WO2006096852A1 - Wireless access point - Google Patents

Wireless access point Download PDF

Info

Publication number
WO2006096852A1
WO2006096852A1 PCT/US2006/008696 US2006008696W WO2006096852A1 WO 2006096852 A1 WO2006096852 A1 WO 2006096852A1 US 2006008696 W US2006008696 W US 2006008696W WO 2006096852 A1 WO2006096852 A1 WO 2006096852A1
Authority
WO
WIPO (PCT)
Prior art keywords
access point
wireless access
antenna
reflector
wireless
Prior art date
Application number
PCT/US2006/008696
Other languages
French (fr)
Inventor
Dirk Ion Gates
Kirk J. Matthews
Original Assignee
Xirrus, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/US2006/008698 priority Critical patent/WO2006096853A2/en
Priority to PCT/US2006/008747 priority patent/WO2006096866A2/en
Application filed by Xirrus, Inc. filed Critical Xirrus, Inc.
Priority to PCT/US2006/008744 priority patent/WO2006096864A2/en
Priority claimed from PCT/US2006/008698 external-priority patent/WO2006096853A2/en
Priority to US11/816,060 priority patent/US8299978B2/en
Priority to US11/816,061 priority patent/US8831659B2/en
Priority claimed from PCT/US2006/008747 external-priority patent/WO2006096866A2/en
Priority to US11/816,065 priority patent/US8934416B2/en
Priority to US11/816,003 priority patent/US8160036B2/en
Priority to PCT/US2006/008743 priority patent/WO2006096863A2/en
Priority claimed from PCT/US2006/008743 external-priority patent/WO2006096863A2/en
Priority claimed from PCT/US2006/008744 external-priority patent/WO2006096864A2/en
Publication of WO2006096852A1 publication Critical patent/WO2006096852A1/en
Priority to US13/477,785 priority patent/US8963792B2/en
Priority to US14/195,490 priority patent/US9491638B2/en
Priority to US14/480,569 priority patent/US9622250B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces

