴム組成物は、低発熱性、ウェットグリップ性能、耐摩耗性に優れている。なお、本発明のポリイソプレンは、ゴム成分として使用できる。
本発明のポリイソプレンの含有量は、ゴム成分100質量%中、好ましくは20質量%以上、より好ましくは40質量%以上、更に好ましくは60質量%以上であり、100質量%であってもよい。
本発明のポリイソプレン以外に使用できるゴム成分としては、例えば、イソプレンゴム(IR)、天然ゴム(NR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等のジエン系ゴムが挙げられる。ゴム成分は、単独で用いてもよく、2種以上を併用してもよい。なかでも、NR、BRが好ましい。
本発明のイソプレンオリゴマーをゴム組成物に配合する場合は、イソプレンオリゴマーとの相溶性が高いという理由から、ゴム成分として、NRを使用することが好ましい。本発明のイソプレンオリゴマーとNRを併用することにより、本発明のイソプレンオリゴマーを配合した効果がより好適に得られる。
本発明のイソプレンオリゴマーをゴム組成物に配合する場合、ゴム成分100質量%中のNRの含有量は、好ましくは20質量%以上、より好ましくは40質量%以上、更に好ましくは60質量%以上であり、100質量%であってもよい。
本発明のイソプレンオリゴマーの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上である。1質量部未満であると、イソプレンオリゴマーを配合したことにより得られる効果が充分に得られないおそれがある。また、上記イソプレンオリゴマーの含有量は、好ましくは20質量部以下、より好ましくは15質量部以下である。20質量部を超えると、強度が低下し、また耐摩耗性も低下するおそれがある。
本発明で使用できる充填剤としては、例えば、シリカ、カーボンブラック、クレー、炭酸カルシウム等が挙げられる。
本発明では、充填剤としてシリカを使用することが好ましい。シリカを配合することにより、本発明のイソプレンオリゴマー及び/又は本発明のポリイソプレンを配合することにより得られる効果が充分に得られる。シリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
また、本発明では、充填剤としてカーボンブラックを使用することも好ましい。この場合にも、本発明のイソプレンオリゴマー及び/又は本発明のポリイソプレンを配合することにより得られる効果が充分に得られる。
本発明のゴム組成物には、前記成分以外にも、ゴム組成物の製造に一般に使用される配合剤、例えば、シランカップリング剤、酸化亜鉛、ステアリン酸、各種老化防止剤、オイル等の軟化剤、ワックス、硫黄等の加硫剤、加硫促進剤等を適宜配合することができる。
本発明のゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、前記各成分をオープンロール、バンバリーミキサー等のゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。
本発明のゴム組成物は、タイヤの各部材(例えば、トレッド、サイドウォール、アンダートレッド、プライ、ブレーカー、カーカス)等に好適に使用できる。
(空気入りタイヤ)
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造できる。すなわち、ゴム組成物を未加硫の段階でタイヤの各部材(例えば、トレッド、サイドウォール)の形状に合わせて押し出し加工し、タイヤ成形機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧してタイヤを製造できる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
(開始基質の調製)
(製造例1)
(10-acetyl-3,7-dimethyl-dodeca-(2E,6E)-dienyl diphosphate(上記式(S)で表される化合物)の合成)
ファルネソールを出発物質として合成した。無水ジクロロメタン中でイミダゾール、tert-ブチルフェニルクロロシラン(TBDPS)を用いてファルネソールの水酸基を保護し、TBDPS保護体(下記(ai)で表される化合物)を得た(収率92%)。無水ジクロロメタン中で、m-クロロ化安息香酸を用いて、10位のオレフィンを酸化し、エポキシ体(下記(aii)で表される化合物)を得た(収率9%)。次に、無水テトラヒドロフラン中でオルト過ヨウ素酸によりエポキシを酸化しアルデヒド体(下記(aiii)で表される化合物)を得た(収率28%)。次に無水メタノール中において、マグネシウムと臭化ブタンを用いてグリニャール試薬を作り、アルデヒド体をグリニャール試薬に加え、二級アルコール体(下記(aiv)で表される化合物)を得た(収率68%)。無水ジクロロメタン溶媒下で、ジメチルアミノピリジン存在下、無水酢酸により二級水酸基をアセチル保護したエステル体(下記(av)で表される化合物)を得た(収率81%)。無水テトラヒドラフラン中で、n-テトラブチルアンモニウムハイドレートを用いて、TBDPS保護基を脱保護し、一級アルコール体(下記(avi)で表される化合物)を得た(収率82%)。次に-40℃以下、無水ジクロロメタン溶媒中でN-クロロコハク酸イミドとジメチルスルフィドを用いて、一級水酸基を塩素置換し、塩化物(下記(avii)で表される化合物)を得た(収率82%)。次に無水アセトニトリル中でトリス-テトラnブチルアンモニウム水素化リン酸塩を用いて二リン酸化し、目的物質である下記(aviii)で表される化合物(上記式(S)で表される化合物)を得た(収率42%)。
各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000036
-Ac=-C(=O)-CH
(製造例2)
(8-metoxy-3,7-dimetyl-dodeca-(2E,6E)-dienyl diphosphate(上記式(B)で表される化合物)の合成)
ゲラニオールを出発物質として合成した。無水ジクロロメタン中でピリジンと無水酢酸を用いてアセチル化し、アセテート(下記(bi)で表される化合物)を得た(収率95%)。次に、エタノール中で8位の炭素にセレン酸化し、アルデヒド体(下記(bii)で表される化合物)を得た(収率24%)。次に水酸化カリウムを用いてアルカリ加水分解し、アルコール体(下記(biii)で表される化合物)を得た(収率38%)。次に無水ジクロロメタン中でイミダゾール、tert-ブチルジフェニルシリルクロライド(TBDPS)を用いて下記(biv)で表される化合物を得た(収率80%)。その後、無水エーテル中でブチルリチウムを反応させ、ブチルアルコール体(下記(bv)で表される化合物)を得た(収率73%)。次に無水テトラヒドラフラン中で水酸化ナトリウムでナトリウム塩にした後ヨウ化メチルを加え、Williamson合成により、エーテル体(下記(bvi)で表される化合物)を得た(収率95%)。次に無水テトラヒドラフラン中でテトラ-n-アンモニウムフルオリドを用いて脱離し、アルコール体(下記(bvii)で表される化合物)を得た(収率87%)。次に-40℃以下、無水ジクロロメタン溶媒中でN-クロロコハク酸イミドとジメチルスルフィドを用いて、一級水酸基を塩素置換し、塩化物(下記(bviii)で表される化合物)を得た(収率92%)。次に無水アセトニトリル中でトリス-テトラnブチルアンモニウム水素化リン酸塩を用いて二リン酸化し、目的物質である下記(bix)で表される化合物(上記式(B)で表される化合物)を得た(収率26%)。
各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000037
(製造例3)
(8-hydroxy-3,7-dimetyl-dodeca-(2E,6E)-dienyl diphosphate(上記式(C)で表される化合物)の合成)
ゲラニオールを出発物質として合成した。無水ジクロロメタン中でピリジンと無水酢酸を用いてアセチル化し、アセテート(下記(ci)で表される化合物)を得た(収率97%)。次に、エタノール中で8位の炭素にセレン酸化し、アルデヒド体(下記(cii)で表される化合物)を得た(収率20%)。次に水酸化カリウムを用いてアルカリ加水分解し、アルコール体(下記(ciii)で表される化合物)を得た(収率42%)。次に無水ジクロロメタン中でイミダゾール、tert-ブチルジフェニルシリルクロライド(TBDPS)を用いて下記(civ)で表される化合物を得た(収率80%)。その後、無水エーテル中でブチルリチウムを反応させ、ブチルアルコール体を得た(収率62%)。次に無水テトラヒドラフラン中でテトラ-n-アンモニウムフルオリドを用いて脱離し、ジオール体(下記(cvi)で表される化合物)を得た(収率94%)。次に-40℃以下、無水ジクロロメタン溶媒中でN-クロロコハク酸イミドとジメチルスルフィドを用いて、一級水酸基を塩素置換し、塩化物(下記(cvii)で表される化合物)を得た(収率90%)。次に無水アセトニトリル中でトリス-テトラnブチルアンモニウム水素化リン酸塩を用いて二リン酸化し、目的物質である下記(cviii)で表される化合物(上記式(C)で表される化合物)を得た(収率46%)。
各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000038
(製造例4)
((10S)-hydroxy-3,7-dimetyl-dodeca-(2E,6E)-dienyl diphosphate(上記式(D)で表される化合物)の合成)
ファルネソールを出発物質として合成した。イミダゾール、無水ジメチルホルムアミド、無水ジクロロメタン、tert-ブチルジフェニルシリルクロライド(TBDPS)を用いてファルネソールの水酸基に保護基を結合させ、TBDPS保護体(下記(di)で表される化合物)を得た(収率99%)。次に無水ジクロロメタン溶媒下でm-クロロ過安息香酸を用いて反応を行い、エポキシ体(下記(dii)で表される化合物)を得た(収率29%)。次に、エーテル、テトラヒドラフラン混合溶媒中でオルト過ヨウ素酸を用いた過ヨウ素酸酸化によりアルデヒド体(下記(diii)で表される化合物)を得た(収率73%)。無水エーテル溶媒下で、ヨウ化エチル、マグネシウムを用いてグリニャール試薬を作製した後、アルデヒドとの反応を行い、アルコール体(下記(div)で表される化合物)を生成した(収率80%)。無水ジクロロメタン溶媒中、N,N-ジシクロヘキシルカルボジイミド、4-ジメチルアミノピリジン、(+)-10-カンファスルホン酸存在下でアルコール体のラセミ体二級水酸基と(S)-MaNPacidを用いて反応させ、ジアステレオマーを得た。その後、HPLCで光学分割を行い、NMRによって絶対配置の決定を行うことで光学的に下記(dv)で表される化合物を得た(収率:80%)。さらに無水テトラヒドラフラン中で、n-テトラブチルアンモニウムハイドレートを用いて、TBDPS保護基を脱保護し、ジオール体(下記(dvi)で表される化合物)を得た(収率80%)。次に-40℃以下、無水ジクロロメタン溶媒中でN-クロロコハク酸イミドとジメチルスルフィドを用いて、一級水酸基を塩素置換し、塩化物(下記(dvii)で表される化合物)を得た(収率80%)。次に無水アセトニトリル中でトリス-テトラnブチルアンモニウム水素化リン酸塩を用いて二リン酸化し、目的物質である下記(dviii)で表される化合物(上記式(D)で表される化合物)を得た(収率46%)。
各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000039
(製造例5)
((10R)-hydroxy-3,7-dimetyl-dodeca-(2E,6E)-dienyl diphosphate(上記式(E)で表される化合物)の合成)
ファルネソールを出発物質として合成した。イミダゾール、無水ジメチルホルムアミド、無水ジクロロメタン、tert-ブチルジフェニルシリルクロライド(TBDPS)を用いてファルネソールの水酸基に保護基を結合させ、TBDPS保護体(下記(ei)で表される化合物)を得た(収率99%)。次に無水ジクロロメタン溶媒下でm-クロロ過安息香酸を用いて反応を行い、エポキシ体(下記(eii)で表される化合物)を得た(収率29%)。次に、エーテル、テトラヒドラフラン混合溶媒中でオルト過ヨウ素酸を用いた過ヨウ素酸酸化によりアルデヒド体(下記(eiii)で表される化合物)を得た(収率73%)。無水エーテル溶媒下で、ヨウ化エチル、マグネシウムを用いてグリニャール試薬を作製した後、アルデヒドとの反応を行い、アルコール体(下記(eiv)で表される化合物)を生成した(収率80%)。無水ジクロロメタン溶媒中、N,N-ジシクロヘキシルカルボジイミド、4-ジメチルアミノピリジン、(+)-10-カンファスルホン酸存在下でアルコール体のラセミ体二級水酸基と(S)-MaNPacidを用いて反応させ、ジアステレオマーを得た。その後、HPLCで光学分割を行い、NMRによって絶対配置の決定を行うことで光学的に下記(ev)で表される化合物を得た(収率:84%)。さらに無水テトラヒドラフラン中で、n-テトラブチルアンモニウムハイドレートを用いて、TBDPS保護基を脱保護し、ジオール体(下記(evi)で表される化合物)を得た(収率91%)。次に-40℃以下、無水ジクロロメタン溶媒中でN-クロロコハク酸イミドとジメチルスルフィドを用いて、一級水酸基を塩素置換し、塩化物(下記(evii)で表される化合物)を得た(収率70%)。次に無水アセトニトリル中でトリス-テトラnブチルアンモニウム水素化リン酸塩を用いて二リン酸化し、目的物質である下記(eviii)で表される化合物(上記式(E)で表される化合物)を得た(収率59%)。
