WO2006118860A1 - Portable wireless data storage device - Google Patents

Portable wireless data storage device Download PDF

Info

Publication number
WO2006118860A1
WO2006118860A1 PCT/US2006/015534 US2006015534W WO2006118860A1 WO 2006118860 A1 WO2006118860 A1 WO 2006118860A1 US 2006015534 W US2006015534 W US 2006015534W WO 2006118860 A1 WO2006118860 A1 WO 2006118860A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
data
storage device
wireless
data storage
Prior art date
Application number
PCT/US2006/015534
Other languages
French (fr)
Inventor
George Minassian
Joe Tom
Joerg Borowski
Original Assignee
Advanced Micro Devices, Inc.
Spansion Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102005020062A external-priority patent/DE102005020062B4/en
Application filed by Advanced Micro Devices, Inc., Spansion Llc filed Critical Advanced Micro Devices, Inc.
Priority to JP2008509017A priority Critical patent/JP2008539522A/en
Priority to GB0720860A priority patent/GB2439516B/en
Priority to KR1020077027670A priority patent/KR101238431B1/en
Priority to CN2006800145057A priority patent/CN101273339B/en
Publication of WO2006118860A1 publication Critical patent/WO2006118860A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • G06F13/385Information transfer, e.g. on bus using universal interface adapter for adaptation of a particular data processing system to different peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • G06F13/387Information transfer, e.g. on bus using universal interface adapter for adaptation of different data processing systems to different peripheral devices, e.g. protocol converters for incompatible systems, open system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2213/00Indexing scheme relating to interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F2213/38Universal adapter
    • G06F2213/3814Wireless link with a computer system port

