WO2003069832A1 - Method for beamforming a multi-use receiver with channel estimation - Google Patents

Method for beamforming a multi-use receiver with channel estimation Download PDF

Info

Publication number
WO2003069832A1
WO2003069832A1 PCT/EP2003/001043 EP0301043W WO03069832A1 WO 2003069832 A1 WO2003069832 A1 WO 2003069832A1 EP 0301043 W EP0301043 W EP 0301043W WO 03069832 A1 WO03069832 A1 WO 03069832A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signals
beamforming
channel estimation
impulse responses
Prior art date
Application number
PCT/EP2003/001043
Other languages
German (de)
French (fr)
Inventor
Mario Kiessling
Ingo Viering
Markus Reinhardt
Thomas Frey
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP02003321A external-priority patent/EP1337064A1/en
Priority claimed from DE2002105910 external-priority patent/DE10205910A1/en
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2003069832A1 publication Critical patent/WO2003069832A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0845Weighted combining per branch equalization, e.g. by an FIR-filter or RAKE receiver per antenna branch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0851Joint weighting using training sequences or error signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation

Definitions

  • Method for forming a scalar decision signal supplied to a channel decoding which is obtained with the aid of a channel estimation and a beamforming method from antenna signals of a radio communication system.
  • the invention relates to a method according to the features of the first claim.
  • an antenna system consisting of several individual antennas is used in combination with a so-called multi-antenna receiver to improve reception.
  • Antenna signals of the individual antennas are forwarded to the multi-antenna receiver via the individual antennas.
  • the beamforming process is arranged in the so-called signal path, on the high
  • Both output signals of the channel estimation path and the signal path are used to form a scalar decision signal is used, which is fed to a channel decoding or a bit decision and is function-determining for the multi-antenna receiver.
  • Such a structure can also be implemented, for example, in the case of the so-called single antenna receiver, which, however, cannot generally be easily expanded to a multi-antenna receiver within an operated radio communication system for hardware and software-specific reasons.
  • the object of the present invention is to design a receiver structure for forming a scalar decision signal in such a way that the receiver structure can be used both in a multi-antenna receiver and in a single antenna receiver and the single antenna receiver can be added retrospectively with little effort a multi-antenna receiver is expandable.
  • channel estimation path The functions of the channel estimation path are implemented with the aid of digital modules and are therefore easily readjustable or expandable at any time, and - In the case of expansion, only the hardware of the signal path is adapted accordingly to form the decision signal.
  • the computing time required for the beamforming process is also reduced, since in the channel estimation path, compared to the signal path, lower data rates have to be processed.
  • the method according to the invention improves the channel estimates based on the individual antenna signals, which are imprecise due to noise, and long-term properties of the channel are advantageously used in the channel estimation.
  • FIG. 1 shows a basic circuit diagram of a method for forming a scalar decision signal ENTS in a multi-antenna receiver, according to the prior art
  • FIG. 2 shows, as a basic circuit diagram, a further method for forming a scalar decision signal ENTS in a multi-antenna receiver, according to the prior art
  • FIG. 3 shows a basic circuit diagram of a method according to the invention for forming a scalar decision signal ENTS in a multi-antenna receiver
  • 4 shows a first exemplary embodiment of the method according to the invention for forming a scalar decision signal ENTS for a multi-antenna receiver
  • FIG. 5 compares to FIG. 3 shows a second exemplary embodiment of the method for forming a scalar decision signal ENTS for a multi-antenna receiver.
  • FIG. 1 shows as a basic circuit diagram a method for forming a scalar decision signal ENTS in a multi-antenna receiver, according to the prior art.
  • Ka antenna signals are received from Ka individual antennas of an antenna arrangement. These arrive on the one hand via a pilot correlator PIKOR and via a subsequent postprocessing NV and on the other hand directly to a device ENT, with the aid of which the decision signal ENTS is formed.
  • the decision signal ENTS is formed for each user of the radio communication system and is therefore both channel-specific and user-specific.
  • a channel estimate KS is carried out with the pilot correlator PIKOR and with the postprocessing NV, with the aid of which channel impulse responses hK are determined as channel-specific parameters.
  • disturbing noise components in the output signals of the pilot correlator PIKOR are removed, for example, using a threshold decision.
  • the Ka antenna signals are combined with one another or adaptively filtered using the channel impulse responses hK.
  • This is realized for example, depending on the design of the radio communication system, by a "maximum ratio combining” method, “joint detection” method, the use of a “Wiener” filter or by a “zero forcing” method. This enables multiple users to be detected jointly in the space, time and user direction.
  • Such methods are preferably used in TDD radio communication systems, while the use in FDD radio communication systems can only be implemented with great computational effort.
  • the system-related antenna gain makes it possible to tolerate lower signal-to-noise ratios for the received Ka antenna signals, however the channel estimation KS to be carried out and the formation of the decision signal ENTS are adversely disturbed by the generally very noisy Ka antenna signals so less precise.
  • FIG. 2 shows a basic circuit diagram of a further method for forming a scalar decision signal ENTS in a multi-antenna receiver, according to the prior art.
  • Ka antenna signals from Ka individual antennas of an antenna arrangement arrive as input signals both at a channel estimation path KS and at a signal path S.
  • the input signals of the channel estimation path KS arrive at a first pilot correlator PIKOR1, with the aid of which antenna impulse responses hA are calculated. From the antenna impulse Words hA are calculated with the help of an antenna weight calculation AGB user-specific antenna weights AGEW. With the help of the first pilot correlator PIK0R1 and the antenna weight calculation AGB, a first channel estimate KS1 is carried out.
  • the input signals of the signal path S together with the calculated antenna weights AGEW, reach a beam former WH arranged in the signal path S, with the aid of which beam signals rB are calculated.
  • the beam signals rB arrive on the one hand as output signals SA of the signal path S to a device ENT1, with the aid of which the decision signal ENTS is formed, and on the other hand to a second pilot correlator PIKOR2.
  • output signals of the second pilot correlator PIKOR2 also reach the device ENT1 as beam pulse signals hB as output signals KSA of the channel estimation path KS.
  • a second channel estimation KS2 is carried out.
  • two channel estimates KS1 and KS2 are carried out, the structure known from FIG. 1 being shown in the arrangement of the first pilot correlator PIKOR1, the postprocessing NV and the beamformer WH.