各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000040
(製造例6)
(10-hydroxy-3,7-dimetyl-dodeca-(2E,6E)-dienyl diphosphate(上記式(R)で表される化合物)の合成)
ファルネソールを出発物質として合成した。イミダゾール、無水ジメチルホルムアミド、無水ジクロロメタン、tert-ブチルジフェニルシリルクロライド(TBDPS)を用いてファルネソールの水酸基に保護基を結合させ、TBDPS保護体(fi)を得た(収率99%)。次に無水ジクロロメタン溶媒下でm-クロロ過安息香酸を用いて反応を行い、エポキシ体(fii)を得(収率29%)、エーテル、テトラヒドラフラン混合溶媒中でオルト過ヨウ素酸を用いた過ヨウ素酸酸化によりアルデヒド体(fiii)を得た(収率73%)。無水エーテル溶媒下で、ヨウ化エチル、マグネシウムを用いてグリニャール試薬を作製した後、アルデヒドとの反応を行い、アルコール体(fiv)を生成した(収率80%)。無水テトラヒドラフラン溶媒中、テトラブチルアンモニウムフルオリドを用いて、(fiv)のTBDPS基を脱離し、ジオール体(fv)を生成した(収率93%)。
ジオール体(fv)は、-40℃下、無水ジクロロメタン溶媒中で、N-クロロコハク酸イミドおよびジメリルスルフィドを用いて、ジオールのアリル位に存在する水酸基のクロロ化を行い、塩化物(fvi)を生成した(収率69%)。無水アセトニトリル溶媒中、トリス(テトラ-N-ブチル)アンモニウム水素ピロリン酸を用いて(fvi)の二リン酸化を行い、イオン交換カラムを用いて、目的物質である(fvii)(上記式(R)で表される化合物)を合成した(収率28%)。
各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000041
(製造例7)
(8-[(tert-butyldimethylsilyl)oxy]-3,7-dimetyl-octa-(2E,6E)-dienyl diphosphate(上記式(P)で表される化合物)の合成)
ゲラニオールを出発物質として合成した。無水ジクロロメタン中でピリジンと無水酢酸を用いてアセチル化し、アセテート(下記(gi)で表される化合物)を得た(収率97%)。次に、エタノール中で8位の炭素にセレン酸化し、アルコール体(下記(gii)で表される化合物)を得た(収率20%)。イミダゾールを用いた塩基性触媒下、tert-ブチルシリルジメチルシリルクロライドを反応させることにより、下記(giii)で表される化合物を得た(収率87%)。次に、水酸化カリウムにより加水分解し、アルコール体(下記(giv)で表される化合物)を得た(収率78%)。アルコール体は、N-クロロスクシンイミド法でクロロ化し、塩化物(下記(gv)で表される化合物)を得た(収率40%)。次に、無水アセトニトリル中、二リン酸水素n-ブチルアンモニウム塩と混合し、目的物質である下記(gvi)で表される化合物(上記式(P)で表される化合物)を得た(収率26%)。
各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000042
(製造例8)
(8-methoxymethoxy-3,7-dimethyl-octa-(2E,6E)-dienyl diphosphate(上記式(H)で表される化合物)の合成)
ゲラニオールを出発物質として合成した。ゲラニオールを無水酢酸とともにピリジン中で撹拌し、水酸基をアセチル化し、下記(hi)で表される化合物を得た(収率12%)。次に、二酸化セレンとtert-ブチルヒドロペルオキシドによる酸化反応を行い、トランス体のアルコール体(下記(hii)で表される化合物)を得た(収率38%)。アルコール体をクロロメチルエチルエーテルとジイソプロピルエチルアミンアミンを用いてジクロロメタン中で反応を行い、8位の水酸基にメトキシメチルエーテル基を導入した下記(hiii)で表される化合物を得た(収率76%)。次に、水酸化カリウムによりアセチル基を水酸基にし、アルコール体(下記(hiv)で表される化合物)を得た(収率95%)。アルコール体の水酸基を、N-クロロコハク酸イミドを用いクロロ化することにより塩化物(下記(hv)で表される化合物)を得た(収率30%)。その後、トリス(テトラ-n-ブチル)アンモニウム水素二リン酸により二リン酸化し、セルロースカラムにより目的物質である下記(hvi)で表される化合物(上記式(H)で表される化合物)を得た(収率77%)。
各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000043
(製造例9)
(8-n-propylthio-3,7-dimetyl-octa-(2E,6E)-dienyl diphosphate(上記式(M)で表される化合物)の合成)
ゲラニオールを出発物質として合成した。ゲラニオールとジヒドロピランを、p-トルエンスルホン酸ピリジウム塩触媒化で縮合し、ゲラニオールの水酸基をテトラヒドラピラン環で保護した下記(ii)で表される化合物を得た(収率85%)。次に二酸化セレンとtert-ブチルヒドロペルオキシドによる酸化反応を行い、トランス体のアルコール体(下記(iii)で表される化合物)を得た(収率47%)。アルコール体をジクロロメタン中でN-クロロスクシンイミドを用いてクロロ化し、下記(iiii)で表される化合物)を得た(収率92%)。次に、金属ナトリウムをエタノールに溶解した溶液にn-プロパンチオールを加えた液と反応させ、チオエーテル(下記(iiv)で表される化合物)を得た(収率28%)。次に、メタノール中、p-トルエンスルホン酸を作用させることにより、アルコール体(下記(iv)で表される化合物)を得た(収率75%)。アルコール体は、N-クロロスクシンイミド法でクロロ化し、塩化物(下記(ivi)で表される化合物)を得た(収率40%)。次に、無水アセトニトリル中、二リン酸水素n-ブチルアンモニウム塩と混合し、目的物質である下記(ivii)で表される化合物(上記式(M)で表される化合物)を得た(収率32%)。
各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000044
(製造例10)
(8-benzyloxy-3,7-dimetyl-octa-(2E,6E)-dienyl diphosphate(上記式(N)で表される化合物)の合成)
ゲラニオールを出発物質として合成した。ゲラニオールとジヒドロピランを、p-トルエンスルホン酸ピリジウム塩触媒化で縮合し、ゲラニオールの水酸基をテトラヒドラピラン環で保護した下記(ji)で表される化合物を得た(収率85%)。次に二酸化セレンとtert-ブチルヒドロペルオキシドによる酸化反応を行い、トランス体のアルコール体(下記(jii)で表される化合物)を得た(収率47%)。次に、無水テトラヒドラフラン中にベンジルブロマイド、水酸化ナトリウムを加え、エーテル(下記(jiii)で表される化合物)を得た(収率87%)。次に、メタノール中、p-トルエンスルホン酸を作用させることにより、アルコール体(下記(jiv)で表される化合物)を得た(収率69%)。アルコール体は、N-クロロスクシンイミド法でクロロ化し、塩化物(下記(jv)で表される化合物)を得た(収率40%)。次に、無水アセトニトリル中、二リン酸水素n-ブチルアンモニウム塩と混合し、目的物質である下記(jvi)で表される化合物(上記式(N)で表される化合物)を得た(収率26%)。
各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000045
(製造例11)
(7-acetyl-7-aza-3-methyl-dodeca(2E)-dienyl diphosphate(上記式(K)で表される化合物)の合成)
ゲラニオールを出発物質として合成した。無水ジクロロメタン中でジメチルアミノピリジン存在下、無水酢酸を用いてゲラニオールのアセチル化によりエステル体(下記(ki)で表される化合物)を得た(収率96%)。無水ジクロロメタン中で、m-クロロ化安息香酸を用いて、6位のオレフィンを酸化し、エポキシ体(下記(kii)で表される化合物)を得た(収率92%)。次に、無水テトラヒドロフラン中でオルト過ヨウ素酸により酸化しアルデヒド体(下記(kiii)で表される化合物)を得た(収率66%)。次に無水メタノール中において、n-ブチルアミンとシアン水素化ホウ素ナトリウムを用いて還元的アミノ化を行い、二級アミン(下記(kiv)で表される化合物)を得た(収率66%)。無水ジクロロメタン溶媒下で、ジメチルアミノピリジン存在下、無水酢酸によりアセチル化を行い、二級アミド(下記(kv)で表される化合物)を得た(収率38%)。無水メタノール中で、水酸化カリウムによりエステル部位を不可逆的に加水分解し、一級アルコール体(下記(kvi)で表される化合物)を得た(収率76%)。次に-40℃以下、無水ジクロロメタン溶媒中でN-クロロコハク酸イミドとジメチルスルフィドを用いて、一級水酸基を塩素置換し、塩化物(下記(kvii)で表される化合物)を得た(収率67%)。次に無水アセトニトリル中でトリス-テトラnブチルアンモニウム水素化リン酸塩を用いて二リン酸化し、目的物質である(下記(kviii)で表される化合物(上記式(K)で表される化合物))を得た(収率50%)。
各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000046
(製造例12)
(変異導入酵素の作製)
試薬はStratagene社のQuickChange Site-Directed Mutagenesis Kitを用いた。目的の部位に変異を導入できるようにプライマーを設計した。なお、変異導入用プライマーは株式会社医学生物学研究所(製造元:XX IDT)より購入した。設計したプライマーは、以下に示すとおりである。
変異型酵素N31A作製用プライマー
センスプライマー 5'-gac gga gca ggc cga tgg gca aaa-3'(配列番号23)
アンチセンスプライマー 5'-cat cgg cct gct ccg tcc ata atg a-3'(配列番号24)
変異型酵素N77A作製用プライマー
センスプライマー 5'-act gaa gca tgg tct cgt cct aaa g-3'(配列番号25)
アンチセンスプライマー 5'-gag acc atg ctt cag ttg aaa atg c-3'(配列番号26)
変異型酵素L91N作製用プライマー
センスプライマー 5'-gat gaa aaa ccc ggg tga ttt ttt aa-3'(配列番号27)
アンチセンスプライマー 5'-cac ccg ggt ttt tca tca agt aat ta-3'(配列番号28)
変異型酵素L91D作製用プライマー
センスプライマー 5'-gat gaa aga tcc ggg tga ttt ttt aa-3'(配列番号29)
アンチセンスプライマー 5'-cac ccg gat ctt tca tca agt aat ta-3'(配列番号30)
変異型酵素N31Q作製用プライマー
センスプライマー 5'-gac gga caa ggc cga tgg gca aaa-3'(配列番号31)
アンチセンスプライマー 5'-cca tcg gcc ttg tcc gtc cat aat-3'(配列番号32)
変異型酵素N77Q作製用プライマー
センスプライマー 5'-act gaa caa tgg tct cgt cct aaa g-3'(配列番号33)
アンチセンスプライマー 5'-cga gac cat gct tca gtt gaa aat gc-3'(配列番号34)
変異型酵素L91G作製用プライマー
センスプライマー 5'-gat gaa agg acc ggg tga ttt ttt aa-3'(配列番号35)
アンチセンスプライマー 5'-acc cgg tcc ttt cat caa gta att aac-3'(配列番号36)
変異型酵素L91K作製用プライマー
センスプライマー 5'-gat gaa aaa acc ggg tga ttt ttt aa-3'(配列番号37)