Definitions

  • the invention generally relates to portable data storage devices and corresponding methods, and in particular to storing data in a non- volatile memory.
  • Flash memory Flash-EPROM, Flash Erasable Programmable Read Only Memory
  • Flash memory devices are used in digital cameras, cell phones, printers, handheld or notebook computers, pagers, audio recorders, or the like. Flash memory cards or sticks connect the flash IC (integrated circuit) via a flash disk controller chip to the host device, i.e. a notebook, camera or the like, using an interface which requires the flash memory stick or card to be inserted into a dedicated slot or other connector.
  • flash memory devices can be connected to host devices via a USB (Universal Serial Bus) connection. If the flash device is an SD (Secure Digital) memory card, the connection to the host device is done using an SDIO (SD Input Output) interface. Similar dedicated interfaces exist for other flash memory devices such as CF (Compact Flash) devices.
  • SD Secure Digital
  • CF Compact Flash
  • the conventional techniques require the user to insert a flash memory card into the camera before taking the picture, and then remove the card from the camera and insert it into a card reader of the personal computer, or connect the camera to the computer to use the card reader of the camera.
  • Such handling is often found to be cumbersome. Further, since it might be necessary to frequently put the cards into the reader slots and take them out afterwards, there might occur some mechanical wear.
  • a portable data storage device comprising a non-volatile memory, and a wireless data interface.
  • the wireless data interface is coupled to the non-volatile memory to read data from the non-volatile memory for transmission through the wireless data interface and/or write data received from the wireless data interface to the non- volatile memory.
  • the wireless data interface is a high data rate interface adapted to transmit and/or receive data at data rates above 100 Mbps.
  • the data storage device further comprises: a security module adapted to provide at least one security mechanism to protect data or wireless data transfers.
  • said security module is adapted to apply an authentication mechanism.
  • said security module is adapted to apply a wireless link security mechanism.
  • said security module is adapted to apply a DRM (Digital Rights Management) content security mechanism. in a iuruier emDo ⁇ imeni me portaoie ⁇ ata storage device has a housing with no electric contacts at its outer surface.
  • the portable data storage device has a housing being water proof.
  • the portable data storage device further comprises: a contactless charging interface adapted to supply power to said portable data storage device without requiring establishment of a wired electric connection to said portable data storage device.
  • said contactless charging interface is an inductive coupling interface.
  • said contactless charging interface is an optical interface comprising a photovoltaic element.
  • the portable data storage device further comprises: a control unit adapted to control said wireless data interface to operate in any one of at least two operating modes selected from a sleep mode, a listen mode, and a transceiver mode.
  • the portable data storage device further comprises: a host interface unit adapted to provide a wired interface to a host system to enable operating said portable data storage device as adapter device linking said host system to another portable data storage device connected through said wireless data interface.
  • the portable data storage device further comprises: a host interface unit adapted to provide a wired interface to a host system to allow said host system to read and/or write data from/to said non-volatile memory.
  • a portable data storage device comprises a non-volatile memory and a wireless data interface which is coupled to the non-volatile memory to read data from the non-volatile memory for transmission through the wireless data interface and/or write data received from the wireless data interface to the non-volatile memory.
  • the wireless data interface is a broadband interface adapted to transmit and/or receive data in at least one band having a width of 100 MHz or above.
  • said wireless data interface is a WUSB (Wireless Universal Serial Bus) interface.
  • said wireless data interface is an OFDM (Orthogonal Frequency Division Multiplexing) interface.
  • said non-volatile memory is an EPROM (Erasable Programmable Read Only Memory) based flash memory.
  • EPROM Erasable Programmable Read Only Memory
  • the portable data storage device further comprises: a security module adapted to provide at least one security mechanism to protect data or wireless data transfers.
  • said security module is adapted to apply an authentication mechanism.
  • said security module is adapted to apply a wireless link security mechanism.
  • said security module is adapted to apply a DRM (Digital Rights Management) content security mechanism.
  • the portable data storage device has a housing with no electric contacts at its outer surface.
  • the portable data storage device has a housing being water proof.
  • the portable data storage device further comprises: a contactless charging interface adapted to supply power to said portable data storage device without requiring establishment of a wired electric connection to said portable data storage device.
  • a contactless charging interface is an inductive coupling interface.
  • said contactless charging interface is an optical interface comprising a photovoltaic element.
  • the portable data storage device further comprises: a control unit adapted to control said wireless data interface to operate in any one of at least two operating modes selected from a sleep mode, a listen mode, and a transceiver mode.
  • the portable data storage device further comprises: a host interface unit adapted to provide a wired interface to a host system to enable operating said portable data storage device as adapter device linking said host system to another portable data storage device connected through said wireless data interface.
  • the portable data storage device further comprises: a host interface unit adapted to provide a wired interface to a host system to allow said host system to read and/or write data from/to said non- volatile memory.
  • a method of storing data comprises transmitting data to be stored to a portable data storage device through a wireless link at a high data rate and/or in an ultra wide band.
  • the method further comprises receiving the data at the portable data storage device, and storing the received data in a non-volatile memory of the portable data storage device.
  • said data rate is above 100 Mbps.
  • the band width of said ultra wide band is 500 MHz or above.
  • said wireless link is a UWB (Ultra Wide Band) link. In a further embodiment said wireless link is a WUSB (Wireless Universal Serial Bus) link.
  • said wireless link is an OFDM (Orthogonal Frequency Division Multiplexing) link.
  • said non-volatile memory is an EPROM (Erasable Programmable Read Only Memory) based flash memory.
  • EPROM Erasable Programmable Read Only Memory
  • the method further comprises: providing at least one security mechanism.
  • said security mechanism comprises an authentication mechanism.
  • said security mechanism comprises a wireless link security mechanism.
  • said security mechanism comprises a DRM (Digital Rights Management) content security mechanism.
  • the method further comprises: supplying power to said portable data storage device by means of a contactless charging interface without requiring establishment of a wired electric connection to said portable data storage device.
  • said contactless charging interface is an inductive coupling interface.
  • said contactless charging interface is an optical interface comprising a photovoltaic element.
  • the method further comprises: operating said portable data storage device in any one of at least two operating modes selected from a sleep mode, a listen mode, and a transceiver mode.
  • the method further comprises: operating a wired interface to a host system to enable operating said portable data storage device as adapter device linking said host system to another portable data storage device connected through said wireless link.
  • the method further comprises: operating a wired interface to a host system to allow said host system to read and/or write data from/to said nonvolatile memory.
  • a further aspect relates to a computer readable medium having stored thereon computer readable instructions that, when executed on a processor, cause said processor to send data to and/or receive data from a portable data storage device having a non- volatile memory to store said data, the data being transmitted or received through a wireless link at a high data rate and/or in an ultra wide band.
  • FIG. 1 is a block diagram illustrating the components of a portable data storage device according to an embodiment
  • FIG. 2 is a schematic drawing illustrating an example of how to use the portable data storage device of FIG. 1;
  • FIG. 3 is a schematic drawing illustrating another example of how to use the device of FIG. 1;
  • FIG. 4 is a diagram illustrating how to supply power to the device of FIG. 1 in an embodiment
  • FIG. 5 is a block diagram illustrating the components of a wireless adapter card that can be used together with the portable data storage device of FIG. 1;
  • FIG. 6 is a schematic drawing illustrating an example of how to use the wireless adapter card of FIG. 5 in an embodiment
  • FIG. 7 is a block diagram illustrating the components of a portable data storage device according to another embodiment
  • FIG. 8 is a schematic drawing showing an example of how to use the device of FIG. 7 in an embodiment
  • FIG. 9 is a schematic drawing illustrating another example of how to use the portable data storage device of FIG. 7.
  • FIG. 10 shows another example of using the portable data storage device according to the embodiments.
  • the embodiments make use of a wireless data interface to transfer data from and to the portable data storage device. This avoids using wired interfaces to increase the usability of the device. Further, portability of the device is increased since the portable data storage device can be carried separately from the host device such as a notebook computer or camera. Moreover, the devices of the embodiments are portable even during read and write operation.
  • the embodiments use wireless data transmission techniques that can keep card read/write times in the order of seconds even where the data volume to transfer is in the MB range or above.
  • the embodiments use a Jtugn ⁇ ata rate wireiess interface and/or a wireless interface transferring the data in an ultra wide band.
  • a high data rate is a data rate above 100 Mbps
  • an ultra wide band has a bandwidth of 500 MHz or above (according to the definition of the FCC which is also used in IEEE standardization processes).