Definitions

  • serial number 60/660,375 titled “WIRELESS ACCESS POINT,” by Dirk L Gates and Ian Laity, filed on March 9, 2005, and incorporated herein by reference
  • serial number 60/660,275 titled “MULTI-SECTOR WIRELESS ACCESS POINT ARRAY,” by Dirk I.
  • serial number 60/660,174 titled “QUEUE MANAGEMENT CONTROLLER FOR USE IN A MULTI-SECTOR WIRELESS ACCESS POINT ARRAY,” by Mike de Ia Garrigue and Drew Bertagna filed on March 9, 2005, and incorporated herein by reference
  • serial number 60/660,209 titled “WIRELESS LAN ARRAY ARCHITECTURE,” by Dixk I.
  • serial number 60/660,302 titled “SYSTEM FOR ALLOCATING CHANNELS IN A MULTI-RADIO WIRELESS LAN ARRAY,” by Dirk I. Gates and Kirk Mathews, filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,376, titled “SYSTEM FOR ALLOCATING CHANNELS IN A MULTI-RADIO WIRELESS LAN ARRAY,” by Dirk I.
  • This invention relates generally to wireless access points.
  • this invention relates to a wireless access for increasing the coverage area of a single wireless access point using a multi-sector antenna system.
  • a wireless access point is provided that minimizes electromagnetic crosstalk, interference and co-location issues between neighboring radios and antennas, which by their implementation, enable a multitude of radios and antennas to be deployed within a single device.
  • a wireless access point with a multitude of radios is provided for transmitting radio signals having a digitally isolated, high-gain, multi-sector antenna system positioned about the perimeter of the wireless access point.
  • the wireless access point further includes both reflective surfaces and absorptive isolators positioned within each antenna sector for the purpose of directing the transmission of the radio signals within each segment and enabling radio co-existence.
  • the wireless access point integrates a WLAN switch and up to sixteen 802.11 Wi-Fi wireless access points and associated antennas into a single device.
  • Figure 1 is a top perspective view of one example of an implementation of the wireless access point.
  • Figure 2 is a bottom perspective view of the wireless access point of Figure 1.
  • Figure 3 is a top view of the wireless access point of Figure 1.
  • Figure 4 is a side view of the wireless access point of Figure 1.
  • Figure 5 is a top plan view of the wireless access point of Figure 1 with the exterior portion of the top cover removed.
  • Figure 6 is a top perspective view of the wireless access point of Figure 5 illustrating several of the antenna sections.
  • Figure 7 is a bottom perspective view of the wireless access point of Figure 1 illustrating several of the antenna sections as they would appear with the bottom plate removed.
  • Figure 8 is a top perspective view of the wireless access point of Figure 7.
  • Figure 9 is a perspective view of the bottom portion of the wireless access point of Figure 1 with the securing portion of the wireless access point removed.
  • Figure 10 is an exploded perspective top view of the wireless access point of Figure 1.
  • Figure 11 is an exploded perspective bottom view of the wireless access point of Figure 1.
  • Figure 12 is top view of another example of an implementation of the wireless access point.
  • Figure 13 illustrates a plan view of the 802.11a coverage area that may be achieved by the wireless access point of Figure 1.
  • Figure 14 illustrates a plan view of the 802.11b/g coverage area that may be achieved by the wireless access point of Figure 1.
  • Figure 15 illustrates a plan view of the area of listening coverage that may be DETAILED DESCRIPTION
  • FIG 1 is a top perspective view of one example of an implementation of a wireless access point 100.
  • the wireless access point 100 consists generally of an array portion 102 and a securing portion 104.
  • the wireless access point 100 may be generally circular in shape or other shape, such as an ellipsis or a polygon, e.g., a pentagon, octagon, hexagon, etc., capable of transmitting signals in all directions.
  • the wireless access point 100 may be designed to transmit signals 360 degrees outwardly from the center of the wireless access point 100, as illustrated in Figure 3 (see below), and 180 degrees outward from the array portion 102 relative to the securing portion 104, as illustrated in Figure 4 (see below).
  • the wireless access point 100 may be positioned at a point elevated above the desired coverage area, such as the ceiling or mounted on a pole. In this case, transmissions would be directed downward and outward from the wireless access point 100, as illustrated in Figure 4 (see below).
  • the wireless access point 100 could be inverted and placed at a position either below or within the coverage area, such as on the floor or on a table. In this manner, the coverage would be directed upward and outward, rather than downward and outward, as illustrated in Figure 4.
  • the top of the wireless access point 100 shall be the side of the wireless access point 100 that is positioned toward the coverage zone, regardless of whether the wireless access point 100 is facing upward or downward.
  • the bottom of the wireless access point 100 shall be the side of the wireless access point 100 that is positioned away from the coverage zone, or the side of the wireless access point 100 having the securing portion 104.
  • the securing portion 104 of the wireless access point 100 may positioned either upward or downward depending upon whether the wireless access point 100 is positioned above, below or within the desired coverage area.
  • the array portion 102 of the wireless access point 100 may represent the bottom portion of the wireless access point 100 when positioned at a point elevated above the coverage area or the top portion of the wireless access point 100 when positioned within or below the desired coverage area.
  • the wireless access point 100 may be powered by batteries, through an AJC power outlet or remotely through a D/C power supply.
  • FIG 2 is a bottom perspective view of the wireless access point 100 of Figure 1.
  • the securing portion 104 if the wireless access point 100 may include holes 202 positioned at predetermined locations for securing the wireless access point 100 to different types of surfaces, such as drop ceiling brackets, in which case holes 202 may align with the positioning of the ceiling brackets.
  • the securing portion 104 of the wireless access point may be secured first and then the array portion 102 is to be fastened to the securing portion 104 to assemble the wireless access point 100.
  • Figure 3 is a top view of the wireless access point 100 of Figure 1.
  • the top view of the wireless access point 100 includes the array portion 102.
  • the signal is transmitted 360 degrees from the circumference of the array portion 102 and 180 degrees outward from the array portion 102 relative to the securing portion 104, as illustrated in Figure 4.
  • FIG 4 is a side view of the wireless access point of Figure 1.
  • the securing portion 104 of the wireless access point 100 is secured to a mounting element 402, such as a drop ceiling bracket.
  • the wireless access point 100 transmits signals 180 degrees outward from the array portion 102 relative to the securing portion 104 and/or mounting element 402.
  • the array portion 102 includes a top cover 404 and a bottom cover 406.
  • the top cover 404 of the array portion 102 includes an interior portion 408 and an exterior portion 410.
  • Figure 5 is a top plan view of the wireless access point 100 of Figure 1 with the exterior portion 410 of the top cover 404 removed, showing only the remaining interior portion 408 of the top cover 404.