  • the beam signals rB are characterized by a higher signal-to-noise ratio. Short-term properties of the channel are taken into account when forming the decision signal ENTS. Methods such as self-beamforming, fixed-beamforming, hybrid beamforming and direction-based methods are known as possible methods for antenna weight calculation.
  • the antenna weights AGEW can be determined precisely on the individual antenna elements despite the highly noisy channel estimate and clearly represent one or more antenna beams.
  • the decision signal ENTS is again formed, for example, with the aid of a maximum ratio combining
  • a disadvantage of this multi-antenna receiver is that the spatial signal processing is largely separated from the rest of the signal processing.
  • Beamforming WH takes place here in the signal path, on which usually high data rates prevail, which causes increased computing times and problems in hardware and software implementation.
  • FIG. 3 shows a basic circuit diagram of a method according to the invention for forming a scalar decision signal ENTS in a multi-antenna receiver.
  • Ka antenna signals from Ka individual antennas of an antenna arrangement arrive as input signals on the one hand at a channel estimation path KSP and on the other hand at a signal path SP.
  • the input signals of the channel estimation path KSP are fed to a pilot correlator PIKOR, with the aid of which a channel Estimation KS is carried out and user-specific antenna impulse responses hA are formed.
  • a pilot correlator PIKOR pilot correlator
  • a channel Estimation KS is carried out
  • user-specific antenna impulse responses hA are formed.
  • an antenna weight calculation AGB is carried out for the determination of antenna weights AGEW.
  • Beamforming WH is carried out with the aid of the calculated antenna weights AGEW and the antenna impulse responses hA, the output signals of which are fed to postprocessing NV as beamforming signals BFS. With the help of the postprocessing NV, beam impulse responses hB are formed, which reach a transformer T.
  • the transformer T serves to transform the beam impulse responses hB back into the antenna area and, with the help of the beam impulse signals hB and the calculated antenna weights AGEW, forms corrected user-specific impulse responses hA ', which are simulated as the output signals KSPS of the channel estimation path KSP and the antenna impulse responses hA.
  • Both the Ka antenna signals of the signal path and the corrected impulse responses hA are supplied to a device ENT for forming the decision signal ENTS.
  • the decision signal ENTS is formed with the aid of adaptive filter combination functions, depending on the design of the radio communication system, for example by means of a" maximum ratio -Combining "process,” Joint-Detection “process, the use of a” Wiener “filter or by a” Zero-Forcing "process.
  • beamforming WH has been shifted from signal path SP to channel estimation deposit KSP, whereby in the method according to the invention, only a PIKOR pilot correlation is carried out.
  • the calculated antenna weights AGEW and the transformation T are each applied to the total antenna impulse responses hA, that is to say to each individual value.
  • the following extensions are possible for the antenna weight calculation AGB: a.) For each individual value of the antenna impulse response hA, a separate set of antenna weight factors AGEW and a transformation T are calculated, which are then only applied to the respective value. b.) The values of the antenna impulse responses are grouped and for each individual group a set of antenna weights and a transformation T are calculated, which are then applied to each value of this group.
  • FIG. 4 shows, compared to FIG. 3, a first exemplary embodiment of the method according to the invention for forming a scalar decision signal ENTS in a multi-antenna receiver.
  • a UTRA FDD radio communication system is required.
  • the Ka antenna signals are sent to a delay seacher DELS, with the help of which the pilot correlator DESP of the channel estimation path KSP despreads user-specific DPCCH channels and generates antenna impulse responses hA which are used on the one hand for antenna weight calculation AGB and on the other hand for beamforming WH.
  • Each individual user-specific antenna impulse response contains Kt * Ka antenna coefficients, whereby Kt is determined with the aid of the delay searcher DELS depending on the location of energy maxima.
  • the antenna weight calculation GTC is carried out using covariance matrix estimates COV, eigenvalue decomposition EVD and a selection procedure AUS.
  • the calculated antenna weights AGEW are compared with the antenna impulse responses hA dem
  • DPDCH channels For the input signals of the signal path SP, user-specific DPDCH channels are despread (DESP) and Kt * Ka antenna delay signals are calculated using the delay searcher DELS, which are used together with the corrected impulse responses hA ' to form the decision signal ENTS.
  • DSP user-specific DPDCH channels are despread
  • Kt * Ka antenna delay signals are calculated using the delay searcher DELS, which are used together with the corrected impulse responses hA ' to form the decision signal ENTS.
  • FIG. 5 shows, in comparison to FIG. 3, a second exemplary embodiment of the method according to the invention for forming a scalar decision signal ENTS in a multi-antenna receiver.
  • a UTRA-TDD radio communication system is required.
  • the PIKOR pilot correlation is carried out here using a
  • the antenna weight calculation GTC is again carried out using covariance matrix estimates COV, eigenvalue decomposition EVD and a selection procedure AUS. With the help of the selection procedure AUS, for example, only maximum achievements of users are followed up.
  • the postprocessing NV forms a threshold decision maker SCH, while the decision signal ENTS is generated with the aid of a joint detector JDET.
  • a total of Ku * Ka antenna impulse responses hA are determined for each of Ku users by midamble correlation, for which a covariance matrix is then estimated for each individual user.
  • a suitable subset of eigenvalues of each covariance matrix is first applied as a transformation to the associated impulse response.
  • the threshold decision SCH then sets small values of the impulse response, which generally only represent noise components, to the value zero. With the help of the transformation T, a greatly improved channel estimate is finally enough.
  • the joint detector JDET itself is operated conventionally, but with less noisy impulse responses.

Abstract

The invention relates to a beamforming method for a multi-use receiver with an array of antennas. A covariance matrix and the eigenvalues thereof are determined following a channel estimation, from which antenna weights (AGEW) are calculated by means of a selection (AUS). A beamforming signal (BFS) is then obtained from the antenna weights and the channel estimations. Corrected channel estimations, which are used in a maximum ratio combining method, a zero forcing method, or a joint detection method (JDET) for estimating data, are then determined in a transformation stage (T). UTRA-TDD and UTRA-FDD transmission systems are examples of applications of the inventive method.

Description

METHODE ZUM BEAMFORMING EINES MEHRNUTZEMPFÄNGERS MIT KANAL SCHÄTZUNG METHOD FOR BEAMFORMING A MULTIPURPOSE RECEIVER WITH CHANNEL ESTIMATION
Beschreibungdescription
Verfahren zur Bildung eines einer Kanaldecodierung zugeführten skalaren Entscheidungssignals, das mit Hilfe einer Kanal- Schätzung und eines Beamforming-Verfahrens aus Antennensignalen eines Funkkommunikationssystems gewonnenen wird.Method for forming a scalar decision signal supplied to a channel decoding, which is obtained with the aid of a channel estimation and a beamforming method from antenna signals of a radio communication system.