アンチセンスプライマー 5'-acc cgg ttt ttt cat caa gta att aa-3'(配列番号38)
変異型酵素F95A作製用プライマー
センスプライマー 5'-ggg tga tgc gtt aaa cac att ttt ac-3'(配列番号39)
アンチセンスプライマー 5'- gtt taa tgc atc acc cgg tag ttt ca-3'(配列番号40)
変異型酵素F95W作製用プライマー
センスプライマー 5'-ggg tga ttg gtt aaa cac att ttt ac-3'(配列番号41)
アンチセンスプライマー 5'- gtt taa cca atc acc cgg tag ttt ca-3'(配列番号42)
dsDNA templateはMicrococcus luteus B-P26由来ウンデカプレニル二リン酸合成酵素(以下、野生型酵素ともいう)が組み込まれたpET22b(pET22b/MLU-UPS)を用いた。なお、pET22b/MLU-UPSは、東北大学多元物質科学研究所の古山種俊教授より譲渡して頂いた。10x Pfu polymerase bufferを2μl、dsDNA template 2-20ng、sense primer 50ng、antisense primer 50ng、2.5mM each dNTP 0.4μl、ddHO up to 20μl、Pfu polymerase(2.5U/μl)0.4mlを混合し、PCR反応を行った。PCR反応は、95℃ 30secを1サイクル、95℃ 30sec-55℃ 1min-68℃ 8minを15サイクル行った。PCR後、PCR反応液にDpn Iを0.4μl入れ、37℃1時間、Dpn I処理を行った。Dpn I処理液1-10μlを用いヒートショック法によってE.coli DH5αを形質転換し、該形質転換体を50μg/mLのアンピシリンを含むLB寒天培地に塗布した後37℃で一晩培養し、形質転換株を選択した。該形質転換体を50μg/mlのアンピシリンを含むLB培地で終夜培養し、得られた培養液からアルカリSDS法によりプラスミドを調製した。該プラスミドは、シークエンサーを用いて変異導入を確認した。
(製造例13)
(プレニルトランスフェラーゼ活性を有する蛋白質の生産)
プラスミドpET22b/MLU-UPS(野生型および変異型)を用いて、大腸菌E.coli BL21(DE3)を形質転換した。得られたE.coli BL21(DE3)/pET22b/MLU-UPS(野生型および変異型)を50μg/mLのアンピシリンを含む3mLのLB培地が入った試験管に接種し、37℃で5時間振盪培養した。得られた培養液のうち1mLを50μg/mLのアンピシリンを含むLB培地100mLが入った500mL三角フラスコに接種し、37℃で3時間振盪培養後、0.1mmol/LになるようにIPTGを添加し、30℃で18時間振盪培養した。該培養液を遠心分離し、湿菌体を取得した。
上記で得られた湿菌体を超音波処理により破砕した後、遠心分離して得られた上清から、HisTrap(アマシャム社製)を用いてプレニルトランスフェラーゼ活性を有する蛋白質を精製した。精製した蛋白質は、SDS-PAGEにより精製を確認した。
(実施例及び比較例)
(イソプレンオリゴマーの調製)
精製した各蛋白質を10mg、50mM Tris-HCl Buffer(pH 7.5)、40mM 塩化マグネシウム、40mM Triton X-100、25mM 2-メルカプトエタノール、1mM 開始基質(ファルネシル二リン酸、製造例1~11で調製した各開始基質)、1mM イソペンテニル二リン酸を含む反応液を調整し、37℃のwater bathで1時間反応させた。
反応終了後、飽和食塩水を100mlと1-ブタノールを500ml加え、攪拌後、静置した。その後、上清(1-ブタノール層)をエバポレーションにより濃縮乾固した。その一部をNMRにより構造を確認し、イソプレンオリゴマーを得た。
得られたイソプレンオリゴマーの詳細(式(1)中のn、m)は、表1,2に示す通りであった。なお、Yは、水酸基、又は上記式(2)で表される基であった。
なお、式(1)中のn、mは、使用した開始基質の情報と、TLCによるイソプレン鎖長を基に算出した。また、Yは、NMRまたIRにより構造を同定した。
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
(実施例及び比較例)
(野生型酵素と変異型酵素の活性の比較(基質別の相対活性))
製造例1~11で調製した開始基質、及びファルネシル二リン酸を用いて、以下の条件で反応を行い、各開始基質に対する各変異型酵素の活性を野生型酵素(Micrococcus luteus B-P26由来ウンデカプレニル二リン酸合成酵素)の活性を100として指数表示した。
精製した蛋白質を500ng、50mM Tris-HCl Buffer(pH7.5)、40mM 塩化マグネシウム、40mM TritonX-100、25mM 2-メルカプトエタノール、12.5μM 開始基質、50μM [1-14C]イソペンテニル二リン酸、を含む反応液を調製し、37℃のwaterbathで1時間反応させた。反応後、液体シンチレーションの値とTLCを定量することにより、各酵素の活性を測定した。
Figure JPOXMLDOC01-appb-T000049
(実施例及び比較例)
(ポリイソプレンの調製)
ラテックス成分を10μl、50mM Tris-HCl Buffer(pH7.5)、25mM 塩化マグネシウム、40mM 2-メルカプトエタノール、40mM フッ化カリウム、50μM イソプレンオリゴマー、1mM イソペンテニル二リン酸、を含む反応液を調整し、30℃のwaterbathで3日間反応させた。反応後、GPCにより分子量を測定した。そして、測定した分子量と、使用した開始基質の情報を基に、式(4)中のn、qを算出した。得られたポリイソプレンの詳細(式(4)中のn、q)は、表4,5に示す通りであった。なお、Yは、水酸基、又は上記式(2)で表される基であった。また、Yの同定は、実施例(イソプレンオリゴマーの調製)と同様に行った。
なお、ラテックス成分としては、パラゴムノキから得られたラテックスを超遠心分離することにより調製したしょう液を使用した。
なお、使用したイソプレンオリゴマーは、実施例(イソプレンオリゴマーの調製)と同様の条件で、変異型酵素N31A等を用いて、各開始基質(ファルネシル二リン酸、製造例1~11で調製した各開始基質)を用いて得られたイソプレンオリゴマーを使用した。なお、以下において、開始基質として、ファルネシル二リン酸、上記式(S)で表される化合物、上記式(B)で表される化合物、上記式(C)で表される化合物、上記式(D)で表される化合物、上記式(E)で表される化合物、上記式(R)で表される化合物、上記式(P)で表される化合物、上記式(H)で表される化合物、上記式(M)で表される化合物、上記式(N)で表される化合物、上記式(K)で表される化合物を用いて、実施例(イソプレンオリゴマーの調製)と同様の条件で変異型酵素N31A等を使用して得られたイソプレンオリゴマーをそれぞれ、イソプレンオリゴマー(0)、イソプレンオリゴマー(S)、イソプレンオリゴマー(B)、イソプレンオリゴマー(C)、イソプレンオリゴマー(D)、イソプレンオリゴマー(E)、イソプレンオリゴマー(R)、イソプレンオリゴマー(P)、イソプレンオリゴマー(H)、イソプレンオリゴマー(M)、イソプレンオリゴマー(N)、イソプレンオリゴマー(K)とする。
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
(抗菌試験)
実施例(イソプレンオリゴマーの調製)と同様の条件で変異型酵素N31Aを使用して得られたイソプレンオリゴマーを用いて抗菌試験を行った。なお、イソプレンオリゴマーは、イソプレンオリゴマー(0)、イソプレンオリゴマー(S)、イソプレンオリゴマー(B)、イソプレンオリゴマー(C)、イソプレンオリゴマー(D)、イソプレンオリゴマー(E)、イソプレンオリゴマー(R)、イソプレンオリゴマー(P)、イソプレンオリゴマー(H)、イソプレンオリゴマー(M)、イソプレンオリゴマー(N)、イソプレンオリゴマー(K)を使用した。
抗菌試験には以下の菌株を使用した。
グラム陽性菌:Staphylococcus aureus(13276)、Bacillus subtilis(3134)
グラム陰性菌:Echerichia coli(3972)、Salmonella enteric(100797)、Peudomonas aeruginosa(13275)、Klebsiella pneumonia(3512)
真菌類:Candida albicans(1594)
()内は独立行政法人製品評価技術基盤機構バイオテクノロジー本部生物遺伝資源部門番号(NBRC No.)を示す。なお、使用した菌株は全て、NBRCより購入した。
次に、使用した菌株の復元、培養条件を表6に示す。
Figure JPOXMLDOC01-appb-T000052
培地の組成(各1L溶液)
108:Glucose 10g, Peptone 5g, Yeast extract 3g, Malt extract 3g, Agar 15g, pH 5.6
702:Polypepton 10g , Yeast extract 2g, MgSO4・7H2O 1g, pH7.0
703:Glucose 10g, Peptone 5g, Yeast extract 3g, Malt extract 3g, pH6.0
802:Polypepton 10g, Yeast extract 2g, MgSO4・7H2O 1g, Agar 15g, pH7.0
Staphylococcus aureus菌株を液体培地(Polypepton 10g/L, Yeast extract 2g/L, MgSO4・7H2O 1g/L, pH7.0)2mlの入った試験管に植菌し、30℃、150rpmで5時間培養を行い、固体培地(Polypepton 10g/L, Yeast extract 2g, MgSO4・7H2O 1g/L, Agar 15g/L, pH7.0)に植菌し、30℃で一晩培養して翌日コロニーを確認した。液体培地4mlの入った試験管に、固体培地上のコロニーを1つ植菌し、30℃で一晩培養し、前培養とした。次に、液体培地4mlの入った新しい試験管に、前培養液を100μl加え、30℃、150rpmで培養を行った。培養の途中に、分光光度計で濁度を測定しO.D.600=0.1~0.3になるまで培養した。希釈法を用いて、105cfu/mlとなるように培養液を調整し、抗菌試験に用いた。
一般的な抗微生物物質の活性を調べる実験手法である最小発育阻止濃度(MIC)法によりMICを測定した。1.5mlチューブ内に105cfu/mlに調整した上記菌を培養した培養液と、0.5-5mMに調製したイソプレンオリゴマーをそれぞれ加え混合し、30℃、150rpmで一晩培養した。培養後、固体培地にそれぞれの濃度の培養液をスプレッダーを用いて塗布し、30℃で1-4日培養した。培養後、肉眼観察により上記菌の発育の有無を調べ、上記菌が生育しない最小の上記末端修飾イソプレンオリゴマー化合物の添加濃度を、MICとした。
他の菌についても同様にMICを求めた。
使用したイソプレンオリゴマー、及びMICを表7に示す。
Figure JPOXMLDOC01-appb-T000053
(表7の結果の考察)
トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されていない比較例(イソプレンオリゴマー(0)(ファルネシル二リン酸から得られたイソプレンオリゴマー))では、抗菌活性が見られなかった(800ppm以下の抗菌活性が見られなかった)。一方、トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているイソプレンオリゴマーを使用した実施例では抗菌活性が見られた。
(ゴム組成物)
次に、本発明のイソプレンオリゴマー、ポリイソプレンをゴム組成物に配合し、性能評価を行った。まず、製造例1~11と同様の方法により、上記式(F)で表される化合物の合成を行った。
次に、ファルネシル二リン酸及び合成した開始基質(上記式(K)で表される化合物、上記式(F)で表される化合物)を用いて、イソプレンオリゴマーを調製した。なお、得られたイソプレンオリゴマーの詳細(式(1)中のn、m、Y)は、実施例(イソプレンオリゴマーの調製)と同様の方法により決定した。
(製造例14)
(イソプレンオリゴマー(F)の調製)
開始基質として、上記式(F)で表される化合物を用いて、イソプレンオリゴマー(F)の調製を行った。なお、得られるイソプレンオリゴマーの分子量を調整するために、上述の(イソプレンオリゴマーの調整)に記載の条件を調整して反応を行った。
得られたイソプレンオリゴマー(F)の詳細(式(1)中のn、m)は、n=2、m=5~8であった。なお、Yは、水酸基、又は上記式(2)で表される基であった。