  • the perimeter of the wireless access point 100 is divided into antenna sectors 502.
  • Figure 5 illustrates the primary components of each antenna sector 520 and the implementation of a 16 integrated wireless access points, which in this example is twelve (12) 802.11a and four (4) 802.1 la/b/g and the supportive 12 antenna sector 502 array.
  • the wireless access point 100 includes twelve antenna sectors 502 defined around the perimeter of the wireless access point 100, to twelve, may be defined in the wireless access point 100.
  • the wireless access point 100 may be divided into multiple sectors 502 as necessary to achieve the desired coverage and network capacity.
  • 802.11a and 802.11 a/b/g channels all approved 802.11 channels may utilized in connection with the wireless access point, including both currently approval and future approved frequencies and channels.
  • the antenna sectors 502 are positioned in and around the circumference of the wireless access point 100 and are separated from the interior of the wireless access point 100, i.e., the central digital section 510, by a circular antenna reflector 504.
  • the antenna sectors 502 are positioned in a circular pattern around the perimeter of the array section 102 of the wireless access point 100.
  • Absorptive isolators 506 separate each antenna sector 502 at its sides, such that each antenna sector 502 includes two (2) absorptive isolators 506. The absorptive isolators 506 enhance the isolation from antenna sector 502 to antenna sector 502.
  • isolators 506 may be foam isolators of the type generally known in the industry and commercially available for the purpose of isolating radio transmission or may be any other isolator capable of absorbing electromagnetic energy.
  • the isolators 506 may be foam-filled graphite- isolated insulators to prevent interference between antenna sectors 502. [028] As illustrated, the isolators 506 form antenna sectors 502 about the perimeter of the wireless access point. The purpose of the isolators 506 is to isolate the antenna or antennas positioned within each antenna sector 502.
  • FIG 5 also illustrates the inclusion of antenna sector deflectors 508 at the base of each antenna sector 502.
  • the antenna deflectors 508 deflect the radio signals downward or away from the wireless access point in a 180 degree pattern relative to the mounting element or securing portion 104, as shown in Fig 4.
  • the antenna deflectors 508 When inverted, for example, on a table top, the antenna deflectors 508 will reflect the radio signal upward.
  • the circular antenna reflector 504 reflects the radio signal outward in a 360 degree pattern, as shown in Figure 3.
  • Both the antenna reflector 504 and antenna deflectors 508 can be constructed from most metallic or metallically coated materials, or any other material capable of directing radio signals.
  • Both the antenna reflector 504 and the antenna deflector 508 can be referred to as reflector plates.
  • the antenna reflectors 504 and antenna deflectors 508 can be constructed from a single piece and together form a single reflector plate.
  • Figure 5 illustrates the antenna reflector 504 designed as a circular ring positioned about an interior perimeter of the wireless access point
  • individual antenna reflectors 504 may be positioned in each antenna section 502.
  • the antenna deflectors 508 may be constructed such that the deflectors 508 extend in a circular manner across the base of each section 502, similar to the way the antenna reflector 504 illustrated in Figure 5 is a continuous ring creating a backdrop for the antenna sectors 502.
  • Figure 6 is a top perspective view of the wireless access point 100 of Figure 5 further illustrating several of the antenna sections 502.
  • the circular antenna reflector 504 serves both to reflect radio signals outward from the wireless access point 100 and to provide an isolation barrier between the central digital section 510 (Fig.
  • each antenna sector 502 is positioned central relative to the antenna deflectors 508, reflector 504 and absorptive isolators 504. As illustrated, the antennas 602 are connected to radio printed circuit board assemblies ("PCBA") 604.
  • PCBA radio printed circuit board assemblies
  • Figure 7 is a bottom perspective view of the wireless access point of Figure 1 illustrating several of the antenna sections as they would appear with the bottom plate removed.
  • Figure 8 is a top perspective view of the wireless access point 100 of Figure 7.
  • Figure 7 and 8 illustrate that the antenna reflector 504 and antenna deflector 508 are grounded together 702, and that both the antenna reflector 504 and antenna deflector 508 are tied to a system ground via the circular antenna reflector 504 connection to the ground plane of the radio PCBA 604.
  • Figure 8 shows one method, spring fingers, of connecting a metallic antenna reflector 504 to the antenna deflector 508.
  • Figure 8 also illustrates one implementation of the antenna deflector 508, a radio PCBA substrate with tin plated deflective patterns positioned directly below the antenna substrate.
  • Figure 9 is a perspective view of the array portion 102 of the wireless access point 100 of Figure 1 with the securing portion 104 removed. As further illustrated in as a housing for the wireless access point 100.
  • the array portion 102 is an injection molded plastic housing that can be made of one or more part. Those skilled in the art will recognize that other materials may be utilized to create the array portion 102 or housing for the wireless access point 100.
  • FIG 10 is an exploded perspective top view of the wireless access point 100 of Figure 1 and Figure 11 is an exploded perspective bottom view of the wireless access point of Figure 1.
  • the wireless access point 100 may be divided into multiple antenna sectors 502 as necessary to achieve the desired coverage area.
  • the isolators 506 are shown positioned within the bottom cover 406 of the array portion 102 of the wireless access point 100, the isolators they may also be secured in the top cover 404 of the array portion 102.
  • the radio PCBA 604 may be positioned within the top cover 404 of the array portion 102.
  • the radio PCBA 604 may be positioned within the bottom cover 406 of the array portion 102.
  • Figure 12 is top view of another example of an implementation of a wireless access point 900 having multiple antenna sectors 902.
  • Figure 12 illustrates and an alternative construction of the antenna reflector 904, antenna deflector 908, isolating elements 906 and grounding elements 912.
  • the EMI suppression required in the central digital sector 910, the antenna reflector 904, antenna deflector 908, and system ground connections 912 between these elements may be designed from a single contiguous metallic surface, as illustrated or from separate elements.
  • the digital sector 910, antenna reflector 904, and antenna deflector 908 are contracted from a single thermoformed plastic liner that has been electroplated with a metallic substrate and are hence inherently grounded to each other. Alternatively, these elements may be constructed from different substrates.
  • Figure 13 illustrates a plan view of the 802.11a coverage area that may be achieved by the wireless access point 100 of Figure 1 over a given area 1300.
  • Figure 14 illustrates a plan view of the 802.1 lb/g coverage area that may be achieved by the wireless access point 100 of Figure 1 over a given area 1300.
  • Figure 15 illustrates a plan view of the area of listening coverage that may be achieved by the wireless access point 100 of Figure 1 over a given area 1300.