Die Erfindung betrifft ein Verfahren gemäß den Merkmalen des ersten Patentanspruchs.The invention relates to a method according to the features of the first claim.
Bei Funkkommunikationssystemen mit mehreren Nutzern wird zur Empfangsverbesserung ein aus mehreren Einzelantennen bestehendes Antennensystem in Kombination mit einem sogenannten Mehrantennen-Empfänger eingesetzt. Über die Einzelantennen werden Antennensignale der Einzelantennen an den Mehrantennen-Empfänger weitergeleitet.In radio communication systems with several users, an antenna system consisting of several individual antennas is used in combination with a so-called multi-antenna receiver to improve reception. Antenna signals of the individual antennas are forwarded to the multi-antenna receiver via the individual antennas.
Durch die Verwendung von mehreren Einzelantennen, bzw. durch den dadurch entstehenden Kohärenzgewinn innerhalb des Mehran- tennen-Empfängers, ist es möglich, niedrigere Signal -The use of several individual antennas or the resulting increase in coherence within the multi-antenna receiver makes it possible to achieve lower signal
Störabstande bei den Antennensignalen für systembedingt vorgegebene Qualitätsanforderungen zuzulassen. Jedoch sind diese Antennensignale für ein durchzuführendes Kanalschätzungs- Verfahren bzw. für ein durchzuführendes Beamforming-Verfahren nur bedingt geeignet, da die durch Rauschen gestörten Antennensignale bei beiden Verfahren ungenaue Ergebnisse verursachen.Allow signal-to-noise ratios for the antenna signals for system-specific quality requirements. However, these antenna signals are only of limited suitability for a channel estimation method to be carried out or for a beamforming method to be carried out, since the antenna signals disturbed by noise cause inaccurate results in both methods.
Bei bekannten Mehrantennen-Empfängern ist das Beamforming- Verfahren im sogenannten Signalpfad angeordnet, auf dem hoheIn known multi-antenna receivers, the beamforming process is arranged in the so-called signal path, on the high
Datenraten vorherrschen, während die KanalSchätzung in einem Kanalschätzpfad erfolgt. Sowohl Ausgangssignale des Kanalschätzpfads als auch des Signalpfads werden zur Bildung eines skalaren Entscheidungssignals verwendet, das einer Kanaldeco- dierung bzw. einer Bitentscheidung zugeführt wird und funktionsbestimmend für den Mehrantennen-Empfänger ist.Data rates prevail while channel estimation is in a channel estimation path. Both output signals of the channel estimation path and the signal path are used to form a scalar decision signal is used, which is fed to a channel decoding or a bit decision and is function-determining for the multi-antenna receiver.
Eine derartige Struktur ist beispielsweise auch beim sogenannten Einzelantennen-Empfänger realisierbar, der jedoch innerhalb eines betriebenen Funkkommunikationssystems im allgemeinen aus hardware- und softwarespezifischen Gründen nicht ohne weiteres zu einem Mehrantennen-Empfänger erweitert wer- den kann.Such a structure can also be implemented, for example, in the case of the so-called single antenna receiver, which, however, cannot generally be easily expanded to a multi-antenna receiver within an operated radio communication system for hardware and software-specific reasons.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine Empfängerstruktur zur Bildung eines skalaren Entscheidungs- signals derart zu gestalten, dass die Empfängerstruktur so- wohl in einem Mehrantennen-Empfänger als auch in einem Einzelantennen-Empfänger einsetzbar ist und der Einzelantennenempfänger nachträglich mit nur geringem Aufwand zu einem Mehrantennen-Empfänger erweiterbar ist.The object of the present invention is to design a receiver structure for forming a scalar decision signal in such a way that the receiver structure can be used both in a multi-antenna receiver and in a single antenna receiver and the single antenna receiver can be added retrospectively with little effort a multi-antenna receiver is expandable.
Die Aufgabe der Erfindung wird durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.The object of the invention is solved by the features of claim 1. Advantageous developments of the invention are specified in the subclaims.
Durch die erfindungsgemäße Verlagerung des Beamforming- Verfahrens in den Kanalschätzpfad, in dem niedrigere Datenraten vorherrschen, wird eine nachträgliche Erweiterung eines Einzelantennen-Empfängers zu einem Mehrantennenempfänger auf einfache Art ermöglicht, denn:By shifting the beamforming method according to the invention into the channel estimation path, in which lower data rates prevail, a subsequent expansion of a single antenna receiver to a multi-antenna receiver is made possible in a simple manner, because:
- die Funktionen des Kanalschätzpfads werden mit Hilfe von digitalen Bausteinen realisiert und sind somit jederzeit leicht nachjustierbar bzw. erweiterbar, und - im Erweiterungsfall wird zur Bildung des Entscheidungssignals nur noch die Hardware des Signalpfads entsprechend an- gepasst .- The functions of the channel estimation path are implemented with the aid of digital modules and are therefore easily readjustable or expandable at any time, and - In the case of expansion, only the hardware of the signal path is adapted accordingly to form the decision signal.
Die für das Beamforming-Verfahren erforderliche Rechenzeit wird ebenfalls reduziert, da im Kanalschätzpfad, verglichen mit dem Signalpfad, niedrigere Datenraten zu bearbeiten sind.The computing time required for the beamforming process is also reduced, since in the channel estimation path, compared to the signal path, lower data rates have to be processed.
Vergleichend zum Stand der Technik, bei dem im allgemeinen zwei Pilotkorrelationen bzw. zwei KanalSchätzungen durchgeführt werden, ist beim erfindungsgemäßen Verfahren nur eine Kanalschätzung bzw. nur eine Pilotkorrelation zur Bildung des Entscheidungssignals notwendig.Compared to the prior art, in which two pilot correlations or two channel estimates are generally carried out, only one channel estimate or only one pilot correlation is necessary in the method according to the invention to form the decision signal.
Durch das erfindungsgemäße Verfahren werden die durch Rauschen ungenauen KanalSchätzungen, die auf den einzelnen Antennensignalen basieren, verbessert und es werden Langzei - eigenschaften des Kanals bei der KanalSchätzung vorteilhaft ausgenutzt .The method according to the invention improves the channel estimates based on the individual antenna signals, which are imprecise due to noise, and long-term properties of the channel are advantageously used in the channel estimation.