  • UWB Ultra Wide Band
  • UWB differs substantially from conventional narrow band radio frequency and spread spectrum technologies, such as BluetoothTM technology and 802.1 la/g.
  • UWB transmitter and receiver can use frequencies from 3.1 GHz to 10.6 GHz which is a band more than 7 GHz wide. Each radio channel in the band can have a bandwidth of more than 500 MHz. The spectrum can be shared by multiple UWB devices to obtain very high data throughput.
  • WUSB Wireless Universal Serial Bus
  • OFDM Orthogonal Frequency Divisional Multiplexing
  • the available spectrum of 7.5 GHz is divided into several 528 MHz bands.
  • the embodiments use a broadband, high data rate wireless interface which allows for accessing the stored data in the device in a contactless manner with complete read/write times remaining in the order of seconds.
  • this technique is not only user-friendly and easy to use, but does further increase the operating speed compared with conventional techniques, and provide new functionality.
  • FIG. 1 is a block diagram illustrating a portable data storage device according to an embodiment.
  • the device 100 comprises a flash memory unit 110 which may be (in this and any other embodiment) an EEPROM device or any other kind of non-volatile memory including a hard disc drive.
  • a flash memory unit 110 which may be (in this and any other embodiment) an EEPROM device or any other kind of non-volatile memory including a hard disc drive.
  • control unit 120 which is connected to the flash memory 110 to control reading and/or writing from/to the memory.
  • control unit 120 there is a high data rate wireless interface unit 130 connected to the control unit 120.
  • the high data rate wireless interface unit 130 is further connected to an antenna 140 to transmit and/or receive the data.
  • the high data rate wireless interface unit 130 may be UWB, WUSB, or OFDM based.
  • the portable data storage device 100 of the present embodiment further comprises a security module 150 that may be connected to the control unit 120 and/or the high data rate wireless interface unit
  • the security module 150 provides security features such as authentication, link security, DRM (Digital Rights
  • the security module 150 may assure access, data link, as well as content security, allowing for realize the portable data storage device as portable secure memory card.
  • the device 100 of the embodiment shown in FIG. 1 does not have any wired connection to other devices.
  • the housing 100 of the device has no electric contacts at its outer surface.
  • the housing is waterproof.
  • the portable data storage device 100 comprises a contactless charging interface 160 connected to an energy store 170.
  • the energy store 170 may be a battery, a capacitor, or any other element which is capable of storing (electrical, chemical, mechanical or other forms of) energy.
  • the contactless charging interface 160 may be any unit which can receive energy in any form from outside the device 100 without requiring electric contacts, and transfer the received energy or parts thereof to the energy store 170.
  • the contactless charging interface 160 is an inductive coupling interface.
  • the contactless charging interface 160 may comprise a photovoltaic element to realize an optical interface to convert incoming optical energy to electrical energy which may then be stored in the energy store 170.
  • the control unit 120 controls the high data rate wireless interface unit 130 (and potentially also the other units of the device) to operate in any one of at least two operating modes. These modes may be selected from a sleep mode, a listen mode, and a transceiver mode.
  • the portable data storage device 100 In the sleep mode, the portable data storage device 100 is in some kind of standby, not accessing the non- volatile memory, and not transmitting any data. In this mode, the device 100 does substantially nothing more than necessary to decide whether memory access or data transmission is required. For doing so, the control unit 120 may determine whether data is received by the high data rate wireless interface unit 130 which data indicates a request for memory access. This request may be indicated in a predefined manner, e.g. using a predefined data pattern at a predefined frequency. It is however noted that other approaches are possible as well. In the listen mode, the portable data storage device 100 is fully operative to receive data through the wireless interface in the entire ultra wide band and/or at high data rate, and write the received data to memory.
  • both receiving and transmitting data is enabled.
  • the non-volatile memory can be written to and read from.
  • the portable data storage device 100 has a high data rate wireless interface unit 130 which uses high rate UWB 802.15.3a compliant OFDM at 480 Mbps in the 3.1-4.8 GHz range. Further, flash memory 110 is used which consumes 0.4 ⁇ W and 45 mW in standby and read operation, respectively, at 1.8 V, allowing to read data at 80-200 Mbps.
  • the power consumption of the portable data storage device 100 may be 2 mW or below in the sleep mode, 85mW in the listen mode, and 195 mW in the transceiver mode.
  • the device 100 has established a wireless link to a host 200 which may be a notebook computer, a digital camera, a PDA (Personal Digital Assistant) or the like.
  • the host device 200 may have some suitable wireless interface circuitry built in so that it is not necessary to have a slot for inserting the memory card.
  • the host device 200 is a camera, one can take pictures which are then stored on the portable data storage device 100 although the device 100 is not inserted into the camera.
  • the device 100 could be worn in a pocket or bag.
  • the host device 200 is a personal computer, the portable data storage device 100 could be somewhere on the desk, in a drawer, or even in a shelf.
  • F IG. 3 depicts an example where two host devices 300, 310 access the portable data storage device 100.
  • the host devices 300, 310 may do so (substantially) simultaneously, or subsequently. Further, each host device 300, 310 may have unidirectional or bi-directional access.
  • host device 300 could be a video camera that stores the video data in real time in the nonvolatile memory of the portable data storage device 100.
  • the host device 310 may be a computer that downloads the video data or part of the data.
  • host devices in the configurations shown in FIGs. 2 and 3 may be public or commercial terminals that allow a user of the portable data storage device 100 to obtain music, video or software.
  • the owner of a portable data storage device 100 such as that of FIG. 1 could then buy music songs by approaching a terminal in a music shop, selecting one or more songs, performing some authentication to let the terminal identify and access the device 100, and probably run through some payment procedure.
  • the terminal will then download the purchased song(s) without requiring the user to put the device 100 into a slot of the terminal.
  • the portable data storage device 100 of the embodiments may be a terminal that receives picture data from the portable data storage device 100 to make photographic prints. It is to be understood that many other applications besides those mentioned above exist as well.
  • the portable data storage device 100 of the embodiments may have a completely contactless housing. In this case, the portable data storage device 100 is supplied with power in a contactless manner, i.e. without using electrical contacts, for instance based on solar energy or by means of inductive coupling.
  • FIG. 4 The latter example is shown in FIG. 4 where the portable data storage device 100 has a coil built in (not shown) which is placed in a suitable position on top or nearby an inductive power supply 400.
  • the inductive power supply is shown in FIG. 4 where the portable data storage device 100 has a coil built in (not shown) which is placed in a suitable position on top or nearby an inductive power supply 400.
  • the inductive power supply is shown in FIG. 4 where the portable data storage device 100 has a coil built in (not shown) which is placed in a suitable position on top or nearby an inductive power supply 400.
  • the inductive power supply 400 The inductive power supply
  • 400 may be portable itself, or may be a built-in device in a host or any other external peripheral device such as a docking station.
  • the host devices are described to include some wireless interface circuitry that allows the hosts to communicate with the portable data storage device 100.
  • the wireless interface functionality can be added to a host device by means of a wireless adapter 500 which can be realized as card or stick, but which may also take any other form, including that of an external peripheral device.
  • An example of a wireless adapter 500 is shown in FIG. 5.
  • the wireless adapter 500 of the present embodiment has a host interface
  • the host interface 510 may be a USB interface, a Firewire interface, a serial or parallel data interface, or one of the various flash memory card interfaces.
  • the host device is provided with the required wireless communication functionality to communicate with the portable data storage device 100.
  • FIG. 6 a wireless adapter memory device according to an embodiment is shown. Similar to the wireless adapter 500 of FIG. 5, the wireless adapter memory device 700 of FIG. 7 has a host interface 710, a control unit 720, a high data rate wireless interface unit 730, and an antenna 740.
  • a non-volatile memory 750 which may be a flash memory.
  • T his allows the wireless adapter memory device 700 to act as wireless adapter similar to that of FIG. 5 in a first functional mode, and as portable data storage device similar to that of FIG.1 in a second functional mode.
  • the high data rate wireless interface unit 730 is deactivated, so that the device 700 may then work like any conventional flash memory device.
  • FIGs. 8 to 10 illustrate some exemplary configurations.
  • FIG. 8 has the wireless adapter memory device
  • FIG. 7 connected to a first host 800 to allow the host 800 to store data in the non-volatile memory without using the wireless interface.
  • a second host 810 may then access the stored data through the wireless link. This may be done even though the wireless adapter memory device 700 is still connected to the first host 800, as shown in
  • FIG. 8 or after having removed the wireless adapter memory device 700 from the host 800, as shown in FIG. 9.
  • FIG. 10 more generally illustrates cases where two hosts 1000, 1010 communicate with each other using wireless adapters 500 or wireless memory adapter devices 700. Many configurations may exist in FIG. 10 including having two wireless adapters 500, two wireless adapter memory devices 700, or having the wireless adapter memory device 700 on the left or on the right side.
  • the present invention relates to data processing techniques and is therefore industrial applicable.