Abstract

A wireless access point is provided for transmitting radio signals that has isolators positioned about the perimeter of the wireless access point dividing the perimeter of the wireless access point into segments and reflector plates positioned within each segment for directing the transmission of the radio signals within each segment.

Description

W
WIRELESS ACCESS POINT
CROSS REFERENCE TO RELATED APPLICATIONS
[001] This application is a continuation-in-part of US Design Patent Application Serial No. 29/217,531, titled "ELECTRONIC DEVICE HOUSING" filed November 17,
2004, which is incorporated herein by reference. This application claims priority to the provisional patent applications, serial number 60/660,171, titled "WIRELESS LAN ARRAY," by Dirk I, Gates, Ian Laity, Mick Conley, Mike de Ia Garrigue, and Steve Smith, filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,276, titled "WIRELESS LAN ARRAY," by Dirk I. Gates, Ian Laity, Mick Conley, Mike de Ia Garrigue, and Steve Smith, filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,375, titled "WIRELESS ACCESS POINT," by Dirk L Gates and Ian Laity, filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,275, titled "MULTI-SECTOR WIRELESS ACCESS POINT ARRAY," by Dirk I. Gates Ian Laity, Mick Conley, Mike de Ia Garrigue, and Steve Smith, filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,210, titled "MEDIA ACCESS CONTROLLER FOR USE IN A MULTI-SECTOR WIRELESS ACCESS POINT ARRAY," by Mike de Ia Garrigue and Drew Bertagna filed on March 9,
2005, and incorporated herein by reference; serial number 60/660,174, titled "QUEUE MANAGEMENT CONTROLLER FOR USE IN A MULTI-SECTOR WIRELESS ACCESS POINT ARRAY," by Mike de Ia Garrigue and Drew Bertagna filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,394, titled "WIRELESS LAN ARRAY," by Dirk I. Gates, Ian Laity, Mick Conley, Mike de Ia Garrigue, and Steve Smith, filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,209, titled "WIRELESS LAN ARRAY ARCHITECTURE," by Dixk I. Gates, Ian Laity, Mick Conley, Mike de Ia Garrigue, and Steve Smith, filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,393, titled "ANTENNA ARCHITECTURE OF A WIRELESS LAN ARRAY," by Abraham Hartenstein, filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,269, titled "LOAD BALANCING IN A MULTI-RADIO WIRELESS LAN ARRAY BASED ON AGGREGATE MEAN LEVELS," by Mick Conley filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,392, titled "ADVANCED ADJACENT CHANNEL SECTOR MANAGEMENT FOR 802.11 TRAFFIC," by Mick Conley filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,391, titled "LOAD BALANCING IN A MULTI-RADIO WIRELESS LAN ARRAY BASED ON AGGREGATE MEAN LEVELS," by Shaun Clem filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,277, titled "SYSTEM FOR TRANSMITTING AND RECEIVING FRAMES IN A MULTI-RADIO WIRELESS LAN ARRAY," by Dirk I. Gates and Mike de Ia Garrigue, filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,302, titled "SYSTEM FOR ALLOCATING CHANNELS IN A MULTI-RADIO WIRELESS LAN ARRAY," by Dirk I. Gates and Kirk Mathews, filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,376, titled "SYSTEM FOR ALLOCATING CHANNELS IN A MULTI-RADIO WIRELESS LAN ARRAY," by Dirk I. Gates and Kirk Mathews, filed on March 9, 2005, and incorporated herein by reference; serial number 60/660,541, titled "MEDIA ACCESS CONTROLLER FOR USE IN A MULTI-SECTOR WIRELESS ACCESS POINT ARRAY," by Dirk I. Gates and Mike de Ia Garrigue, filed on March 9,
2005, and incorporated herein by reference; and PCT patent application, serial number PCT/US2006/008747, titled "WIRELESS LOCAL AREA NETWORK ANTENNA ARRAY," filed on March 9, 2006, which claims priority to the above provisional patent applications, and incorporated by reference herein; PCT patent application serial number PCT/US2006/008744, titled "MEDIA ACCESS CONTROLLER FOR USE IN A MULTI- SECTOR WIRELESS ACCESS POINT ARRAY," filed on March 9, 2006, and incorporated by reference herein; PCT patent application serial number PCT/US2006/008743, titled "ACCESS POINT IN A WIRELESS LAN," filed on March 9,
2006, and incorporated by reference herein; PCT patent application serial number PCT/US2006/008698, titled "SYSTEM FOR ALLOCATING CHANNELS IN A MULTI- RADIO WIRELESS LAN ARRAY," filed on March 9, 2006, and incorporated by reference herein. BACKGROUND OF THE INVENTION [002] 1. Field of the Invention
[003] This invention relates generally to wireless access points. In particular, this invention relates to a wireless access for increasing the coverage area of a single wireless access point using a multi-sector antenna system. [004] 2. Related Art
[0010] Currently available wireless access points are often time deficient in coverage area, range and capacity. To provide access for large or obstructed areas, and to provide additional capacity for data intensive networks, multiple wireless access point devices and switches need to be deployed and used simultaneously. Deploying multiple wireless access points in a given area only provides incremental improvements in capacity due to the channel reuse and co-channel interference problems that arise from placing multiple wireless access points in close proximity to each other. Current architectures are not capable of maximizing capacity because they lack the ability to allow densely deployed wireless access points to operate together and isolate RF bleed-over of transmissions between cells on the same channel, which is a fundamental problem with allowing multiple wireless access points to function at very close proximity to each other. [0011] A need therefore exists for a wireless access point, such as wireless access point for use in a local area network, i.e., a wireless LAN array, that overcomes some of the shortcomings of currently available wireless access points by providing an wireless access point with increased network capacity and increased coverage in all directions. [0012] In particular, a need exists for a wireless access point that allows for the co- location of antennas, radios and switches and that minimizes electromagnetic crosstalk and interference issues resulting from the co-location of multiple antennas, radios and switches. SUMMARY
[0013] A wireless access point is provided that minimizes electromagnetic crosstalk, interference and co-location issues between neighboring radios and antennas, which by their implementation, enable a multitude of radios and antennas to be deployed within a single device. In particular, a wireless access point with a multitude of radios is provided for transmitting radio signals having a digitally isolated, high-gain, multi-sector antenna system positioned about the perimeter of the wireless access point. The wireless access point further includes both reflective surfaces and absorptive isolators positioned within each antenna sector for the purpose of directing the transmission of the radio signals within each segment and enabling radio co-existence.
[005] In one example of one implementation of the wireless access point, the wireless access point integrates a WLAN switch and up to sixteen 802.11 Wi-Fi wireless access points and associated antennas into a single device.
[006] Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