Im Folgenden wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Dabei zeigt:An exemplary embodiment of the invention is explained in more detail below with reference to a drawing. It shows:
FIG 1 als prinzipielles Schaltbild ein Verfahren zur Bildung eines skalaren Entscheidungssignals ENTS bei einem Mehrantennenempfänger, gemäß dem Stand der Technik,1 shows a basic circuit diagram of a method for forming a scalar decision signal ENTS in a multi-antenna receiver, according to the prior art,
FIG 2 als prinzipielles Schaltbild ein weiteres Verfahren zur Bildung eines skalaren Entscheidungssignals ENTS bei einem Mehrantennenempfänger, gemäß dem Stand der Tech- nik,2 shows, as a basic circuit diagram, a further method for forming a scalar decision signal ENTS in a multi-antenna receiver, according to the prior art,
FIG 3 als prinzipielles Schaltbild ein erfindungsgemäßes Verfahren zur Bildung eines skalaren Entscheidungssignals ENTS bei einem Mehrantennenempfänger, FIG 4 vergleichend zu FIG 3 ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens zur Bildung eines skalaren Entscheidungssignals ENTS bei einem Mehrantennenempfänger, und FIG 5 vergleichend zu FIG 3 ein zweites Ausführungsbeispiel des erfindungsgemäßen Verfahrens zur Bildung eines skalaren Entscheidungssignals ENTS bei einem Mehrantennenempfänger.3 shows a basic circuit diagram of a method according to the invention for forming a scalar decision signal ENTS in a multi-antenna receiver, 4 shows a first exemplary embodiment of the method according to the invention for forming a scalar decision signal ENTS for a multi-antenna receiver, and FIG. 5 compares to FIG. 3 shows a second exemplary embodiment of the method for forming a scalar decision signal ENTS for a multi-antenna receiver.
FIG 1 zeigt als prinzipielles Schaltbild ein Verfahren zur Bildung eines skalaren Entscheidungssignals ENTS bei einem Mehrantennenempfänger, gemäß dem Stand der Technik.1 shows as a basic circuit diagram a method for forming a scalar decision signal ENTS in a multi-antenna receiver, according to the prior art.
Es werden Ka Antennensignale von Ka Einzelantennen einer An- tennenanordnung empfangen. Diese gelangen einerseits über einen Pilotkorrelator PIKOR und über eine nachfolgend angeordnete Nachverarbeitung NV und andererseits direkt an eine Einrichtung ENT, mit deren Hilfe das Entscheidungssignal ENTS gebildet wird. Das Entscheidungssignal ENTS wird dabei für jeden Nutzer des Funkkommunikationssystems gebildet und ist somit sowohl kanalspezifisch als auch nutzerspezifisch.Ka antenna signals are received from Ka individual antennas of an antenna arrangement. These arrive on the one hand via a pilot correlator PIKOR and via a subsequent postprocessing NV and on the other hand directly to a device ENT, with the aid of which the decision signal ENTS is formed. The decision signal ENTS is formed for each user of the radio communication system and is therefore both channel-specific and user-specific.
Mit dem Pilotkorrelator PIKOR und mit der Nachverarbeitung NV wird eine KanalSchätzung KS durchgeführt, mit deren Hilfe Ka- nalimpulsantworten hK als kanalspezifische Parameter ermittelt werden.A channel estimate KS is carried out with the pilot correlator PIKOR and with the postprocessing NV, with the aid of which channel impulse responses hK are determined as channel-specific parameters.
Bei der Nachverarbeitung NV werden beispielsweise anhand einer Schwellenentscheidung störende Rauschanteile bei den Ausgangssignalen des Pilotkorrelators PIKOR entfernt .In postprocessing NV, disturbing noise components in the output signals of the pilot correlator PIKOR are removed, for example, using a threshold decision.
Zur Bildung des Entscheidungssignals ENTS werden die Ka Antennesignale mit Hilfe der Kanalimpulsantworten hK miteinander kombiniert bzw. adaptiv gefiltert. Realisiert wird dies beispielsweise je nach Ausbildung des Funkkommunikationssystems durch ein „Maximum-Ratio-Combining" -Verfahren, „Joint - Detection"-Verfahren, den Einsatz eines „Wiener"-Filters oder durch ein „Zero-Forcing"-Verfahren. Dabei wird eine gemeinsa- me Detektion mehrerer Nutzer sowohl in Raum-, Zeit- als auch in Nutzerrichtung ermöglicht.To form the decision signal ENTS, the Ka antenna signals are combined with one another or adaptively filtered using the channel impulse responses hK. This is realized for example, depending on the design of the radio communication system, by a "maximum ratio combining" method, "joint detection" method, the use of a "Wiener" filter or by a "zero forcing" method. This enables multiple users to be detected jointly in the space, time and user direction.
Derartige Verfahren werden bevorzugt bei TDD-Funkkommunikationssystemen eingesetzt, während der Einsatz bei FDD-Funk- kommunikationssystemen nur mit großem Rechenaufwand realisiert werden kann.Such methods are preferably used in TDD radio communication systems, while the use in FDD radio communication systems can only be implemented with great computational effort.
Bei der Verwendung einer aus mehreren Einzelantennen bestehenden Antennenanordnung werden durch den systembedingten An- tennengewinn geringere Signal -Störabstände bei den empfangenen Ka Antennensignalen tolerierbar, jedoch werden die durchzuführende Kanalschätzung KS und die Bildung des Entscheidungssignals ENTS durch die im allgemeinen stark verrauschten Ka Antennensignale nachteilig gestört und damit ungenauer.When using an antenna arrangement consisting of several individual antennas, the system-related antenna gain makes it possible to tolerate lower signal-to-noise ratios for the received Ka antenna signals, however the channel estimation KS to be carried out and the formation of the decision signal ENTS are adversely disturbed by the generally very noisy Ka antenna signals so less precise.
FIG 2 zeigt als prinzipielles Schaltbild ein weiteres Verfahren zur Bildung eines skalaren Entscheidungssignals ENTS bei einem Mehrantennenempfänger, gemäß dem Stand der Technik.2 shows a basic circuit diagram of a further method for forming a scalar decision signal ENTS in a multi-antenna receiver, according to the prior art.