(製造例15)
(イソプレンオリゴマー(K)の調製)
開始基質として、上記式(K)で表される化合物を用いて、イソプレンオリゴマー(K)の調製を行った。なお、得られるイソプレンオリゴマーの分子量を調整するために、上述の(イソプレンオリゴマーの調整)に記載の条件を調整して反応を行った。
得られたイソプレンオリゴマー(K)の詳細(式(1)中のn、m)は、n=1、m=5~7であった。なお、Yは、水酸基、又は上記式(2)で表される基であった。
(製造例16)
(イソプレンオリゴマー(0)の調製)
開始基質として、ファルネシル二リン酸を用いて、イソプレンオリゴマー(0)の調製を行った。なお、得られるイソプレンオリゴマーの分子量を調整するために、上述の(イソプレンオリゴマーの調整)に記載の条件を調整して反応を行った。
得られたイソプレンオリゴマー(0)の詳細(式(1)中のn、m)は、n=3、m=5~7であった。なお、Yは、水酸基、又は上記式(2)で表される基であった。
次に、製造例14~16で得られたイソプレンオリゴマー(イソプレンオリゴマー(F)、イソプレンオリゴマー(K)、イソプレンオリゴマー(0))を用いて、ポリイソプレンを調製した。なお、得られたポリイソプレンの詳細(式(4)中のn、q、Y)は、実施例(ポリイソプレンの調製)と同様の方法により決定した。
(製造例17)
(ポリイソプレン(F)の調製)
製造例14で調製したイソプレンオリゴマー(F)を用いて、ポリイソプレン(F)の調製を行った。なお、得られるポリイソプレンの分子量を調整するために、上述の(ポリイソプレンの調整)に記載の条件を調整して反応を行った。
得られたポリイソプレン(F)の詳細(式(4)中のn、q)は、n=2、q=7000~12000であった。なお、Yは、水酸基、又は上記式(2)で表される基であった。
(製造例18)
(ポリイソプレン(K-1)の調製)
製造例15で調製したイソプレンオリゴマー(K)を用いて、ポリイソプレン(K-1)の調製を行った。なお、得られるポリイソプレンの分子量を調整するために、上述の(ポリイソプレンの調整)に記載の条件を調整して反応を行った。
得られたポリイソプレン(K-1)の詳細(式(4)中のn、q)は、n=1、q=3500~7000であった。なお、Yは、水酸基、又は上記式(2)で表される基であった。
(製造例19)
(ポリイソプレン(K-2)の調製)
製造例15で調製したイソプレンオリゴマー(K)を用いて、ポリイソプレン(K-2)の調製を行った。なお、得られるポリイソプレンの分子量を調整するために、上述の(ポリイソプレンの調整)に記載の条件を調整して反応を行った。
得られたポリイソプレン(K-2)の詳細(式(4)中のn、q)は、n=1、q=7000~12000であった。なお、Yは、水酸基、又は上記式(2)で表される基であった。
(製造例20)
(ポリイソプレン(0)の調製)
製造例16で調製したイソプレンオリゴマー(0)を用いて、ポリイソプレン(0)の調製を行った。なお、得られるポリイソプレンの分子量を調整するために、上述の(ポリイソプレンの調整)に記載の条件を調整して反応を行った。
得られたポリイソプレン(0)の詳細(式(4)中のn、q)は、n=3、q=7000~12000であった。なお、Yは、水酸基、又は上記式(2)で表される基であった。
以下、実施例12~21及び比較例2~6で使用した各種薬品について、まとめて説明する。
NR:TSR20
BR:JSR(株)製のBR01
カーボンブラック:三菱化学(株)製のダイヤブラック(N220)
イソプレンオリゴマー(F)、イソプレンオリゴマー(K)、イソプレンオリゴマー(0):製造例14~16で得られたイソプレンオリゴマー
ポリイソプレン(F)、ポリイソプレン(K-1)、ポリイソプレン(K-2)、ポリイソプレン(0):製造例17~20で得られたポリイソプレン
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛1号
ステアリン酸:日油(株)製のステアリン酸
老化防止剤:大内新興化学工業(株)製のノクラック6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
ワックス:大内新興化学工業(株)製のサンノックワックス
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤NS:大内新興化学工業(株)製のノクセラ-NS(N-tert-ブチル-2-ベンゾチアジルスルフェンアミド)
シリカ:日本シリカ(株)製のニップシールAQ(湿式シリカ)
シランカップリング剤:デグッサ社製のSi266(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
加硫促進剤DPG:大内新興化学工業(株)製のノクセラーD(N,N-ジフェニルグアニジン)
実施例12~21及び比較例2~6
表8,9に示す配合処方にしたがい、1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をスチーム加硫プレスを用いて圧力80kgf/cmにて150℃で30分間加硫し、加硫ゴム組成物を得た。
得られた加硫ゴム組成物について下記の評価を行った。結果を表8,9に示す。なお、表8の基準配合は比較例4、表9の基準配合は比較例5とした。
(粘弾性試験)
(株)岩本製作所製の粘弾性スペクトロメーターを用いて、70℃、歪み2%時(初期伸度)の条件でtanδの測定を行い、基準配合のtanδを100として指数表示した。指数が大きいほど発熱が大きいことを表す。指数が100以下のとき、耐発熱性(低発熱性)は向上したものとみなした。すなわち、指数が小さいほど低発熱性に優れることを示す。
(ランボーン摩耗試験)
(株)岩本製作所製のランボーン摩耗試験機を用いて、荷重3kg、スリップ率40%および砂量15g/分の条件で5分間摩耗試験を実施した。サンプルの形状は厚さ5mm、直径50mmとし、砥石は、粒度#80のGCタイプ砥粒を使用した。試験結果を、基準配合を100(基準)として指数化した。指数が大きいほど耐摩耗性に優れ、指数が100を超えるとき耐摩耗性は向上したものとみなした。
(引張試験)
JIS K6251「加硫ゴムおよび熱可塑性ゴム-引張特性の求め方」に準じて、上記加硫ゴムシートからなる3号ダンベル型試験片を用いて引張試験を実施し、破断強度(TB)(MPa)、破断時伸び(EB)(%)を測定した。破断時伸びが480%未満では、大型タイヤに用いるとゴム欠けが発生しやすく、改良が必要である。また破断強度についても、低下するとタイヤの破壊原因となるため、材料の変更による低下を防ぐ必要がある。
Figure JPOXMLDOC01-appb-T000054
表8より、トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているイソプレンオリゴマーを使用した実施例では、低発熱性、耐摩耗性、破断時伸びに優れていた。
表9より、トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているポリイソプレンを使用した実施例では、低発熱性、耐摩耗性、破断強度に優れていた。
次に、天然に存在する開始基質であるファルネシル二リン酸等に対して上記式(I)のI部分の構造を維持することで、その他の部分に所望の構造を導入した場合であっても、天然に存在するオリゴマー生成酵素であるプレニルトランスフェラーゼや、その一部を変異した酵素を用いることで、イソプレンオリゴマーが生成可能であり、上記式(I)のI部分の構造を維持していない開始基質を使用した場合には、酵素反応が進行しないことを示すために、下記実験を行った。
まず、上記式(I)のI部分の構造を維持していない下記開始基質1~4の合成を行った。
Figure JPOXMLDOC01-appb-C000056
(開始基質1(2E-butenyl diphosphate)の合成)
クロチルアルコールを出発物質として合成した。無水ジクロロメタン溶媒中でN-クロロコハク酸イミドとジメチルスルフィドを用いて、一級水酸基を塩素置換し、塩化物(下記(i)で表される化合物)を得た(収率78%)。次に無水アセトニトリル中でトリス-テトラn-ブチルアンモニウム水素化リン酸塩を用いて二リン酸化し、目的物質である下記(ii)で表される化合物(開始基質1)を得た(収率50%)。各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000057
(開始基質2(7-methyl-octa -2E,6E -dienyl diphosphate)の合成)
3-メチル-2-ブテン-1-オールを出発物質として合成した。窒素雰囲気下、無水ジクロロメタン中で、N-クロロコハク酸イミド(NCS)、ジメチルスルフィド(DMS)を用いて3-メチル-2-ブテン-1-オールの水酸基をクロロ化し、クロライド(下記(i)で表される化合物)を得た(収率90%)。次に無水N,N-ジメチルホルムアミド中で、水酸化リチウム存在下、シアノ酢酸エチルエステルを反応させ、エステル体(下記(ii)で表される化合物)を得た(収率44%)。次に、水酸化カリウムとメタノールにより加水分解し、カルボン酸(下記(iii)で表される化合物)を得た(収率92%)。次にジメチルスルホオキシドと食塩により脱炭酸し、ニトリル体(下記(iv)で表される化合物)を得た(収率40%)。無水ジクロロメタン下で、ジイソブチル水素化リチウム、飽和塩化アンモニウムにより還元し、アルデヒド体(下記(v)で表される化合物)を得た(収率89%)。無水テトラヒドラフラン中で、水素化ナトリウム、ジエチルホスホノ酢酸エチルエステルを用いて、trans体のエステル体(下記(vi)で表される化合物)を得た(収率84%)。次に、無水ジクロロメタン、無水ヘキサン中でジイソブチル水素化リチウム、メタノールを用いて還元し、アルコール体(下記(vii)で表される化合物)を得た(収率19%)。次に-40℃以下、無水ジクロロメタン溶媒中でN-クロロコハク酸イミドとジメチルスルフィドを用いて、一級水酸基を塩素置換し、塩化物(下記(viii)で表される化合物)を得た(収率82%)。次に無水アセトニトリル中でトリス-テトラn-ブチルアンモニウム水素化リン酸塩を用いて二リン酸化し、目的物質である下記(ix)で表される化合物(開始基質2)を得た(収率50%)。各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000058
(開始基質3(7,11-dimethyl-dodeca -2E,6E,10E - trienyl diphosphate)の合成)
ゲラニオールを出発物質として合成した。窒素雰囲気下無水ジクロロメタン中で、N-クロロコハク酸イミド(NCS)、ジメチルスルフィド(DMS)を用いてゲラニオールの水酸基をクロロ化し、クロライド(下記(i)で表される化合物)を得た(収率94%)。次に無水N,N-ジメチルホルムアミド中で、水酸化リチウム存在下、シアノ酢酸エチルエステルを反応させ、エステル体(下記(ii)で表される化合物)を得た(収率34%)。次に、水酸化カリウムとメタノールによる加水分解し、カルボン酸(下記(iii)で表される化合物)を得た(収率95%)。次にジメチルスルホオキシドに、食塩により脱炭酸し、ニトリル体(下記(iv)で表される化合物)を得た(収率40%)。無水ジクロロメタン中で、ジイソブチル水素化リチウム、飽和塩化アンモニウムにより還元し、アルデヒド体(下記(v)で表される化合物)を得た(収率91%)。無水テトラヒドロフラン中で、水素化ナトリウム、ジエチルホスホノ酢酸エチルエステルを用いて、trans体のエステル体(下記(vi)で表される化合物)を得た(収率82%)。次に、無水ジクロロメタン、無水ヘキサン中でジイソブチル水素化リチウム、メタノールを用いて還元し、アルコール体(下記(vii)で表される化合物)を得た(収率19%)。次に無水ジクロロメタン溶媒中でN-クロロコハク酸イミドとジメチルスルフィドを用いて、一級水酸基を塩素置換し、塩化物(下記(viii)で表される化合物)を得た(収率82%)。次に無水アセトニトリル中でトリス-テトラn-ブチルアンモニウム水素化リン酸塩を用いて二リン酸化し、目的物質である下記(ix)で表される化合物(開始基質3)を得た(収率42%)。各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000059
(開始基質4(7,11,15-trimethyl-hexadeca-2E,6E,10E,14E-tetraenyl diphosphate)の合成)