Abstract

A portable data storage device is provided having a non-volatile memory and a wireless data interface. The wireless data interface is coupled to the non-volatile memory to read data from the non-volatile memory for transmission through the wireless data interface and/or write data received from the wireless data interface to the non-volatile memory. The wireless data interface is a high data rate interface and/or a broadband interface. Data rates may be above 100 Mbps, and bandwidths may be 100 MHz or above. There is further provided a corresponding data storage method.

Description

PORTABLE WIRELESS DATA STORAGE DEVICE
BACKGROUND OF THE INVENTION
1. Technical Field
The invention generally relates to portable data storage devices and corresponding methods, and in particular to storing data in a non- volatile memory.
2. Background Art Presently, a number of different flash memory cards or sticks are available on the market to allow users to store data. Flash memory (Flash-EPROM, Flash Erasable Programmable Read Only Memory) is a solid-state, nonvolatile, re-writable memory that is durable, operates at low voltages, and retains data when power is off. Flash memory devices are used in digital cameras, cell phones, printers, handheld or notebook computers, pagers, audio recorders, or the like. Flash memory cards or sticks connect the flash IC (integrated circuit) via a flash disk controller chip to the host device, i.e. a notebook, camera or the like, using an interface which requires the flash memory stick or card to be inserted into a dedicated slot or other connector. For instance, flash memory devices can be connected to host devices via a USB (Universal Serial Bus) connection. If the flash device is an SD (Secure Digital) memory card, the connection to the host device is done using an SDIO (SD Input Output) interface. Similar dedicated interfaces exist for other flash memory devices such as CF (Compact Flash) devices.
That is, taking the example of a user wishing to take pictures using a digital camera and transferring the pictures to a personal computer, the conventional techniques require the user to insert a flash memory card into the camera before taking the picture, and then remove the card from the camera and insert it into a card reader of the personal computer, or connect the camera to the computer to use the card reader of the camera. Such handling is often found to be cumbersome. Further, since it might be necessary to frequently put the cards into the reader slots and take them out afterwards, there might occur some mechanical wear. In addition, it is not possible to use any flash memory card in any card reader which makes it sometimes difficult to transfer data from one host device to another host device.
DISCLOSURE OF INVENTION
In an aspect, a portable data storage device is provided that comprises a non-volatile memory, and a wireless data interface. The wireless data interface is coupled to the non-volatile memory to read data from the non-volatile memory for transmission through the wireless data interface and/or write data received from the wireless data interface to the non- volatile memory. The wireless data interface is a high data rate interface adapted to transmit and/or receive data at data rates above 100 Mbps.
In a further embodiment the data storage device further comprises: a security module adapted to provide at least one security mechanism to protect data or wireless data transfers. In a further embodiment said security module is adapted to apply an authentication mechanism. In a further embodiment said security module is adapted to apply a wireless link security mechanism. In a further embodiment said security module is adapted to apply a DRM (Digital Rights Management) content security mechanism. in a iuruier emDoαimeni me portaoie αata storage device has a housing with no electric contacts at its outer surface.
In a further embodiment the portable data storage device has a housing being water proof.
In a further embodiment the portable data storage device further comprises: a contactless charging interface adapted to supply power to said portable data storage device without requiring establishment of a wired electric connection to said portable data storage device.
In a further embodiment said contactless charging interface is an inductive coupling interface.
In a further embodiment said contactless charging interface is an optical interface comprising a photovoltaic element.
In a further embodiment the portable data storage device further comprises: a control unit adapted to control said wireless data interface to operate in any one of at least two operating modes selected from a sleep mode, a listen mode, and a transceiver mode.
In a further embodiment the portable data storage device further comprises: a host interface unit adapted to provide a wired interface to a host system to enable operating said portable data storage device as adapter device linking said host system to another portable data storage device connected through said wireless data interface.
In a further embodiment the portable data storage device further comprises: a host interface unit adapted to provide a wired interface to a host system to allow said host system to read and/or write data from/to said non-volatile memory.
In another aspect, a portable data storage device comprises a non-volatile memory and a wireless data interface which is coupled to the non-volatile memory to read data from the non-volatile memory for transmission through the wireless data interface and/or write data received from the wireless data interface to the non-volatile memory.
The wireless data interface is a broadband interface adapted to transmit and/or receive data in at least one band having a width of 100 MHz or above.
In a further embodiment said wireless data interface is a WUSB (Wireless Universal Serial Bus) interface. In a further embodiment said wireless data interface is an OFDM (Orthogonal Frequency Division Multiplexing) interface.
In a further embodiment said non-volatile memory is an EPROM (Erasable Programmable Read Only Memory) based flash memory.
In a further embodiment the portable data storage device further comprises: a security module adapted to provide at least one security mechanism to protect data or wireless data transfers.
In a further embodiment said security module is adapted to apply an authentication mechanism.
In a further embodiment said security module is adapted to apply a wireless link security mechanism.
In a further embodiment said security module is adapted to apply a DRM (Digital Rights Management) content security mechanism. In a further embodiment the portable data storage device has a housing with no electric contacts at its outer surface.
In a further embodiment the portable data storage device has a housing being water proof.
In a further embodiment the portable data storage device further comprises: a contactless charging interface adapted to supply power to said portable data storage device without requiring establishment of a wired electric connection to said portable data storage device. In a further embodiment said contactless charging interface is an inductive coupling interface. In a further embodiment said contactless charging interface is an optical interface comprising a photovoltaic element.
In a further embodiment the portable data storage device further comprises: a control unit adapted to control said wireless data interface to operate in any one of at least two operating modes selected from a sleep mode, a listen mode, and a transceiver mode.
In a further embodiment the portable data storage device further comprises: a host interface unit adapted to provide a wired interface to a host system to enable operating said portable data storage device as adapter device linking said host system to another portable data storage device connected through said wireless data interface. In a further embodiment the portable data storage device further comprises: a host interface unit adapted to provide a wired interface to a host system to allow said host system to read and/or write data from/to said non- volatile memory.
In a further aspect, there is provided a method of storing data. The method comprises transmitting data to be stored to a portable data storage device through a wireless link at a high data rate and/or in an ultra wide band. The method further comprises receiving the data at the portable data storage device, and storing the received data in a non-volatile memory of the portable data storage device.
In a further embodiment said data rate is above 100 Mbps.
In a further embodiment the band width of said ultra wide band is 500 MHz or above.
In a further embodiment said wireless link is a UWB (Ultra Wide Band) link. In a further embodiment said wireless link is a WUSB (Wireless Universal Serial Bus) link.