Vergleichend zu FIG 1 nutzt dieser MehrantennenempfängerIn comparison to FIG. 1, this uses multiple antenna receivers
Langzeiteigenschaften eines Kanals aus. Es gelangen Ka Antennensignale von Ka Einzelantennen einer Antennenanordnung als Eingangssignale sowohl an einen Kanalschätzpfad KS als auch an einen Signalpfad S .Long-term properties of a channel. Ka antenna signals from Ka individual antennas of an antenna arrangement arrive as input signals both at a channel estimation path KS and at a signal path S.
Die Eingangssignale des Kanalschätzpfads KS gelangen an einen ersten Pilotkorrelator PIKOR1, mit dessen Hilfe Antennenim- pulsantworten hA berechnet werden. Aus den Antennenimpulsant- Worten hA werden mit Hilfe einer Antennengewichtsberechnung AGB nutzerspezifische Antennengewichte AGEW berechnet. Mit Hilfe des ersten Pilotkorrelators PIK0R1 und der Antennengewichtsberechnung AGB wird eine erste KanalSchätzung KS1 durchgeführt .The input signals of the channel estimation path KS arrive at a first pilot correlator PIKOR1, with the aid of which antenna impulse responses hA are calculated. From the antenna impulse Words hA are calculated with the help of an antenna weight calculation AGB user-specific antenna weights AGEW. With the help of the first pilot correlator PIK0R1 and the antenna weight calculation AGB, a first channel estimate KS1 is carried out.
Die Eingangssignale des Signalpfad S gelangen zusammen mit den berechneten Antennengewichten AGEW an einen im Signalpfad S angeordneten Beamformer WH, mit dessen Hilfe Beamsignale rB berechnet werden. Die Beamsignale rB gelangen einerseits als Ausgangssignale SA des Signalpfades S an eine Einrichtung ENT1, mit deren Hilfe das Entscheidungssignal ENTS gebildet wird, und andererseits an einen zweiten Pilotkorrelator PIKOR2. Ausgangssignale des zweiten Pilotkorrelators PIKOR2 gelangen nach einer Nachverarbeitung NV als Beamimpulssignale hB als Ausgangssignale KSA des Kanalschätzpfads KS ebenfalls an die Einrichtung ENT1. Mit Hilfe des zweiten Pilotkorrelators PIKOR2 und der Nachverarbeitung NV wird eine zweite Kanalschätzung KS2 durchgeführt.The input signals of the signal path S, together with the calculated antenna weights AGEW, reach a beam former WH arranged in the signal path S, with the aid of which beam signals rB are calculated. The beam signals rB arrive on the one hand as output signals SA of the signal path S to a device ENT1, with the aid of which the decision signal ENTS is formed, and on the other hand to a second pilot correlator PIKOR2. After postprocessing NV, output signals of the second pilot correlator PIKOR2 also reach the device ENT1 as beam pulse signals hB as output signals KSA of the channel estimation path KS. With the help of the second pilot correlator PIKOR2 and the postprocessing NV, a second channel estimation KS2 is carried out.
Vergleichend mit FIG 1 werden zwei KanalSchätzungen KS1 und KS2 durchgeführt, wobei die aus FIG 1 bekannte Struktur in der Anordnung des ersten Pilotkorrelators PIKOR1, der Nachverarbeitung NV und des Beamformers WH zu sehen ist.In comparison with FIG. 1, two channel estimates KS1 and KS2 are carried out, the structure known from FIG. 1 being shown in the arrangement of the first pilot correlator PIKOR1, the postprocessing NV and the beamformer WH.
Mit Hilfe der ersten KanalSchätzung KS1 werden schnelle Fading-Eigenschaften der Kanäle gemittelt und Langzeiteigenschaften der Kanäle ausgenutzt. Die Beamsignale rB zeichnen sich durch einen höheren Signal -Störabstand aus. Bei der Bil- düng des Entscheidungssignals ENTS werden Kurzzeiteigenschaften des Kanals berücksichtigt. Als mögliche Verfahren zur Antennengewichtsberechnung AGB sind Verfahren wie Eigen-Beamforming, Fixed-Beamforming, hybrides Beamforming sowie richtungsbasierende Verfahren bekannt. Die Antenenngewichte AGEW können trotz stark ver- rauschter KanalSchätzung auf den einzelnen Antennenelementen exakt bestimmt werden und stellen anschaulich einen oder mehrere Antennenbeams dar.With the help of the first channel estimate KS1, fast fading properties of the channels are averaged and long-term properties of the channels are used. The beam signals rB are characterized by a higher signal-to-noise ratio. Short-term properties of the channel are taken into account when forming the decision signal ENTS. Methods such as self-beamforming, fixed-beamforming, hybrid beamforming and direction-based methods are known as possible methods for antenna weight calculation. The antenna weights AGEW can be determined precisely on the individual antenna elements despite the highly noisy channel estimate and clearly represent one or more antenna beams.
Die Bildung des Entscheidungssignals ENTS erfolgt beispiels- weise wieder mit Hilfe eines Maximum-Ratio-Combining-The decision signal ENTS is again formed, for example, with the aid of a maximum ratio combining
Verfahrens oder eines Joint-Detection ähnlichen Verfahrens, wie beispielsweise dem Partial-Joint-Detection-Verfahren.Method or a joint detection-like method, such as the partial joint detection method.
Bei diesem Mehrantennen-Empfänger ist als Nachteil zu nennen, dass die räumliche SignalVerarbeitung weitgehend getrennt ist von der restlichen Signalverarbeitung.A disadvantage of this multi-antenna receiver is that the spatial signal processing is largely separated from the rest of the signal processing.
Beim Joint-Detection-Verfahren, bei dem Raum, Zeit und Nutzer gemeinsam verarbeitet werden, ist eine derartige Empfängerstruktur im allgemeinen nicht anwendbar. Das Beamforming WH erfolgt hier im Signalpfad, auf dem üblicherweise hohe Datenraten vorherrschen, wodurch erhöhte Rechenzeiten und Probleme bei der Hardware- bzw. Softwarerealisierung verursacht werden.In the case of the joint detection method, in which space, time and users are processed together, such a receiver structure is generally not applicable. Beamforming WH takes place here in the signal path, on which usually high data rates prevail, which causes increased computing times and problems in hardware and software implementation.