BRIEF DESCRIPTION OF THE FIGURES
[007] The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the figures, like reference numerals designate corresponding parts throughout the different views. [008] Figure 1 is a top perspective view of one example of an implementation of the wireless access point.
[009] Figure 2 is a bottom perspective view of the wireless access point of Figure 1. [010] Figure 3 is a top view of the wireless access point of Figure 1. [011] Figure 4 is a side view of the wireless access point of Figure 1. [012] Figure 5 is a top plan view of the wireless access point of Figure 1 with the exterior portion of the top cover removed.
[013] Figure 6 is a top perspective view of the wireless access point of Figure 5 illustrating several of the antenna sections.
[014] Figure 7 is a bottom perspective view of the wireless access point of Figure 1 illustrating several of the antenna sections as they would appear with the bottom plate removed.
[015] Figure 8 is a top perspective view of the wireless access point of Figure 7. [016] Figure 9 is a perspective view of the bottom portion of the wireless access point of Figure 1 with the securing portion of the wireless access point removed. [017] Figure 10 is an exploded perspective top view of the wireless access point of Figure 1.
[018] Figure 11 is an exploded perspective bottom view of the wireless access point of Figure 1.
[019] Figure 12 is top view of another example of an implementation of the wireless access point.
[020] Figure 13 illustrates a plan view of the 802.11a coverage area that may be achieved by the wireless access point of Figure 1.
[021] Figure 14 illustrates a plan view of the 802.11b/g coverage area that may be achieved by the wireless access point of Figure 1. [022] Figure 15 illustrates a plan view of the area of listening coverage that may be DETAILED DESCRIPTION
[023] Figure 1 is a top perspective view of one example of an implementation of a wireless access point 100. The wireless access point 100 consists generally of an array portion 102 and a securing portion 104. As illustrated, the wireless access point 100 may be generally circular in shape or other shape, such as an ellipsis or a polygon, e.g., a pentagon, octagon, hexagon, etc., capable of transmitting signals in all directions. In particular, the wireless access point 100 may be designed to transmit signals 360 degrees outwardly from the center of the wireless access point 100, as illustrated in Figure 3 (see below), and 180 degrees outward from the array portion 102 relative to the securing portion 104, as illustrated in Figure 4 (see below).
[024] The wireless access point 100 may be positioned at a point elevated above the desired coverage area, such as the ceiling or mounted on a pole. In this case, transmissions would be directed downward and outward from the wireless access point 100, as illustrated in Figure 4 (see below). Alternatively, the wireless access point 100 could be inverted and placed at a position either below or within the coverage area, such as on the floor or on a table. In this manner, the coverage would be directed upward and outward, rather than downward and outward, as illustrated in Figure 4. For purposes of this application, the top of the wireless access point 100 shall be the side of the wireless access point 100 that is positioned toward the coverage zone, regardless of whether the wireless access point 100 is facing upward or downward. The bottom of the wireless access point 100 shall be the side of the wireless access point 100 that is positioned away from the coverage zone, or the side of the wireless access point 100 having the securing portion 104.
[025] Accordingly, the securing portion 104 of the wireless access point 100 may positioned either upward or downward depending upon whether the wireless access point 100 is positioned above, below or within the desired coverage area. Similarly, despite the terminology used in this application, the array portion 102 of the wireless access point 100 may represent the bottom portion of the wireless access point 100 when positioned at a point elevated above the coverage area or the top portion of the wireless access point 100 when positioned within or below the desired coverage area. The wireless access point 100 may be powered by batteries, through an AJC power outlet or remotely through a D/C power supply.
[023] Figure 2 is a bottom perspective view of the wireless access point 100 of Figure 1. As illustrated in figure 2, the securing portion 104 if the wireless access point 100 may include holes 202 positioned at predetermined locations for securing the wireless access point 100 to different types of surfaces, such as drop ceiling brackets, in which case holes 202 may align with the positioning of the ceiling brackets. The securing portion 104 of the wireless access point may be secured first and then the array portion 102 is to be fastened to the securing portion 104 to assemble the wireless access point 100. [024] Figure 3 is a top view of the wireless access point 100 of Figure 1. As illustrated, the top view of the wireless access point 100 includes the array portion 102. As explained further below, it through the array portion 102 of the wireless access point 100 that the signal is transmitted 360 degrees from the circumference of the array portion 102 and 180 degrees outward from the array portion 102 relative to the securing portion 104, as illustrated in Figure 4.
[025] Figure 4 is a side view of the wireless access point of Figure 1. As illustrated in Figure 4, the securing portion 104 of the wireless access point 100 is secured to a mounting element 402, such as a drop ceiling bracket. As further illustrated, the wireless access point 100 transmits signals 180 degrees outward from the array portion 102 relative to the securing portion 104 and/or mounting element 402. As further seen in Figure 4, the array portion 102 includes a top cover 404 and a bottom cover 406. The top cover 404 of the array portion 102 includes an interior portion 408 and an exterior portion 410. [026] Figure 5 is a top plan view of the wireless access point 100 of Figure 1 with the exterior portion 410 of the top cover 404 removed, showing only the remaining interior portion 408 of the top cover 404. As illustrated, the perimeter of the wireless access point 100 is divided into antenna sectors 502. Figure 5 illustrates the primary components of each antenna sector 520 and the implementation of a 16 integrated wireless access points, which in this example is twelve (12) 802.11a and four (4) 802.1 la/b/g and the supportive 12 antenna sector 502 array. While in this example, the wireless access point 100 includes twelve antenna sectors 502 defined around the perimeter of the wireless access point 100, to twelve, may be defined in the wireless access point 100. The wireless access point 100 may be divided into multiple sectors 502 as necessary to achieve the desired coverage and network capacity. Further, while the example utilizes 802.11a and 802.11 a/b/g channels, all approved 802.11 channels may utilized in connection with the wireless access point, including both currently approval and future approved frequencies and channels. [027] As