In a further embodiment said wireless link is an OFDM (Orthogonal Frequency Division Multiplexing) link.
In a further embodiment said non-volatile memory is an EPROM (Erasable Programmable Read Only Memory) based flash memory.
In a further embodiment the method further comprises: providing at least one security mechanism.
In a further embodiment said security mechanism comprises an authentication mechanism.
In a further embodiment said security mechanism comprises a wireless link security mechanism.
In a further embodiment said security mechanism comprises a DRM (Digital Rights Management) content security mechanism. In a further embodiment the method further comprises: supplying power to said portable data storage device by means of a contactless charging interface without requiring establishment of a wired electric connection to said portable data storage device.
In a further embodiment said contactless charging interface is an inductive coupling interface.
In a further embodiment said contactless charging interface is an optical interface comprising a photovoltaic element.
In a further embodiment the method further comprises: operating said portable data storage device in any one of at least two operating modes selected from a sleep mode, a listen mode, and a transceiver mode.
In a further embodiment the method further comprises: operating a wired interface to a host system to enable operating said portable data storage device as adapter device linking said host system to another portable data storage device connected through said wireless link. In a further embodiment the method further comprises: operating a wired interface to a host system to allow said host system to read and/or write data from/to said nonvolatile memory.
A further aspect relates to a computer readable medium having stored thereon computer readable instructions that, when executed on a processor, cause said processor to send data to and/or receive data from a portable data storage device having a non- volatile memory to store said data, the data being transmitted or received through a wireless link at a high data rate and/or in an ultra wide band.
BRIEF DESCRIPTION OF DRAWINGS The accompanying drawings are incorporated into and form a part of the specification for the purpose of explaining the principles of the invention. The drawings are not to be construed as limiting the invention to only the illustrated and described examples of how the invention can be made and used. Further features and advantages will become apparent from the following and more particular description of the invention, as illustrated in the accompanying drawings, wherein: FIG. 1 is a block diagram illustrating the components of a portable data storage device according to an embodiment;
FIG. 2 is a schematic drawing illustrating an example of how to use the portable data storage device of FIG. 1;
FIG. 3 is a schematic drawing illustrating another example of how to use the device of FIG. 1;
FIG. 4 is a diagram illustrating how to supply power to the device of FIG. 1 in an embodiment;
FIG. 5 is a block diagram illustrating the components of a wireless adapter card that can be used together with the portable data storage device of FIG. 1;
FIG. 6 is a schematic drawing illustrating an example of how to use the wireless adapter card of FIG. 5 in an embodiment;
FIG. 7 is a block diagram illustrating the components of a portable data storage device according to another embodiment; FIG. 8 is a schematic drawing showing an example of how to use the device of FIG. 7 in an embodiment;
FIG. 9 is a schematic drawing illustrating another example of how to use the portable data storage device of FIG. 7; and
FIG. 10 shows another example of using the portable data storage device according to the embodiments.
MODE(S) FOR CARRYING OUT THE INVENTION
The illustrative embodiments of the present invention will be described with reference to the figure drawings wherein like elements and structures are indicated by like reference numbers.
As will be described in more detail below, the embodiments make use of a wireless data interface to transfer data from and to the portable data storage device. This avoids using wired interfaces to increase the usability of the device. Further, portability of the device is increased since the portable data storage device can be carried separately from the host device such as a notebook computer or camera. Moreover, the devices of the embodiments are portable even during read and write operation.
Unlike known contactless IC cards such as ISO/IEC 10536 close coupled cards, ISO/IEC 14443 proximity cards, and ISO/IEC 15693 vicinity cards which are identification cards that cannot be used for transferring high data volumes, the embodiments use wireless data transmission techniques that can keep card read/write times in the order of seconds even where the data volume to transfer is in the MB range or above. To achieve this, the embodiments use a Jtugn αata rate wireiess interface and/or a wireless interface transferring the data in an ultra wide band. To give an example, a high data rate is a data rate above 100 Mbps, and an ultra wide band has a bandwidth of 500 MHz or above (according to the definition of the FCC which is also used in IEEE standardization processes).
In one embodiment, UWB (Ultra Wide Band) technology is used. UWB differs substantially from conventional narrow band radio frequency and spread spectrum technologies, such as Bluetooth™ technology and 802.1 la/g.
UWB transmitter and receiver can use frequencies from 3.1 GHz to 10.6 GHz which is a band more than 7 GHz wide. Each radio channel in the band can have a bandwidth of more than 500 MHz. The spectrum can be shared by multiple UWB devices to obtain very high data throughput.
Another embodiment uses high-speed WUSB (Wireless Universal Serial Bus) connectivity which is a technique based on UWB. WUSB uses OFDM (Orthogonal Frequency Divisional Multiplexing) for each sub-band.
In the multiband OFDM approach, the available spectrum of 7.5 GHz is divided into several 528 MHz bands.
That is, the embodiments use a broadband, high data rate wireless interface which allows for accessing the stored data in the device in a contactless manner with complete read/write times remaining in the order of seconds.
Therefore, this technique is not only user-friendly and easy to use, but does further increase the operating speed compared with conventional techniques, and provide new functionality.
Referring now to the drawings, FIG. 1 is a block diagram illustrating a portable data storage device according to an embodiment. The device 100 comprises a flash memory unit 110 which may be (in this and any other embodiment) an EEPROM device or any other kind of non-volatile memory including a hard disc drive.
There is further provided a control unit 120 which is connected to the flash memory 110 to control reading and/or writing from/to the memory. In addition, there is a high data rate wireless interface unit 130 connected to the control unit 120. The high data rate wireless interface unit 130 is further connected to an antenna 140 to transmit and/or receive the data.
As described above, the high data rate wireless interface unit 130 may be UWB, WUSB, or OFDM based.
In other embodiments, any high data rate and/or ultra wide band transmission technique may be used. As apparent from FIG. 1, the portable data storage device 100 of the present embodiment further comprises a security module 150 that may be connected to the control unit 120 and/or the high data rate wireless interface unit
130. The security module 150 provides security features such as authentication, link security, DRM (Digital Rights
Management) content security, or the like. That is, the security module 150 may assure access, data link, as well as content security, allowing for realize the portable data storage device as portable secure memory card. The device 100 of the embodiment shown in FIG. 1 does not have any wired connection to other devices.
That is, the housing 100 of the device has no electric contacts at its outer surface. In an embodiment, the housing is waterproof.
As may be further seen from FIG. 1, the portable data storage device 100 comprises a contactless charging interface 160 connected to an energy store 170. The energy store 170 may be a battery, a capacitor, or any other element which is capable of storing (electrical, chemical, mechanical or other forms of) energy.