ファルネソールを出発物質として合成した。窒素雰囲気下無水ジクロロメタン中で、N-クロロコハク酸イミド(NCS)、ジメチルスルフィド(DMS)を用いてファルネソールの水酸基をクロロ化し、クロライド(下記(i)で表される化合物)を得た(収率91%)。次に無水N,N-ジメチルホルムアミド中で、水酸化リチウム存在下、シアノ酢酸エチルエステルを反応させ、エステル体(下記(ii)で表される化合物)を得た(収率34%)。次に、水酸化カリウムとメタノールによる加水分解し、カルボン酸(下記(iii)で表される化合物)を得た(収率88%)。次にジメチルスルホオキシドに、食塩により脱炭酸し、ニトリル体(下記(iv)で表される化合物)を得た(収率40%)。無水ジクロロメタン下で、ジイソブチル水素化リチウム、飽和塩化アンモニウムにより還元し、アルデヒド体(下記(v)で表される化合物)を得た(収率81%)。無水テトラヒドロフラン中で、水素化ナトリウム、ジエチルホスホノ酢酸エチルエステルを用いて、trans体のエステル体(下記(vi)で表される化合物)を得た(収率84%)。次に、無水ジクロロメタン、無水ヘキサン中でジイソブチル水素化リチウム、メタノールを用いて還元し、アルコール体(下記(vii)で表される化合物)を得た(収率30%)。次に無水ジクロロメタン溶媒中でN-クロロコハク酸イミドとジメチルスルフィドを用いて、一級水酸基を塩素置換し、塩化物(下記(viii)で表される化合物)を得た(収率86%)。次に無水アセトニトリル中でトリス-テトラn-ブチルアンモニウム水素化リン酸塩を用いて二リン酸化し、目的物質である下記(ix)で表される化合物(開始基質4)を得た(収率41%)。各合成段階における中間体および最終生成物の確認は、TLCおよび機器による分析(IR、NMR)を用いて行った。
Figure JPOXMLDOC01-appb-C000060
次に、製造例1~11と同様の方法により、上記式(G)で表される化合物、上記式(I)で表される化合物、上記式(Q)で表される化合物の合成を行った。
次に、酵素としてMicrococcus luteus B-P26由来ウンデカプレニル二リン酸合成酵素を使用し、上記開始基質1~4、上記式(B)で表される化合物、上記式(C)で表される化合物、上記式(G)で表される化合物、上記式(K)で表される化合物、及びファルネシル二リン酸(FPP)を用いて、以下の条件で反応を行った。結果は、ファルネシル二リン酸に対する酵素の活性を100として、開始基質1~4、上記式(B)で表される化合物、上記式(C)で表される化合物、上記式(G)で表される化合物、上記式(K)で表される化合物に対する酵素の相対活性を表10に示した。
酵素を500ng、50mM Tris-HCl Buffer(pH7.5)、40mM塩化マグネシウム、40mM TritonX-100、25mM 2-メルカプトエタノール、12.5μM開始基質、50μM[1-14C]イソペンテニル二リン酸、を含む反応液を調製し、37℃のwaterbathで1時間反応させた。反応後、液体シンチレーションの値とTLCを定量することにより、各開始基質に対する酵素活性を測定した。
Figure JPOXMLDOC01-appb-T000061
表10の結果より、上記式(I)のI部分の構造を維持していない開始基質1~4を使用した場合には、酵素反応がほとんど進行しなかった。一方、上記式(I)のI部分の構造を維持している開始基質を使用した場合には、酵素反応が進行した。
次に、Micrococcus luteus B-P26以外の生物を由来とするプレニルトランスフェラーゼ活性を有する酵素を使用した場合であっても、上記式(I)のI部分の構造の維持の有無により、Micrococcus luteus B-P26由来ウンデカプレニル二リン酸合成酵素の場合と同様に上記傾向が見られることを示すために、Bachillus Stearothermophilus由来ファルネシル二リン酸合成酵素、Sulfolobus acidocaldarius由来ゲラニルゲラニル二リン酸合成酵素を使用して、下記実験を行った。
まず、Bachillus Stearothermophilus由来ファルネシル二リン酸合成酵素の調製を行った。
Bachillus Stearothermophilus(バチルス・ステアロサーモフィルス)由来ファルネシル二リン酸合成酵素が組み込まれたプラスミドpET22b(pET22b/BsFPS)を用いて、上述の方法と同様に大腸菌E.coli BL21(DE3)を形質転換した。なお、pET22b/BsFPSは、東北大学多元物質科学研究所古山教授より譲渡頂いた。
E.coli BL21(DE3)/pET22b/BsFPSを50μg/mLのアンピシリンを含む3mLのLB培地が入った試験管に接種し、37℃で5時間振盪培養した。得られた培養液のうち1mLを50μg/mLのアンピシリンを含むLB培地100mLが入った500mL三角フラスコに接種し、37℃で3時間振盪培養後、0.1mmol/LになるようにIPTGを添加し、30℃で18時間振盪培養した。該培養液を遠心分離し、湿菌体を取得した。上記で得られた湿菌体を超音波処理により破砕した後、遠心分離して得られた上清から、HisTrap(アマシャム社製)を用いてプレニルトランスフェラーゼ活性を有する蛋白質(Bachillus Stearothermophilus由来ファルネシル二リン酸合成酵素)を精製した。精製したタンパク質は、SDS-PAGEにより精製を確認した。
次に、Sulfolobus acidocaldarius由来ゲラニルゲラニル二リン酸合成酵素の調製を行った。
Sulfolobus acidocaldarius(スルフォロバス アシドカルダリウス)由来ゲラニルゲラニル二リン酸合成酵素が組み込まれたプラスミドpET22b(pET22b/SaGGPS)を用いて、上述の方法と同様に大腸菌E.coli BL21(DE3)を形質転換した。なお、pET22b/SaGGPSは、東北大学大学院工学研究科西野徳三教授より譲渡頂いた。
E.coli BL21(DE3)/pET22b/SaGGPSを50μg/mLのアンピシリンを含む3mLのLB培地が入った試験管に接種し、37℃で5時間振盪培養した。得られた培養液のうち1mLを50μg/mLのアンピシリンを含むLB培地100mLが入った500mL三角フラスコに接種し、37℃で3時間振盪培養後、0.1mmol/LになるようにIPTGを添加し、30℃で18時間振盪培養した。該培養液を遠心分離し、湿菌体を取得した。上記で得られた湿菌体を超音波処理により破砕した後、遠心分離して得られた上清から、HisTrap(アマシャム社製)を用いてプレニルトランスフェラーゼ活性を有する蛋白質(Sulfolobus acidocaldarius由来ゲラニルゲラニル二リン酸合成酵素)を精製した。精製したタンパク質は、SDS-PAGEにより精製を確認した。
得られたBachillus Stearothermophilus由来ファルネシル二リン酸合成酵素を使用して、上記開始基質1~4、上記式(F)で表される化合物、上記式(I)で表される化合物、上記式(Q)で表される化合物、及び下記に構造を示すゲラニル二リン酸(GPP)を用いて、以下の条件で反応を行った。結果は、ゲラニル二リン酸に対する酵素の活性を100として、開始基質1~4、上記式(F)で表される化合物、上記式(I)で表される化合物、上記式(Q)で表される化合物に対する酵素の相対活性を表11に示した。
精製した酵素を500ng、50mM Tris-HCl Buffer(pH8.5)、40mM塩化マグネシウム、50mM塩化アンモニウム、40mM TritonX-100、25mM 2-メルカプトエタノール、12.5μM開始基質、50μM[1-14C]イソペンテニル二リン酸、を含む反応液を調製し、55℃のwaterbathで1時間反応させた。反応後、液体シンチレーションの値とTLCを定量することにより、各開始基質に対する酵素活性を測定した。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-T000063
また、同様に、Sulfolobus acidocaldarius由来ゲラニルゲラニル二リン酸合成酵素を使用して、上記開始基質1~4、上記式(B)で表される化合物、上記式(C)で表される化合物、上記式(G)で表される化合物、上記式(K)で表される化合物、上記式(F)で表される化合物、上記式(I)で表される化合物、上記式(Q)で表される化合物、ファルネシル二リン酸(FPP)、ゲラニル二リン酸(GPP)を用いて、以下の条件で反応を行った。結果は、ファルネシル二リン酸又はゲラニル二リン酸に対する酵素の活性を100として、開始基質1~4、上記式(B)で表される化合物、上記式(C)で表される化合物、上記式(G)で表される化合物、上記式(K)で表される化合物、上記式(F)で表される化合物、上記式(I)で表される化合物、上記式(Q)で表される化合物に対する酵素の相対活性を表12,13に示した。
精製した酵素を500ng、50mM Tris-HCl Buffer(pH5.8)、40mM塩化マグネシウム、50mM塩化アンモニウム、40mM TritonX-100、25mM 2-メルカプトエタノール、12.5μM開始基質、50μM[1-14C]イソペンテニル二リン酸、を含む反応液を調製し、55℃のwaterbathで1時間反応させた。反応後、液体シンチレーションの値とTLCを定量することにより、各開始基質に対する酵素活性を測定した。
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
表11~13の結果より、Bachillus Stearothermophilus由来ファルネシル二リン酸合成酵素、Sulfolobus acidocaldarius由来ゲラニルゲラニル二リン酸合成酵素を使用した場合も、Micrococcus luteus B-P26由来ウンデカプレニル二リン酸合成酵素を使用した場合と同様に、上記式(I)のI部分の構造を維持していない開始基質1~4を使用した場合には、酵素反応がほとんど進行しなかった。一方、上記式(I)のI部分の構造を維持している開始基質を使用した場合には、酵素反応が進行した。
表1~3,10~13の結果より、天然に存在する開始基質であるファルネシル二リン酸やゲラニル二リン酸等に対して上記式(I)のI部分の構造を維持することで、その他の部分に所望の構造を導入した場合であっても、天然に存在するオリゴマー生成酵素であるプレニルトランスフェラーゼ活性を有する酵素や、その一部を変異した酵素を用いることで、イソプレンオリゴマーが生成可能であることは、明らかである。
(配列表フリーテキスト)
配列番号1:Micrococcus luteus B-P 26 由来ウンデカプレニル二リン酸合成酵素(野生型酵素)の塩基配列
配列番号2:Micrococcus luteus B-P 26由来ウンデカプレニル二リン酸合成酵素(野生型酵素)のアミノ酸配列
配列番号3:変異型酵素N31Aの塩基配列
配列番号4:変異型酵素N31Aのアミノ酸配列
配列番号5:変異型酵素N77Aの塩基配列
配列番号6:変異型酵素N77Aのアミノ酸配列
配列番号7:変異型酵素L91Nの塩基配列
配列番号8:変異型酵素L91Nのアミノ酸配列
配列番号9:変異型酵素L91Dの塩基配列
配列番号10:変異型酵素L91Dのアミノ酸配列
配列番号11:変異型酵素N31Qの塩基配列
配列番号12:変異型酵素N31Qのアミノ酸配列
配列番号13:変異型酵素N77Qの塩基配列
配列番号14:変異型酵素N77Qのアミノ酸配列
配列番号15:変異型酵素L91Gの塩基配列
配列番号16:変異型酵素L91Gのアミノ酸配列
配列番号17:変異型酵素L91Kの塩基配列
配列番号18:変異型酵素L91Kのアミノ酸配列
配列番号19:変異型酵素F95Aの塩基配列
配列番号20:変異型酵素F95Aのアミノ酸配列
配列番号21:変異型酵素F95Wの塩基配列
配列番号22:変異型酵素F95Wのアミノ酸配列
配列番号23:変異型酵素N31A作製用センスプライマー
配列番号24:変異型酵素N31A作製用アンチセンスプライマー
配列番号25:変異型酵素N77A作製用センスプライマー
配列番号26:変異型酵素N77A作製用アンチセンスプライマー
配列番号27:変異型酵素L91N作製用センスプライマー
配列番号28:変異型酵素L91N作製用アンチセンスプライマー
配列番号29:変異型酵素L91D作製用センスプライマー
配列番号30:変異型酵素L91D作製用アンチセンスプライマー
配列番号31:変異型酵素N31Q作製用センスプライマー
配列番号32:変異型酵素N31Q作製用アンチセンスプライマー
配列番号33:変異型酵素N77Q作製用センスプライマー
配列番号34:変異型酵素N77Q作製用アンチセンスプライマー
配列番号35:変異型酵素L91G作製用センスプライマー
配列番号36:変異型酵素L91G作製用アンチセンスプライマー
配列番号37:変異型酵素L91K作製用センスプライマー
配列番号38:変異型酵素L91K作製用アンチセンスプライマー
配列番号39:変異型酵素F95A作製用センスプライマー
配列番号40:変異型酵素F95A作製用アンチセンスプライマー
配列番号41:変異型酵素F95W作製用センスプライマー
配列番号42:変異型酵素F95W作製用アンチセンスプライマー