illustrated in Figure 5, the antenna sectors 502 are positioned in and around the circumference of the wireless access point 100 and are separated from the interior of the wireless access point 100, i.e., the central digital section 510, by a circular antenna reflector 504. In this example, the antenna sectors 502 are positioned in a circular pattern around the perimeter of the array section 102 of the wireless access point 100. Absorptive isolators 506 separate each antenna sector 502 at its sides, such that each antenna sector 502 includes two (2) absorptive isolators 506. The absorptive isolators 506 enhance the isolation from antenna sector 502 to antenna sector 502. These isolators 506 may be foam isolators of the type generally known in the industry and commercially available for the purpose of isolating radio transmission or may be any other isolator capable of absorbing electromagnetic energy. For example, the isolators 506 may be foam-filled graphite- isolated insulators to prevent interference between antenna sectors 502. [028] As illustrated, the isolators 506 form antenna sectors 502 about the perimeter of the wireless access point. The purpose of the isolators 506 is to isolate the antenna or antennas positioned within each antenna sector 502.
[029] Figure 5 also illustrates the inclusion of antenna sector deflectors 508 at the base of each antenna sector 502. The antenna deflectors 508 deflect the radio signals downward or away from the wireless access point in a 180 degree pattern relative to the mounting element or securing portion 104, as shown in Fig 4. When inverted, for example, on a table top, the antenna deflectors 508 will reflect the radio signal upward. On the other hand, the circular antenna reflector 504 reflects the radio signal outward in a 360 degree pattern, as shown in Figure 3. Both the antenna reflector 504 and antenna deflectors 508 can be constructed from most metallic or metallically coated materials, or any other material capable of directing radio signals. Both the antenna reflector 504 and the antenna deflector 508 can be referred to as reflector plates. Although the example elements, the antenna reflectors 504 and antenna deflectors 508 can be constructed from a single piece and together form a single reflector plate.
[030] Although Figure 5 illustrates the antenna reflector 504 designed as a circular ring positioned about an interior perimeter of the wireless access point, individual antenna reflectors 504 may be positioned in each antenna section 502. Likewise, the antenna deflectors 508 may be constructed such that the deflectors 508 extend in a circular manner across the base of each section 502, similar to the way the antenna reflector 504 illustrated in Figure 5 is a continuous ring creating a backdrop for the antenna sectors 502. [031] Figure 6 is a top perspective view of the wireless access point 100 of Figure 5 further illustrating several of the antenna sections 502. As illustrated, the circular antenna reflector 504 serves both to reflect radio signals outward from the wireless access point 100 and to provide an isolation barrier between the central digital section 510 (Fig. 5) and the antenna sectors 502. As further illustrated in Figure 6, the antennas 602 positioned within each antenna sector 502 are positioned central relative to the antenna deflectors 508, reflector 504 and absorptive isolators 504. As illustrated, the antennas 602 are connected to radio printed circuit board assemblies ("PCBA") 604.
[032] Figure 7 is a bottom perspective view of the wireless access point of Figure 1 illustrating several of the antenna sections as they would appear with the bottom plate removed. Similarly, Figure 8 is a top perspective view of the wireless access point 100 of Figure 7. Figure 7 and 8 illustrate that the antenna reflector 504 and antenna deflector 508 are grounded together 702, and that both the antenna reflector 504 and antenna deflector 508 are tied to a system ground via the circular antenna reflector 504 connection to the ground plane of the radio PCBA 604. Further, Figure 8 shows one method, spring fingers, of connecting a metallic antenna reflector 504 to the antenna deflector 508. Figure 8 also illustrates one implementation of the antenna deflector 508, a radio PCBA substrate with tin plated deflective patterns positioned directly below the antenna substrate. Those skilled in the art will recognize that other knows means may be utilized for connecting and grounding the structure.
[033] Figure 9 is a perspective view of the array portion 102 of the wireless access point 100 of Figure 1 with the securing portion 104 removed. As further illustrated in as a housing for the wireless access point 100. In this example, the array portion 102 is an injection molded plastic housing that can be made of one or more part. Those skilled in the art will recognize that other materials may be utilized to create the array portion 102 or housing for the wireless access point 100.
[034] Figure 10 is an exploded perspective top view of the wireless access point 100 of Figure 1 and Figure 11 is an exploded perspective bottom view of the wireless access point of Figure 1. As illustrated in Figure 10, the wireless access point 100 may be divided into multiple antenna sectors 502 as necessary to achieve the desired coverage area. While the isolators 506 are shown positioned within the bottom cover 406 of the array portion 102 of the wireless access point 100, the isolators they may also be secured in the top cover 404 of the array portion 102. As illustrated in Figure 11, the radio PCBA 604 may be positioned within the top cover 404 of the array portion 102. Alternatively, the radio PCBA 604 may be positioned within the bottom cover 406 of the array portion 102. [035] Figure 12 is top view of another example of an implementation of a wireless access point 900 having multiple antenna sectors 902. Figure 12 illustrates and an alternative construction of the antenna reflector 904, antenna deflector 908, isolating elements 906 and grounding elements 912. The EMI suppression required in the central digital sector 910, the antenna reflector 904, antenna deflector 908, and system ground connections 912 between these elements may be designed from a single contiguous metallic surface, as illustrated or from separate elements. In the example illustrated in Figure 12, the digital sector 910, antenna reflector 904, and antenna deflector 908 are contracted from a single thermoformed plastic liner that has been electroplated with a metallic substrate and are hence inherently grounded to each other. Alternatively, these elements may be constructed from different substrates.
[036] Figure 13 illustrates a plan view of the 802.11a coverage area that may be achieved by the wireless access point 100 of Figure 1 over a given area 1300. Figure 14 illustrates a plan view of the 802.1 lb/g coverage area that may be achieved by the wireless access point 100 of Figure 1 over a given area 1300. Figure 15 illustrates a plan view of the area of listening coverage that may be achieved by the wireless access point 100 of Figure 1 over a given area 1300. [037] While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of this invention.