The contactless charging interface 160 may be any unit which can receive energy in any form from outside the device 100 without requiring electric contacts, and transfer the received energy or parts thereof to the energy store 170. In an embodiment, the contactless charging interface 160 is an inductive coupling interface. In another embodiment, the contactless charging interface 160 may comprise a photovoltaic element to realize an optical interface to convert incoming optical energy to electrical energy which may then be stored in the energy store 170. In an embodiment, the control unit 120 controls the high data rate wireless interface unit 130 (and potentially also the other units of the device) to operate in any one of at least two operating modes. These modes may be selected from a sleep mode, a listen mode, and a transceiver mode.
In the sleep mode, the portable data storage device 100 is in some kind of standby, not accessing the non- volatile memory, and not transmitting any data. In this mode, the device 100 does substantially nothing more than necessary to decide whether memory access or data transmission is required. For doing so, the control unit 120 may determine whether data is received by the high data rate wireless interface unit 130 which data indicates a request for memory access. This request may be indicated in a predefined manner, e.g. using a predefined data pattern at a predefined frequency. It is however noted that other approaches are possible as well. In the listen mode, the portable data storage device 100 is fully operative to receive data through the wireless interface in the entire ultra wide band and/or at high data rate, and write the received data to memory.
In the transceiver mode, both receiving and transmitting data is enabled. In this mode, the non-volatile memory can be written to and read from.
In an example, the portable data storage device 100 has a high data rate wireless interface unit 130 which uses high rate UWB 802.15.3a compliant OFDM at 480 Mbps in the 3.1-4.8 GHz range. Further, flash memory 110 is used which consumes 0.4 μW and 45 mW in standby and read operation, respectively, at 1.8 V, allowing to read data at 80-200 Mbps. In this example, the power consumption of the portable data storage device 100 may be 2 mW or below in the sleep mode, 85mW in the listen mode, and 195 mW in the transceiver mode.
Referring now to FIG. 2, an example is given of how to use the portable data storage device 100 of the above-described embodiments. As shown in the figure, the device 100 has established a wireless link to a host 200 which may be a notebook computer, a digital camera, a PDA (Personal Digital Assistant) or the like. For instance, the host device 200 may have some suitable wireless interface circuitry built in so that it is not necessary to have a slot for inserting the memory card. For example, if the host device 200 is a camera, one can take pictures which are then stored on the portable data storage device 100 although the device 100 is not inserted into the camera. For instance, the device 100 could be worn in a pocket or bag. If the host device 200 is a personal computer, the portable data storage device 100 could be somewhere on the desk, in a drawer, or even in a shelf. F IG. 3 depicts an example where two host devices 300, 310 access the portable data storage device 100.
The host devices 300, 310 may do so (substantially) simultaneously, or subsequently. Further, each host device 300, 310 may have unidirectional or bi-directional access. For example, host device 300 could be a video camera that stores the video data in real time in the nonvolatile memory of the portable data storage device 100. The host device 310 may be a computer that downloads the video data or part of the data.
Other examples of host devices in the configurations shown in FIGs. 2 and 3 may be public or commercial terminals that allow a user of the portable data storage device 100 to obtain music, video or software. For instance, the owner of a portable data storage device 100 such as that of FIG. 1 could then buy music songs by approaching a terminal in a music shop, selecting one or more songs, performing some authentication to let the terminal identify and access the device 100, and probably run through some payment procedure. The terminal will then download the purchased song(s) without requiring the user to put the device 100 into a slot of the terminal.
Another useful example of where to use the portable data storage device 100 of the embodiments may be a terminal that receives picture data from the portable data storage device 100 to make photographic prints. It is to be understood that many other applications besides those mentioned above exist as well. As mentioned above, the portable data storage device 100 of the embodiments may have a completely contactless housing. In this case, the portable data storage device 100 is supplied with power in a contactless manner, i.e. without using electrical contacts, for instance based on solar energy or by means of inductive coupling.
The latter example is shown in FIG. 4 where the portable data storage device 100 has a coil built in (not shown) which is placed in a suitable position on top or nearby an inductive power supply 400. The inductive power supply
400 may be portable itself, or may be a built-in device in a host or any other external peripheral device such as a docking station.
In the examples described above, the host devices are described to include some wireless interface circuitry that allows the hosts to communicate with the portable data storage device 100. In another example, the wireless interface functionality can be added to a host device by means of a wireless adapter 500 which can be realized as card or stick, but which may also take any other form, including that of an external peripheral device. An example of a wireless adapter 500 is shown in FIG. 5.
As may be seen from this figure, the wireless adapter 500 of the present embodiment has a host interface
510, a control unit 520, and a high data rate wireless interface unit 530 with an antenna 540. The host interface 510 may be a USB interface, a Firewire interface, a serial or parallel data interface, or one of the various flash memory card interfaces.
Once having attached the wireless adapter 500 to the host device, by putting the adapter into a dedicated slot or by using a flexible or rigid cable, the host device is provided with the required wireless communication functionality to communicate with the portable data storage device 100. This is depicted in an example in FIG. 6. Referring to FIG. 7, a wireless adapter memory device according to an embodiment is shown. Similar to the wireless adapter 500 of FIG. 5, the wireless adapter memory device 700 of FIG. 7 has a host interface 710, a control unit 720, a high data rate wireless interface unit 730, and an antenna 740. In addition, there is a non-volatile memory 750 which may be a flash memory.
T his allows the wireless adapter memory device 700 to act as wireless adapter similar to that of FIG. 5 in a first functional mode, and as portable data storage device similar to that of FIG.1 in a second functional mode.
Further, there may be a third functional mode where the high data rate wireless interface unit 730 is deactivated, so that the device 700 may then work like any conventional flash memory device.
FIGs. 8 to 10 illustrate some exemplary configurations. FIG. 8 has the wireless adapter memory device
700 of FIG. 7 connected to a first host 800 to allow the host 800 to store data in the non-volatile memory without using the wireless interface. A second host 810 may then access the stored data through the wireless link. This may be done even though the wireless adapter memory device 700 is still connected to the first host 800, as shown in
FIG. 8, or after having removed the wireless adapter memory device 700 from the host 800, as shown in FIG. 9.
The arrangement of FIG. 9 may be used in a number of other possible applications including those described above with reference to FIGs. 2 and 3. Finally, FIG. 10 more generally illustrates cases where two hosts 1000, 1010 communicate with each other using wireless adapters 500 or wireless memory adapter devices 700. Many configurations may exist in FIG. 10 including having two wireless adapters 500, two wireless adapter memory devices 700, or having the wireless adapter memory device 700 on the left or on the right side.
While the invention has been described with respect to the physical embodiments constructed in accordance therewith, it will be apparent to those skilled in the art that various modifications, variations and improvements of the present invention may be made in the light of the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention. In addition, those areas in which it is believed that those of ordinary skill in the art are familiar, have not been described herein in order to not unnecessarily obscure the invention described herein. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrative embodiments, but only by the scope of the appended claims.
Industrial applicability
The present invention relates to data processing techniques and is therefore industrial applicable.