Claims (14)

  1. 下記式(1)で表されるトランス構造部、シス構造部からなるイソプレンオリゴマーであって、前記トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているイソプレンオリゴマー。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、nは1~10の整数を表す。mは1~30の整数を表す。Yは、水酸基、ホルミル基、カルボキシ基、エステル基、カルボニル基又は下記式(2)で表される基を表す。)
    Figure JPOXMLDOC01-appb-C000002
  2. 下記式(1-1)中のII部分に含まれる原子又は原子団の少なくとも1つが置換され、下記式(1-1)中のIII部分に含まれる原子又は原子団は置換されていない請求項1記載のイソプレンオリゴマー。
    Figure JPOXMLDOC01-appb-C000003
  3. 前記トランス構造部が下記式(a)~(s)のいずれかである請求項1又は2記載のイソプレンオリゴマー。
    Figure JPOXMLDOC01-appb-C000004
  4. 下記式(3)で表され、下記式(3)中のイソプレン単位に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているアリル性二リン酸と、イソペンテニル二リン酸から生合成されて得られる請求項1~3のいずれかに記載のイソプレンオリゴマー。
    Figure JPOXMLDOC01-appb-C000005
    (式(3)中、pは1~10の整数を表す。)
  5. 前記生合成をプレニルトランスフェラーゼ活性を有する酵素を用いて行う請求項4記載のイソプレンオリゴマー。
  6. 前記プレニルトランスフェラーゼ活性を有する酵素が、以下の[1]~[3]のいずれかに記載の蛋白質である請求項5記載のイソプレンオリゴマー。
    [1]配列番号2,4,6,8,10,12,14,16,18,20,22のいずれかの配列番号で表されるアミノ酸配列からなる蛋白質
    [2]配列番号2,4,6,8,10,12,14,16,18,20,22のいずれかの配列番号で表されるアミノ酸配列において、1若しくは複数個のアミノ酸の置換、欠失、挿入、又は付加を含む配列からなり、かつ下記式(3)で表され、下記式(3)中のイソプレン単位に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているアリル性二リン酸と、イソペンテニル二リン酸との反応を触媒する活性を有する蛋白質
    [3]配列番号2,4,6,8,10,12,14,16,18,20,22のいずれかの配列番号で表されるアミノ酸配列と45%以上の配列同一性を有するアミノ酸配列からなり、かつ下記式(3)で表され、下記式(3)中のイソプレン単位に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているアリル性二リン酸と、イソペンテニル二リン酸との反応を触媒する活性を有する蛋白質
    Figure JPOXMLDOC01-appb-C000006
    (式(3)中、pは1~10の整数を表す。)
  7. 下記式(3)で表され、下記式(3)中のイソプレン単位に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているアリル性二リン酸と、イソペンテニル二リン酸から生合成する請求項1~3のいずれかに記載のイソプレンオリゴマーの製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (式(3)中、pは1~10の整数を表す。)
  8. 前記生合成をプレニルトランスフェラーゼ活性を有する酵素を用いて行う請求項7記載のイソプレンオリゴマーの製造方法。
  9. 下記式(4)で表されるトランス構造部、シス構造部からなるポリイソプレンであって、前記トランス構造部中に含まれる原子又は原子団の少なくとも1つが他の原子又は原子団により置換されているポリイソプレン。
    Figure JPOXMLDOC01-appb-C000008
    (式(4)中、nは1~10の整数を表す。qは30~40000の整数を表す。Yは、水酸基、ホルミル基、カルボキシ基、エステル基、カルボニル基又は下記式(2)で表される基を表す。)
    Figure JPOXMLDOC01-appb-C000009
  10. 下記式(4-1)中のVI部分に含まれる原子又は原子団の少なくとも1つが置換され、下記式(4-1)中のVII部分に含まれる原子又は原子団は置換されていない請求項9記載のポリイソプレン。
    Figure JPOXMLDOC01-appb-C000010
  11. 請求項1~6のいずれかに記載のイソプレンオリゴマーと、イソペンテニル二リン酸から生合成されて得られる請求項9又は10記載のポリイソプレン。
  12. 請求項1~6のいずれかに記載のイソプレンオリゴマーと、イソペンテニル二リン酸から生合成する請求項9又は10記載のポリイソプレンの製造方法。
  13. 請求項1~6のいずれかに記載のイソプレンオリゴマー及び/又は請求項9~11のいずれかに記載のポリイソプレンを含むゴム組成物。
  14. 請求項13記載のゴム組成物を用いて作製した空気入りタイヤ。
PCT/JP2011/064774 2010-07-14 2011-06-28 イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ WO2012008298A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112013000786A BR112013000786A2 (pt) 2010-07-14 2011-06-28 oligômero de isopreno, poli-isopreno, processos para produção destes materiais, composição de borracha e pneu pneumático.
CN2011800355183A CN103025785A (zh) 2010-07-14 2011-06-28 异戊二烯低聚物、聚异戊二烯和它们的制造方法、橡胶组合物以及充气轮胎
KR1020137002529A KR20130043172A (ko) 2010-07-14 2011-06-28 이소프렌 올리고머, 폴리이소프렌 및 이들의 제조 방법, 고무 조성물, 그리고 공기 타이어
EP11806628.1A EP2594597A1 (en) 2010-07-14 2011-06-28 Isoprene oligomer, polyisoprene, processes for producing these materials, rubber composition, and pneumatic tire
US13/809,616 US9371342B2 (en) 2010-07-14 2011-06-28 Isoprene oligomer, polyisoprene, processes for producing these materials, rubber composition, and pneumatic tire
US15/133,084 US9657313B2 (en) 2010-07-14 2016-04-19 Isoprene oligomer, polyisoprene, processes for producing these materials, rubber composition, and pneumatic tire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010160120 2010-07-14
JP2010-160120 2010-07-14
JP2010-277384 2010-12-13
JP2010277384A JP5058332B2 (ja) 2010-07-14 2010-12-13 イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/809,616 A-371-Of-International US9371342B2 (en) 2010-07-14 2011-06-28 Isoprene oligomer, polyisoprene, processes for producing these materials, rubber composition, and pneumatic tire
US15/133,084 Division US9657313B2 (en) 2010-07-14 2016-04-19 Isoprene oligomer, polyisoprene, processes for producing these materials, rubber composition, and pneumatic tire