Claims

CLAIMS What is claimed is:
1. A wireless access point for transmitting radio signals, the wireless access point comprising: isolators positioned about the perimeter of the wireless access point dividing the perimeter of the wireless access point into segments, and a reflector plate positioned within each segment for directing the transmission of the radio signals within each segment.
2. The wireless access point of claim 1 where the isolators are foam.
3. The wireless access point of claim 1 where the reflector plates include a ground plate.
4. The wireless access point of claim 1 where the reflector plates include a deflective ring.
5. The wireless access point of claim 1 where the reflector plates include both a deflective ring and a ground plate.
6. The wireless access point of claim 1 where the wireless access point is generally circular in shape.
7. The wireless access point of claim 1 where the wireless access point is generally elliptical in shape.
8. A wireless access point for transmitting radio signals, the wireless access point comprising: a plurality of antenna sectors ; absorotive isolators inP.atfiH hfitwppn pnrh antpram oof-tnr> a reflective surface within each antenna sector for directing the transmission of radio signals within each antenna sector; and a deflective surface within each antenna sector for directing the transmission of radio signals within each antenna sector.
9. The wireless access point of claim 8 where the wireless access point further includes a digital section and the deflective surface acts as an isolation barrier between the central digital section and the antenna sectors.
10. The wireless access point of claim 8 where the antenna sectors are arrayed in a generally circular pattern and are capable of transmitting signals outwardly 360 degrees from the center of the wireless access point.
11. The wireless access point of claim 8 where the antenna sectors are arrayed in a generally circular pattern and are capable of transmitting signals 180 degrees upward from the wireless access point.
12. The wireless access point of claim 8 where the absorptive isolators are foam.
13. The wireless access point of claim 8 where the reflector surface includes a ground plate.
14. The wireless access point of claim 8 where the deflector surface includes a ground plate.
15. The wireless access point of claim 8 where the reflector surface includes a reflective ring.
16. The wireless access point of claim 8 where the reflector surface includes a both a reflective rin P and a ornπnH niatp
17. The wireless access point of claim 8 where the wireless LAN array is generally round in shape.
18. The wireless access point of claim 8 where the wireless LAN array is generally elliptical in shape.
19. The wireless access point of claim 8 where wireless access point further includes a digital suppression element and where the digital suppression element, antenna reflective surface and antenna deflector surface are made from one contiguous piece of conductive and reflective material and are inherently grounded together.
PCT/US2006/008696 2004-11-17 2006-03-09 Wireless access point WO2006096852A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US11/816,003 US8160036B2 (en) 2005-03-09 2006-03-09 Access point in a wireless LAN
US11/816,065 US8934416B2 (en) 2005-03-09 2006-03-09 System for allocating channels in a multi-radio wireless LAN array
PCT/US2006/008744 WO2006096864A2 (en) 2005-03-09 2006-03-09 Media access controller for use in a multi-sector access point array
PCT/US2006/008747 WO2006096866A2 (en) 2005-03-09 2006-03-09 Wireless local area network antenna array
US11/816,060 US8299978B2 (en) 2004-11-17 2006-03-09 Wireless access point
US11/816,061 US8831659B2 (en) 2005-03-09 2006-03-09 Media access controller for use in a multi-sector access point array
PCT/US2006/008743 WO2006096863A2 (en) 2005-03-09 2006-03-09 Access point in a wireless lan
PCT/US2006/008698 WO2006096853A2 (en) 2005-03-09 2006-03-09 System for allocating channels in a multi-radio wireless lan array
US13/477,785 US8963792B2 (en) 2005-03-09 2012-05-22 Wireless local area network antenna array
US14/195,490 US9491638B2 (en) 2005-03-09 2014-03-03 Wireless access point array
US14/480,569 US9622250B2 (en) 2005-03-09 2014-09-08 Media access controller for use in a multi-sector access point array

Applications Claiming Priority (40)