FIG 3 zeigt als prinzipielles Schaltbild ein erfindungsgemäßes Verfahren zur Bildung eines skalaren Entscheidungssignals ENTS bei einem Mehrantennenempfänger.3 shows a basic circuit diagram of a method according to the invention for forming a scalar decision signal ENTS in a multi-antenna receiver.
Es gelangen Ka Antennensignale von Ka Einzelantennen einer Antennenanordnung als Eingangssignale einerseits an einen Kanalschätzpfad KSP und anderseits an einen Signalpfad SP. Die Eingangssignale des Kanalschätzpfades KSP werden einem Pilotkorrelator PIKOR zugeführt, mit dessen Hilfe eine Kanal- Schätzung KS durchgeführt wird und nutzerspezifische Anten- nenimpulsantworten hA gebildet werden. Mit Hilfe der nutzerspezifischen Antennenimpulsantworten hA wird eine Antennengewichtsberechnung AGB zur Bestimmung von Antennenngewichten AGEW durchgeführt .Ka antenna signals from Ka individual antennas of an antenna arrangement arrive as input signals on the one hand at a channel estimation path KSP and on the other hand at a signal path SP. The input signals of the channel estimation path KSP are fed to a pilot correlator PIKOR, with the aid of which a channel Estimation KS is carried out and user-specific antenna impulse responses hA are formed. With the help of the user-specific antenna impulse responses hA, an antenna weight calculation AGB is carried out for the determination of antenna weights AGEW.
Mit Hilfe der berechneten Antennengewichte AGEW und der Antennenimpulsantworten hA wird ein Beamforming WH durchgeführt, dessen Ausgangssignale als Beamformingsignale BFS ei- ner Nachverarbeitung NV zugeführt werden. Mit Hilfe der Nachverarbeitung NV werden Beamimpulsantworten hB gebildet, die an einen Transformator T gelangen.Beamforming WH is carried out with the aid of the calculated antenna weights AGEW and the antenna impulse responses hA, the output signals of which are fed to postprocessing NV as beamforming signals BFS. With the help of the postprocessing NV, beam impulse responses hB are formed, which reach a transformer T.
Der Transformator T dient der Rücktransformation der Beamim- pulsantworten hB in den Antennenbereich und bildet mit Hilfe der Beamimpulssignale hB und der berechneten Antennengewichte AGEW korrigierte nutzerspezifische Impulsantworten hA', die als Ausgangssignale KSPS des Kanalschätzpfads KSP den Antennenimpulsantworten hA nachgebildet sind.The transformer T serves to transform the beam impulse responses hB back into the antenna area and, with the help of the beam impulse signals hB and the calculated antenna weights AGEW, forms corrected user-specific impulse responses hA ', which are simulated as the output signals KSPS of the channel estimation path KSP and the antenna impulse responses hA.
Sowohl die Ka Antennensignale des Signalpfads als auch die korrigierten Impulsantworten hA" werden einer Einrichtung ENT zur Bildung des Entscheidungssignals ENTS zugeführt. Die Bildung des Entscheidungssignals ENTS erfolgt mit Hilfe von adaptiven Filter-Kombinierungsfunktionen, je nach Ausbildung des Funkkommunikationssystems beispielsweise durch ein „Maximum-Ratio-Combining"-Verfahren, „Joint -Detection" - Verfahren, dem Einsatz eines „Wiener"-Filters oder durch ein „ Zero-Forcing" -Verfahren .Both the Ka antenna signals of the signal path and the corrected impulse responses hA "are supplied to a device ENT for forming the decision signal ENTS. The decision signal ENTS is formed with the aid of adaptive filter combination functions, depending on the design of the radio communication system, for example by means of a" maximum ratio -Combining "process," Joint-Detection "process, the use of a" Wiener "filter or by a" Zero-Forcing "process.
Vergleichend zur FIG 2 ist das Beamforming WH aus dem Signal- pfad SP in den Kanalschätzpfand KSP verlagert worden, wobei bei dem erfindungsgemäßen Verfahren nur noch eine Pilotkorrelation PIKOR durchgeführt wird.In comparison to FIG. 2, beamforming WH has been shifted from signal path SP to channel estimation deposit KSP, whereby in the method according to the invention, only a PIKOR pilot correlation is carried out.
Da innerhalb des Kanalschätzpfades KSP vergleichend zum Sig- nalpfad SP geringere Datenraten auftreten, ist ein derartiger Mehrantennen-Empfänger leicht zu realisieren bzw. zu erweitern.Since lower data rates occur within the channel estimation path KSP compared to the signal path SP, such a multi-antenna receiver can be easily implemented or expanded.
Erfindungsgemäß werden die berechneten Antennengewichte AGEW sowie die Transformation T jeweils auf die gesamten Antennen- impulsantworten hA, also auf jeden einzelnen Wert, angewendet.According to the invention, the calculated antenna weights AGEW and the transformation T are each applied to the total antenna impulse responses hA, that is to say to each individual value.
Alternativ sind dazu bei der Antennegewichtsberechnung AGB folgende Erweiterungen möglich: a.) Für jeden einzelnen Wert der Antennenimpulsantwort hA wird ein eigenes Set an Antennengewichtsfaktoren AGEW und eine Transformation T berechnet, die dann jeweils nur auf den jeweiligen Wert angewendet werden. b.) Die Werte der Antennenimpulsantworten werden gruppiert und für jede einzelne Gruppe wird ein Set von Antennengewichten und eine Transformation T berechnet, die dann jeweils auf jeden Wert dieser Gruppe angewendet werden.Alternatively, the following extensions are possible for the antenna weight calculation AGB: a.) For each individual value of the antenna impulse response hA, a separate set of antenna weight factors AGEW and a transformation T are calculated, which are then only applied to the respective value. b.) The values of the antenna impulse responses are grouped and for each individual group a set of antenna weights and a transformation T are calculated, which are then applied to each value of this group.