Publications (1)

Publication Number Publication Date
WO2012008298A1 true WO2012008298A1 (ja) 2012-01-19

Family

ID=45469306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064774 WO2012008298A1 (ja) 2010-07-14 2011-06-28 イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ

Country Status (7)

Country Link
US (2) US9371342B2 (ja)
EP (1) EP2594597A1 (ja)
JP (1) JP5058332B2 (ja)
KR (1) KR20130043172A (ja)
CN (1) CN103025785A (ja)
BR (1) BR112013000786A2 (ja)
WO (1) WO2012008298A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042027A1 (ja) * 2012-09-12 2014-03-20 住友ゴム工業株式会社 イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ
EP2848693A1 (de) * 2013-09-12 2015-03-18 LANXESS Deutschland GmbH Verkettung von halogenierten Alkenyldiphosphat-Derivaten
JP2015223124A (ja) * 2014-05-28 2015-12-14 住友ゴム工業株式会社 イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103833691A (zh) * 2014-03-17 2014-06-04 上海应用技术学院 5-(3,3-二甲基环氧乙烷-2-基)-3-甲基-2-戊烯基乙酸酯的制备方法
JP6241403B2 (ja) 2014-10-24 2017-12-06 横浜ゴム株式会社 リン酸変性ポリマー
JP6608213B2 (ja) * 2015-08-05 2019-11-20 横浜ゴム株式会社 変性ポリマーの製造方法
CN106085910B (zh) * 2016-06-22 2021-07-23 中国人民解放军总医院 一种空间甲基杆菌lct-s10-2
EP3680229B1 (en) * 2018-06-20 2023-08-02 Lg Chem, Ltd. Modification polymerization initiator and method for preparing the same
CN110708635B (zh) * 2019-10-31 2020-11-24 歌尔股份有限公司 发声装置的振膜以及发声装置
KR102612230B1 (ko) * 2021-05-12 2023-12-11 금호타이어 주식회사 타이어 트레드용 고무조성물의 제조방법 및 이의 타이어드레드
CN113603814B (zh) * 2021-08-23 2022-05-13 无锡安睿驰科技有限公司 一种修复轮胎气密层的方法
CN115028527A (zh) * 2022-05-28 2022-09-09 汉瑞药业(荆门)有限公司 一种3-羟甲基-2,2-二甲基环丙基甲酸的制备方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS59140885A (ja) 1983-01-13 1984-08-13 マツクス・プランク・ゲゼルシヤフト・ツア・フエルデルング・デア・ヴイツセンシヤフテン・エ−・フアウ 植物細胞ゲノムへの発現可能な遺伝子の導入法
JPS6070080A (ja) 1983-02-24 1985-04-20 レイクスニベルシテイト ライデン 双子葉植物の染色体への外来性dνaの組込方法
JPS60251887A (ja) 1984-05-11 1985-12-12 ノバルティス アクチエンゲゼルシャフト 植物のプロトプラストの形質転換法
JPS63299A (ja) 1986-04-22 1988-01-05 イミユネツクス・コ−ポレ−シヨン ヒトg−csfタンパク質の発現
JPS63233798A (ja) 1986-10-09 1988-09-29 Kyowa Hakko Kogyo Co Ltd 5′−グアニル酸の製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JPH0225415A (ja) * 1988-07-13 1990-01-26 Nisshin Flour Milling Co Ltd 癌転移抑制剤
JPH02227075A (ja) 1988-09-29 1990-09-10 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
JPH0322979A (ja) 1989-06-19 1991-01-31 Kyowa Hakko Kogyo Co Ltd 新規プラスミノーゲン活性化因子
JPH04283548A (ja) * 1991-03-12 1992-10-08 Eisai Co Ltd 新規なテルペン誘導体及びその製造方法
WO1994000977A1 (en) 1992-07-07 1994-01-20 Japan Tobacco Inc. Method of transforming monocotyledon
JP2517813B2 (ja) 1990-05-29 1996-07-24 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー 生きている細胞に生物学的物質を導入するための改良された方法および装置
JP2606856B2 (ja) 1986-12-05 1997-05-07 アグラシータス 生細胞中に遺伝物質担持担体粒子を注入するための装置
JPH09268162A (ja) * 1996-01-31 1997-10-14 Nisshin Flour Milling Co Ltd イソプレン誘導体
WO1998012343A1 (fr) 1996-09-17 1998-03-26 Kyowa Hakko Kogyo Co., Ltd. Procedes de production de nucleotides de sucre et de glucides complexes
JPH10316715A (ja) * 1997-05-20 1998-12-02 Jsr Corp エポキシ変性重合体の水性分散液
JP2000001575A (ja) 1998-06-15 2000-01-07 Sumitomo Rubber Ind Ltd 変性ジエン系ゴムを含むゴム組成物
JP2000001573A (ja) 1998-06-15 2000-01-07 Sumitomo Rubber Ind Ltd ゴム組成物
JP2000316586A (ja) * 1999-05-03 2000-11-21 Kumho Petrochemical Co Ltd ゴム小粒子結合蛋白質(srpp)を発現する組換え微生物
JP2003238603A (ja) * 2002-02-20 2003-08-27 Hiroshi Okamoto 変性ゴム
JP2010193770A (ja) * 2009-02-25 2010-09-09 Hitachi Zosen Corp 長鎖トランス型プレニル二リン酸合成酵素遺伝子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791932A (en) * 1980-11-28 1982-06-08 Kuraray Co Ltd Polyprenyl compound
CA2196370A1 (en) 1996-01-31 1997-08-01 Kohei Inomata Isoprene derivatives
US6251992B1 (en) * 1999-09-10 2001-06-26 The Goodyear Tire & Rubber Company Rubber composition containing hydroxyl terminated polyalkylene polymer and tire with tread thereof
WO2006112450A1 (ja) 2005-04-15 2006-10-26 Bridgestone Corporation 変性共役ジエン系共重合体、ゴム組成物及びタイヤ
FR2914652B1 (fr) 2007-04-03 2013-01-18 Librophyt Genes codant pour z,z-farnesyl diphosphate synthase et une sesquiterpene synthase a produits multiples et leurs utilisations
EP2093222A1 (en) * 2008-02-22 2009-08-26 Newbiotechnic, S.A. Polyisoprenoid epoxides useful for decreasing cholesterol and/or increasing coenzyme Q biosynthesis
US20110201771A1 (en) * 2008-11-06 2011-08-18 University Of Akron Biosynthesis of polyisoprenoids