Application Number Priority Date Filing Date Title
US66039305P 2005-03-09 2005-03-09
US66017105P 2005-03-09 2005-03-09
US66017405P 2005-03-09 2005-03-09
US66030205P 2005-03-09 2005-03-09
US66039205P 2005-03-09 2005-03-09
US66037605P 2005-03-09 2005-03-09
US66037505P 2005-03-09 2005-03-09
US66026905P 2005-03-09 2005-03-09
US66021005P 2005-03-09 2005-03-09
US66027505P 2005-03-09 2005-03-09
US66027605P 2005-03-09 2005-03-09
US66039405P 2005-03-09 2005-03-09
US66020905P 2005-03-09 2005-03-09
US66054105P 2005-03-09 2005-03-09
US66039105P 2005-03-09 2005-03-09
US66027705P 2005-03-09 2005-03-09
US60/660,392 2005-03-09
US60/660,276 2005-03-09
US60/660,394 2005-03-09
US60/660,209 2005-03-09
US60/660,393 2005-03-09
US60/660,391 2005-03-09
US60/660,171 2005-03-09
US60/660,174 2005-03-09
US60/660,210 2005-03-09
US60/660,376 2005-03-09
US60/660,275 2005-03-09
US60/660,541 2005-03-09
US60/660,269 2005-03-09
US60/660,302 2005-03-09
US60/660,375 2005-03-09
US60/660,277 2005-03-09
PCT/US2006/008744 WO2006096864A2 (en) 2005-03-09 2006-03-09 Media access controller for use in a multi-sector access point array
USPCT/US2006/08747 2006-03-09
USPCT/US2006/08744 2006-03-09
PCT/US2006/008743 WO2006096863A2 (en) 2005-03-09 2006-03-09 Access point in a wireless lan
USPCT/US2006/08743 2006-03-09
USPCT/US2006/08698 2006-03-09
PCT/US2006/008747 WO2006096866A2 (en) 2005-03-09 2006-03-09 Wireless local area network antenna array
PCT/US2006/008698 WO2006096853A2 (en) 2005-03-09 2006-03-09 System for allocating channels in a multi-radio wireless lan array

Publications (1)

Publication Number Publication Date
WO2006096852A1 true WO2006096852A1 (en) 2006-09-14

Family

ID=36953721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/008696 WO2006096852A1 (en) 2004-11-17 2006-03-09 Wireless access point

Country Status (1)

Country Link
WO (1) WO2006096852A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178677A (en) * 2021-04-29 2021-07-27 西北民族大学 Omnidirectional indoor antenna based on 5G communication
US11744007B2 (en) 2019-09-26 2023-08-29 Google Llc Access point device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040066326A1 (en) * 2002-10-02 2004-04-08 Guenther Knapp Electromagnetic coupler system
US20040157551A1 (en) * 2002-06-21 2004-08-12 Tantivy Communications, Inc Repeater for extending range of time division duplex communication system
US20040259558A1 (en) * 2002-11-21 2004-12-23 Efstratios Skafidas Method and apparatus for coverage and throughput enhancement in a wireless communication system
US20040259563A1 (en) * 2002-11-21 2004-12-23 Morton John Jack Method and apparatus for sector channelization and polarization for reduced interference in wireless networks
US20050020299A1 (en) * 2003-06-23 2005-01-27 Quorum Systems, Inc. Time interleaved multiple standard single radio system apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157551A1 (en) * 2002-06-21 2004-08-12 Tantivy Communications, Inc Repeater for extending range of time division duplex communication system
US20040066326A1 (en) * 2002-10-02 2004-04-08 Guenther Knapp Electromagnetic coupler system
US20040259558A1 (en) * 2002-11-21 2004-12-23 Efstratios Skafidas Method and apparatus for coverage and throughput enhancement in a wireless communication system
US20040259563A1 (en) * 2002-11-21 2004-12-23 Morton John Jack Method and apparatus for sector channelization and polarization for reduced interference in wireless networks
US20050020299A1 (en) * 2003-06-23 2005-01-27 Quorum Systems, Inc. Time interleaved multiple standard single radio system apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11744007B2 (en) 2019-09-26 2023-08-29 Google Llc Access point device
CN113178677A (en) * 2021-04-29 2021-07-27 西北民族大学 Omnidirectional indoor antenna based on 5G communication
CN113178677B (en) * 2021-04-29 2022-07-05 西北民族大学 Omnidirectional indoor antenna based on 5G communication

Similar Documents

Publication Publication Date Title
US8299978B2 (en) Wireless access point
EP3446361B1 (en) Base station antennas including supplemental arrays
US9912079B2 (en) Distributed omni-dual-band antenna system for a Wi-Fi access point
EP3660982A1 (en) Multi-sector antennas
CN110011695B (en) Electronic lens apparatus, electronic lens operation method, and phased array antenna apparatus
EP3308426B1 (en) Wrap-around antenna
US6448930B1 (en) Indoor antenna
RU2542719C2 (en) Multichannel cable networks for radio frequency signal distribution
EP3966898A2 (en) Base station antennas having an active antenna module and related devices and methods
KR101905507B1 (en) Antenna device and electronic device with the same
US20210280989A1 (en) Antenna array
FI115748B (en) Dynamic channel allocation for in sectorized radio access units of a mobile communication system
EP1612883A1 (en) Low visual impact monopole tower for wireless communications
EP2812948A1 (en) Apparatus and method for modular multi-sector active antenna system
JP2002330026A (en) Antenna array
WO2011123300A1 (en) Broadband transceiver and distributed antenna system utilizing same
CA2526683A1 (en) High gain antenna for wireless applications
EP1311021A1 (en) Multi-frequency band antenna and related methods
WO2002050947A1 (en) Communication apparatus, method of transmission and antenna apparatus
CN114916099A (en) Base station antenna having bottom end cap with angled connector port
WO2006096852A1 (en) Wireless access point
WO2015120417A2 (en) Wideband antenna star array
CN101849321A (en) Antenna element and array of antenna elements
JP2021044788A (en) Electronic device and method
US11211684B2 (en) Small cell antenna and cable mounting guides for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06737834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11816060

Country of ref document: US