Claims

1. A portable data storage device comprising: a non-volatile memory (110, 750); and a wireless data interface (130, 140; 730, 740) coupled to said non-volatile memory to read data from said nonvolatile memory for transmission through said wireless data interface and/or write data received from said wireless data interface to said non-volatile memory, wherein said wireless data interface is a high data rate interface adapted to transmit and/or receive data at data rates above 100 Mbps.
2. The portable data storage device of claim 1, wherein said wireless data interface is a broadband interface adapted to transmit and/or receive data in at least one band having a width of 100 MHz or above.
3. The portable data storage device of claim 1, wherein said wireless data interface is a UWB (Ultra Wide Band) interface.
4. The portable data storage device of claim 1, wherein said wireless data interface is a WUSB (Wireless Universal Serial Bus) interface.
5. The portable data storage device of claim 1, wherein said wireless data interface is an OFDM (Orthogonal
Frequency Division Multiplexing) interface.
6. The portable data storage device of claim 1, wherein said non-volatile memory is an EPROM (Erasable Programmable Read Only Memory) based flash memory.
7. A portable data storage device comprising: a non-volatile memory (110, 750); and a wireless data interface (130, 140; 730, 740) coupled to said non-volatile memory to read data from said nonvolatile memory for transmission through said wireless data interface and/or write data received from said wireless data interface to said non-volatile memory, wherein said wireless data interface is a broadband interface adapted to transmit and/or receive data in at least one band having a width of 100 MHz or above.
8. The portable data storage device of claim 7, wherein said wireless data interface is a high data rate interface adapted to transmit and/or receive data at data rates above 100 Mbps.
9. The portable data storage device of claim 7, wherein said wireless data interface is a UWB (Ultra Wide Band) interface.
10. A method of storing data, comprising: transmitting data to be stored to a portable data storage device through a wireless link at a high data rate and/or in an ultra wide band; receiving said data at the portable data storage device; and storing the received data in a non-volatile memory of the portable data storage device.
PCT/US2006/015534 2005-04-29 2006-04-21 Portable wireless data storage device WO2006118860A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008509017A JP2008539522A (en) 2005-04-29 2006-04-21 Portable wireless data storage device
GB0720860A GB2439516B (en) 2005-04-29 2006-04-21 Portable wireless data storage device
KR1020077027670A KR101238431B1 (en) 2005-04-29 2006-04-21 Portable wierless data storage device
CN2006800145057A CN101273339B (en) 2005-04-29 2006-04-21 Portable wireless data storage device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005020062.1 2005-04-29
DE102005020062A DE102005020062B4 (en) 2005-04-29 2005-04-29 Mobile wireless data storage device and corresponding method for storing data
US11/316,506 US7742741B2 (en) 2005-04-29 2005-12-21 Portable wireless data storage device
US11/316,506 2005-12-21