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS59140885A (ja) 1983-01-13 1984-08-13 マツクス・プランク・ゲゼルシヤフト・ツア・フエルデルング・デア・ヴイツセンシヤフテン・エ−・フアウ 植物細胞ゲノムへの発現可能な遺伝子の導入法
JPS6070080A (ja) 1983-02-24 1985-04-20 レイクスニベルシテイト ライデン 双子葉植物の染色体への外来性dνaの組込方法
JPS60251887A (ja) 1984-05-11 1985-12-12 ノバルティス アクチエンゲゼルシャフト 植物のプロトプラストの形質転換法
JPS63299A (ja) 1986-04-22 1988-01-05 イミユネツクス・コ−ポレ−シヨン ヒトg−csfタンパク質の発現
JPS63233798A (ja) 1986-10-09 1988-09-29 Kyowa Hakko Kogyo Co Ltd 5′−グアニル酸の製造法
JP2606856B2 (ja) 1986-12-05 1997-05-07 アグラシータス 生細胞中に遺伝物質担持担体粒子を注入するための装置
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JPH0225415A (ja) * 1988-07-13 1990-01-26 Nisshin Flour Milling Co Ltd 癌転移抑制剤
JPH02227075A (ja) 1988-09-29 1990-09-10 Kyowa Hakko Kogyo Co Ltd 新規ポリペプチド
JPH0322979A (ja) 1989-06-19 1991-01-31 Kyowa Hakko Kogyo Co Ltd 新規プラスミノーゲン活性化因子
JP2517813B2 (ja) 1990-05-29 1996-07-24 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー 生きている細胞に生物学的物質を導入するための改良された方法および装置
JPH04283548A (ja) * 1991-03-12 1992-10-08 Eisai Co Ltd 新規なテルペン誘導体及びその製造方法
WO1994000977A1 (en) 1992-07-07 1994-01-20 Japan Tobacco Inc. Method of transforming monocotyledon
JPH09268162A (ja) * 1996-01-31 1997-10-14 Nisshin Flour Milling Co Ltd イソプレン誘導体
WO1998012343A1 (fr) 1996-09-17 1998-03-26 Kyowa Hakko Kogyo Co., Ltd. Procedes de production de nucleotides de sucre et de glucides complexes
JPH10316715A (ja) * 1997-05-20 1998-12-02 Jsr Corp エポキシ変性重合体の水性分散液
JP2000001575A (ja) 1998-06-15 2000-01-07 Sumitomo Rubber Ind Ltd 変性ジエン系ゴムを含むゴム組成物
JP2000001573A (ja) 1998-06-15 2000-01-07 Sumitomo Rubber Ind Ltd ゴム組成物
JP2000316586A (ja) * 1999-05-03 2000-11-21 Kumho Petrochemical Co Ltd ゴム小粒子結合蛋白質(srpp)を発現する組換え微生物
JP2003238603A (ja) * 2002-02-20 2003-08-27 Hiroshi Okamoto 変性ゴム
JP2010193770A (ja) * 2009-02-25 2010-09-09 Hitachi Zosen Corp 長鎖トランス型プレニル二リン酸合成酵素遺伝子

Non-Patent Citations (31)

* Cited by examiner, † Cited by third party
Title
"Baculovirus Expression Vectors, A Laboratory Manual", 1992, W. H. FREEMAN AND COMPANY
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS
"Current Protocols in Molecular Biology, or Molecular Biology, A Laboratory Manual, Bio/Technology", vol. 6, 1988, pages: 47
"Immunology methods manual", ACADEMIC PRESS
"Methods for General and Molecular Bacteriology", 1994, ASM PRESS
"Molecular Cloning", 1989, COLD SPRING HARBOR PRESS
"Molecular Cloning", 2001
"Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
AGRIC. BIOL. CHEM., vol. 48, 1984, pages 669
AGRIC. BIOL. CHEM., vol. 53, 1989, pages 277
APPL. MICROBIOL. BIOTECHNOL., vol. 35, 1991, pages 594 - 599
APPL. MICROBIOL. BIOTECHNOL., vol. 53, 2000, pages 674 - 679
BIOCHEM, vol. 101, 1987, pages 1307
CYTOTECHNOLOGY, vol. 3, 1990, pages 133
GENE, vol. 33, 1985, pages 103
GENE, vol. 34, 1985, pages 315
J. BACTERIOL., vol. 153, 1983, pages 163
KARLIN; ALTSCHUL, PRO. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873
METHODS ENZYMOL., vol. 183, 1990, pages 63
METHODS ENZYMOL., vol. 194, 1990, pages 182
NATURE, vol. 329, pages 840
NUCLEIC ACIDS RES., vol. 16, 1988, pages 6127
NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487
NUCLEIC ACIDS RESEARCH, vol. 13, 1985, pages 4431
PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409
PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488
PROC. NATL. ACAD. SCI., USA, vol. 69, 1972, pages 2110
PROC. NATL. ACAD. SCI., USA, vol. 81, 1984, pages 4889
PROC. NATL. ACAD. SCI., USA, vol. 82, 1985, pages 4306
PROC. NATL. ACAD. SCI., USA, vol. 84, 1987, pages 7413
VIROLOGY, vol. 52, 1973, pages 456

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042027A1 (ja) * 2012-09-12 2014-03-20 住友ゴム工業株式会社 イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ
CN104684958A (zh) * 2012-09-12 2015-06-03 住友橡胶工业株式会社 异戊二烯低聚物、聚异戊二烯、制造异戊二烯低聚物和聚异戊二烯的方法、橡胶组合物以及充气轮胎
CN108484663A (zh) * 2012-09-12 2018-09-04 住友橡胶工业株式会社 异戊二烯低聚物及制造异戊二烯低聚物的方法
CN108484663B (zh) * 2012-09-12 2020-09-18 住友橡胶工业株式会社 异戊二烯低聚物及制造异戊二烯低聚物的方法
EP2848693A1 (de) * 2013-09-12 2015-03-18 LANXESS Deutschland GmbH Verkettung von halogenierten Alkenyldiphosphat-Derivaten
WO2015036335A1 (de) * 2013-09-12 2015-03-19 Lanxess Deutschland Gmbh Verkettung von halogenierten alkenyldiphosphat-derivaten
JP2015223124A (ja) * 2014-05-28 2015-12-14 住友ゴム工業株式会社 イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ

Also Published As

Publication number Publication date
KR20130043172A (ko) 2013-04-29
JP2012036360A (ja) 2012-02-23
CN103025785A (zh) 2013-04-03
BR112013000786A2 (pt) 2016-07-05
JP5058332B2 (ja) 2012-10-24
US20160222418A1 (en) 2016-08-04
US9371342B2 (en) 2016-06-21
US20140171675A1 (en) 2014-06-19
US9657313B2 (en) 2017-05-23
EP2594597A1 (en) 2013-05-22

Similar Documents

Publication Publication Date Title
JP5058332B2 (ja) イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ
CN1304433C (zh) 制备改性聚合物的方法、通过该方法获得的改性聚合物和橡胶组合物
US20070269857A1 (en) A process for producing isoprenoid compounds by microorganisms and a method for screening compounds with antibiotic or weeding activity
US8637277B2 (en) Method for producing 3-mercaptopropionic acid or salt thereof
CN1437635A (zh) 轮胎行驶胎面的组合物以及它的制造方法
JPH09118785A (ja) タイアトレッドとして有用なエラストマー状組成物
WO2019044889A1 (ja) タイヤ用ゴム組成物
WO2019044892A1 (ja) 重荷重タイヤ用ゴム組成物およびタイヤ
US20220380575A1 (en) Silane coupling agent composition comprising silane compound and protein modifying agent, and rubber composition comprising the same
KR20060081717A (ko) 신발용 고무 조성물
JP6757938B2 (ja) イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ
SA110310888B1 (ar) عملية لإنتاج ثلاثي-بيوتيل فينول من تيار c4 مكرر مُصفّى
JP6531304B2 (ja) イソプレンオリゴマー、ポリイソプレン、及びこれらの製造方法、ゴム組成物、並びに空気入りタイヤ
CN113227155A (zh) 基于至少一种带有环状碳酸酯官能团的化合物的橡胶组合物
JP2018090820A (ja) ポリブタジエン及びそれを用いたゴム組成物
EP3981610A1 (en) Silane coupling agent composition containing silane compound and protein denaturing agent, and rubber composition containing said composition
US6673581B1 (en) Mannose isomerase and DNA encoding the enzyme
EP4169734A1 (en) Silane coupling agent composition and rubber composition comprising same
JP5631534B2 (ja) 新規蛋白質および該蛋白質をコードするdna
JP2020094191A (ja) ゴム組成物
WO2023117843A1 (fr) Composition élastomérique à base d'au moins un composé oxyde de nitrile comprenant un groupe epoxy
JP2012056899A (ja) 抗ピロリ菌剤の探索方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180035518.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13809616

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137002529

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011806628

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013000786

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013000786

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130111