Erfindungsgemäß können anstelle der linearen adaptiven Filter-Kombinierungsfunktionen bei der Bildung des Entscheidungssignals auch grundsätzlich nicht lineare Strukturen wie „Decision-Feedback" oder „ Interference-Cancellation" usw. verwendet werden. Diese sind im allgemeinen mehrstufig und werden durch das erfindungsgemäße Verfahren ebenfalls verbessert, indem der Kanalschätzpfad jeder Stufe mit der beschriebenen Struktur entsprechend erweitert wird. FIG 4 zeigt vergleichend zu FIG 3 ein erstes Ausführungsbei- spiel des erfindungsgemäßen Verfahrens zur Bildung eines skalaren Entscheidungssignals ENTS bei einem Mehrantennenempfänger. Dabei wird ein UTRA-FDD-Funkkommunikationssystem voraus- gesetzt.According to the invention, instead of the linear adaptive filter combination functions, fundamentally non-linear structures such as “decision feedback” or “interference cancellation” etc. can also be used when forming the decision signal. These are generally multi-stage and are also improved by the method according to the invention in that the channel estimation path of each stage is expanded accordingly with the structure described. FIG. 4 shows, compared to FIG. 3, a first exemplary embodiment of the method according to the invention for forming a scalar decision signal ENTS in a multi-antenna receiver. A UTRA FDD radio communication system is required.
Die Ka Antennesignale gelangen an einen Delay-Seacher DELS, mit dessen Hilfe der Pilotkorrelator DESP des Kanalschätzpfades KSP nutzerspezifische DPCCH-Kanäle entspreizt und Anten- nenimpulsantworten hA erzeugt, die einerseits zur Antennengewichtsberechnung AGB und andererseits zum Beamforming WH verwendet werden. Dabei beinhaltet jede einzelne nutzerspezifische Antennenimpulsantwort Kt*Ka Antennenkoeffizienten, wobei Kt mit Hilfe des Delay-Searchers DELS lagenabhängig von Ener- giemaxima bestimmt wird.The Ka antenna signals are sent to a delay seacher DELS, with the help of which the pilot correlator DESP of the channel estimation path KSP despreads user-specific DPCCH channels and generates antenna impulse responses hA which are used on the one hand for antenna weight calculation AGB and on the other hand for beamforming WH. Each individual user-specific antenna impulse response contains Kt * Ka antenna coefficients, whereby Kt is determined with the aid of the delay searcher DELS depending on the location of energy maxima.
Die Antennengewichtsberechnung AGB erfolgt dabei mit Hilfe von Kovarianzmatrixschätzungen COV, EigenwertZerlegungen EVD und einem Auswahlverfahren AUS. Die berechneten Antennenge- wichte AGEW werden mit den Antennenimpulsantworten hA demThe antenna weight calculation GTC is carried out using covariance matrix estimates COV, eigenvalue decomposition EVD and a selection procedure AUS. The calculated antenna weights AGEW are compared with the antenna impulse responses hA dem
Beamformer WH zugeführt, dessen Ausgangssignale als Beamfor- mingsignale BFS über eine hier nicht notwendige Nachverarbeitung NV als Beamimpulsantworten hB dem Transformator T zugeführt werden. Die mit Hilfe des Transformators T gebildeten korrigiertenBeamformer WH supplied, whose output signals as beamforming signals BFS are fed to the transformer T via a postprocessing NV which is not necessary here as beam impulse responses hB. Corrected those formed with the help of the transformer T.
Impulsantworten hA' gelangen an die Einrichtung ENT zur Bildung des Entscheidungssignals ENTS, das hier mit Hilfe eines Maximum-Ratio-Combiners MRC gebildet wird.Impulse responses hA 'arrive at the ENT device to form the decision signal ENTS, which is formed here with the aid of a maximum ratio combiner MRC.
Bei den Eingangssignalen des Signalpfads SP werden mit Hilfe des Delay-Searchers DELS nutzerspezifische DPDCH-Kanäle entspreizt (DESP) und Kt*Ka Antennen-Delay-Signale berechnet, die zusammen mit den korrigierten Impulsantworten hA' zur Bildung des Entscheidungssignals ENTS verwendet werden.For the input signals of the signal path SP, user-specific DPDCH channels are despread (DESP) and Kt * Ka antenna delay signals are calculated using the delay searcher DELS, which are used together with the corrected impulse responses hA ' to form the decision signal ENTS.
FIG 5 zeigt vergleichend zu FIG 3 ein zweites Ausführungsbei- spiel des erfindungsgemäßen Verfahrens zur Bildung eines skalaren Entscheidungssignals ENTS bei einem Mehrantennenempfänger. Dabei wird ein UTRA-TDD-Funkkommunikationssystem vorausgesetzt .5 shows, in comparison to FIG. 3, a second exemplary embodiment of the method according to the invention for forming a scalar decision signal ENTS in a multi-antenna receiver. A UTRA-TDD radio communication system is required.
Die Pilotkorrelation PIKOR erfolgt hier mit Hilfe einerThe PIKOR pilot correlation is carried out here using a
Midambelkorrelation MIDCO. Die Antennengewichtsberechnung AGB erfolgt wieder mit Hilfe von Kovarianzmatrixschätzungen COV, EigenwertZerlegungen EVD und einem Auswahlverfahren AUS. Mit Hilfe des Auswahlverfahrens AUS werden beispielsweise nur ma- xi ale Leistungen von Nutzern weiterverfolgt.Midamble correlation MIDCO. The antenna weight calculation GTC is again carried out using covariance matrix estimates COV, eigenvalue decomposition EVD and a selection procedure AUS. With the help of the selection procedure AUS, for example, only maximum achievements of users are followed up.
Die Nachverarbeitung NV bildet ein Schwellenentscheider SCH, während die Bildung des Entscheidungssignals ENTS mit Hilfe eines Joint -Detectors JDET erfolgt.The postprocessing NV forms a threshold decision maker SCH, while the decision signal ENTS is generated with the aid of a joint detector JDET.
Auf jedes der Ka Antennensignale werden für jeden einzelnen von Ku Nutzern durch Midamblekorrelation insgesamt Ku*Ka An- tennenimpulsantworten hA ermittelt, für die anschließend für jeden einzelnen Nutzer eine Kovarianzmatrix geschätzt wird. Eine geeignete Untermenge an Eigenwerten jeder Kovarianzmatrix wird zunächst als Transformation auf die zugehörige Impulsantwort angewendet.For each of the Ka antenna signals, a total of Ku * Ka antenna impulse responses hA are determined for each of Ku users by midamble correlation, for which a covariance matrix is then estimated for each individual user. A suitable subset of eigenvalues of each covariance matrix is first applied as a transformation to the associated impulse response.