Publications (1)

Publication Number Publication Date
WO2006118860A1 true WO2006118860A1 (en) 2006-11-09

Family

ID=36763732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/015534 WO2006118860A1 (en) 2005-04-29 2006-04-21 Portable wireless data storage device

Country Status (3)

Country Link
KR (1) KR101238431B1 (en)
GB (1) GB2439516B (en)
WO (1) WO2006118860A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262534A (en) * 2006-12-31 2008-10-30 At & T Corp Method and apparatus for radio frequency identification repeater
GB2478553B (en) * 2010-03-09 2014-08-06 Knightsbridge Portable Comm Sp Data storage apparatus
JP2015092656A (en) * 2008-09-04 2015-05-14 ティー—データ・システムズ(エス)ピーティーイー・リミテッド Method for managing wireless digital content and memory card

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018775A (en) * 1996-07-02 2000-01-25 Gateway 2000, Inc. System with a remote wireless mass storage which provides identification of a particular mass storage stored in a cradle to the system
KR20020068004A (en) * 2002-07-22 2002-08-24 아크로웨이브시스템 주식회사 Combined technique of USB WLAN card and USB memory storage device
US20030114206A1 (en) * 2001-08-24 2003-06-19 United Parcel Service Of America, Inc. Portable data acquisition and management system and associated device and method
EP1355229A2 (en) * 2002-04-15 2003-10-22 Kabushiki Kaisha Toshiba Method and device for data storage using wireless communication

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19807227C2 (en) * 1998-02-20 2000-09-28 Meinen Ziegel & Co Gmbh Power supply arrangement for IC cards
US6184651B1 (en) * 2000-03-20 2001-02-06 Motorola, Inc. Contactless battery charger with wireless control link
US20040189246A1 (en) * 2002-12-23 2004-09-30 Claudiu Bulai System and method for inductive charging a wireless mouse
US7471060B2 (en) * 2003-09-23 2008-12-30 International Business Machines Corporation Rechargeable electronic device system and method for recharging an electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018775A (en) * 1996-07-02 2000-01-25 Gateway 2000, Inc. System with a remote wireless mass storage which provides identification of a particular mass storage stored in a cradle to the system
US20030114206A1 (en) * 2001-08-24 2003-06-19 United Parcel Service Of America, Inc. Portable data acquisition and management system and associated device and method
EP1355229A2 (en) * 2002-04-15 2003-10-22 Kabushiki Kaisha Toshiba Method and device for data storage using wireless communication
KR20020068004A (en) * 2002-07-22 2002-08-24 아크로웨이브시스템 주식회사 Combined technique of USB WLAN card and USB memory storage device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 2003, 24 August 2002 Derwent World Patents Index; AN 2003-164222, XP002394765, LEE J Y: "Method of coupling wireless USB LAN card with USB flash memory device" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262534A (en) * 2006-12-31 2008-10-30 At & T Corp Method and apparatus for radio frequency identification repeater
JP2015092656A (en) * 2008-09-04 2015-05-14 ティー—データ・システムズ(エス)ピーティーイー・リミテッド Method for managing wireless digital content and memory card
GB2478553B (en) * 2010-03-09 2014-08-06 Knightsbridge Portable Comm Sp Data storage apparatus

Also Published As

Publication number Publication date
KR101238431B1 (en) 2013-02-28
KR20080012910A (en) 2008-02-12
GB0720860D0 (en) 2007-12-05
GB2439516A (en) 2007-12-27
GB2439516B (en) 2009-06-24

Similar Documents

Publication Publication Date Title
US7742741B2 (en) Portable wireless data storage device
US8265553B2 (en) External device for mobile communication terminal and NFC method using the same
US9671835B2 (en) Personal cloud case cover with a plurality of modular capabilities
US8583179B2 (en) Communication device comprising a battery and a near-field communication module
EP1801740B1 (en) Interface for a removable electrical card
US8070067B2 (en) Receptacles for removable electrical interface devices
JP2008210301A (en) Storage medium, communication system, and control device
EP1646155B1 (en) Radio communication system and radio communication device
EP1289203A2 (en) Storage device
US8521956B2 (en) Wireless memory card and method thereof
KR20060081703A (en) Memory card compatible with multiple connector standards
WO2010041245A1 (en) Contactless nfc enabled peripherals for multi-interface mobile memory card
CN101002184A (en) Solid-state memory storage device for storing data wireless transmitted from host computer and transmitting data wirelessly to host computer
US7690579B2 (en) Answer to reset (ATR) pushing
WO2006052293A1 (en) Combined mass data storage and subscriber identity module
US8560751B2 (en) Memory card, memory card reader and memory card system
KR101238431B1 (en) Portable wierless data storage device
US10528514B2 (en) System and method for wirelessly transmitting data from a host digital device to an external digital location
US20030036351A1 (en) Portable memory module, and method of portable data transfer
CA2705256C (en) Answer to reset (atr) pushing
WO2012079429A1 (en) Storage device and configuration method thereof
KR100779747B1 (en) Secure Device combo card with RF communication function for a mobile terminal and method for RF communication of Secure Device combo card
KR20070090475A (en) Apparatus for wireless data communication in portable electronic device
US20130290602A1 (en) Data storage device
US20050208982A1 (en) Duplex wireless storing device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014505.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 0720860

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20060421

WWE Wipo information: entry into national phase

Ref document number: 0720860.6

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2008509017

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020077027670

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06751296

Country of ref document: EP

Kind code of ref document: A1