Die Schwellenentscheidung SCH setzt anschließend kleine Werte der Impulsantwort, die in der Regel nur Rauschanteile darstellen, auf den Wert Null. Mit Hilfe der Transformation T wird schließlich eine stark verbesserte KanalSchätzung er- reicht. Der Joint-Detector JDET an sich wird herkömmlich, jedoch mit weniger verrauschten Impulsantworten, betrieben. The threshold decision SCH then sets small values of the impulse response, which generally only represent noise components, to the value zero. With the help of the transformation T, a greatly improved channel estimate is finally enough. The joint detector JDET itself is operated conventionally, but with less noisy impulse responses.

Claims

Patentansprüche claims
1. Verfahren zur Bildung eines einer Kanaldecodierung zugeführten skalaren Entscheidungssignals (ENTS) , das mit Hil- fe einer KanalSchätzung (KS) und mit Hilfe eines Beamfor- ming-Verfahrens (WH) aus Ka Antennensignalen eines Funkkommunikationssystems gewonnen wird,1. Method for forming a scalar decision signal (ENTS) supplied to a channel decoding, which is obtained with the aid of a channel estimation (KS) and with the help of a beamforming method (WH) from Ka antenna signals of a radio communication system,
- bei dem die Ka Antennensignale von Ka Einzelantennen als Eingangssignale sowohl an einen Kanalschätzpfad (KSP) als auch an einen dazu parallelen Signalpfad (SP) zur- In which the Ka antenna signals from Ka individual antennas as input signals to both a channel estimation path (KSP) and a signal path (SP) parallel to it
Bildung eines jeweiligen Ausgangssignals (KSPS,SPS) gelangen,Formation of a respective output signal (KSPS, PLC),
- bei dem im Kanalschätzpfad (KSP) zur Bildung des Ausgangssignals (KSPS) an den Ka Antennensignalen zunächst die Kanalschätzung (KS) und nachfolgend das Beamforming- Verfahren (WH) durchgeführt wird, und- In the channel estimation path (KSP) to form the output signal (KSPS) on the Ka antenna signals, first the channel estimation (KS) and subsequently the beamforming method (WH) is carried out, and
- bei dem aus den Ausgangssignalen (KSPS,SPS) des Signal - pfads (SP) und des Kanalschätzpfads (KSP) das skalare Entscheidungssignal (ENTS) gebildet wird.- in which the scalar decision signal (ENTS) is formed from the output signals (KSPS, SPS) of the signal path (SP) and the channel estimation path (KSP).
2. Verfahren nach Anspruch 1, bei dem das skalare Entscheidungssignal (ENTS) mit Hilfe einer adaptiven Filter- Kombinierungsfunktion gebildet wird.2. The method of claim 1, wherein the scalar decision signal (ENTS) is formed using an adaptive filter combining function.
3. Verfahren nach Anspruch 1 oder 2, bei dem im Kanalschätzpfad (KSP) mit Hilfe eines Pilotkorrelationsverfahrens (PIKOR) aus den Ka Antennensignalen nutzerspezifische An- tennenimpulsantworten (hA) gebildet werden, die einerseits zur Berechnung von nutzerspezifischen Antennengewichten (AGEW) und andererseits zur Durchführung des Beamforming- Verfahrens (WH) verwendet werden. 3. The method as claimed in claim 1 or 2, in which user-specific antenna impulse responses (hA) are formed from the Ka antenna signals in the channel estimation path (KSP) with the aid of a pilot correlation method (PIKOR), which on the one hand are used to calculate user-specific antenna weights (AGEW) and on the other Implementation of the beamforming process (WH) can be used.
4. Verfahren nach Anspruch 3, bei dem die berechneten Antennengewichte (AGEW) einerseits zur Durchführung des Beam- forming-Verfahrens (WH) verwendet und andererseits einer Transformation (T) unterzogen werden.4. The method according to claim 3, in which the calculated antenna weights (AGEW) are used on the one hand to carry out the beam-forming method (WH) and on the other hand are subjected to a transformation (T).
5. Verfahren nach Anspruch 3 oder 4, bei dem mit Hilfe des Beamforming-Verfahrens (WH) nutzerspezifische Beamforming- signale (BFS) gebildet werden, die nach einer Nachverarbeitung (NV) als Beamimpulsantworten (hB) der Transforma- tion (T) zugeführt werden.5. The method as claimed in claim 3 or 4, in which user-specific beamforming signals (BFS) are formed with the aid of the beamforming method (WH) and are supplied as beam impulse responses (HB) to the transformation (T) after postprocessing (NV) become.
6. Verfahren nach Anspruch 4 oder 5, bei dem mit Hilfe der Transformation (T) aus den Beamimpulsantworten (hB) und aus den berechneten Antennengewichten (AGEW) nutzerspezi- fische, den Antennenimpulsantworten (hA) nachgebildete, korrigierte Impulsantworten (hA') als Ausgangssignale (KSPS) des Kanalschätzpfads (KSP) erzeugt werden.6. The method of claim 4 or 5, in which with the help of the transformation (T) from the beam impulse responses (hB) and from the calculated antenna weights (AGEW) user-specific, the antenna impulse responses (hA) simulated, corrected impulse responses (hA ') as Output signals (KSPS) of the channel estimation path (KSP) are generated.
7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem für Ku Nutzer die nutzerspezifischen Antennengewichte7. The method according to any one of the preceding claims, in which the user-specific antenna weights for Ku users
(AGEW) mit Hilfe von Kovarianzmatrix-Schätzungen (COV) , Eigenwertzerlegungen (EVD) und einem Auswahlverfahren (AUS) bestimmt werden.(AGEW) can be determined with the help of covariance matrix estimates (COV), eigenvalue decompositions (EVD) and a selection procedure (AUS).
8. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch die Verwendung in einem UTRA-TDD-Funk- kommunikationssystem.8. The method according to any one of the preceding claims, characterized by the use in a UTRA-TDD radio communication system.
9. Verfahren nach Anspruch 8, bei dem als Pilotkorrelations- verfahren (PIKOR) eine Midamble-Korrelation (MIDCO) zur9. The method according to claim 8, in which a midamble correlation (MIDCO) is used as the pilot correlation method (PIKOR)
Bildung von Ku*Ka Antennenimpulsantworten (hA) von Ku Nutzern verwendet wird. Generation of Ku * Ka antenna impulse responses (hA) from Ku users is used.
10. Verfahren nach Anspruch 8 oder 9, bei dem die Nachverarbeitung (NV) der Beamformingsignale (BFS) mit Hilfe einer Schwellenentscheidung (SCH) erfolgt.10. The method according to claim 8 or 9, wherein the post-processing (NV) of the beamforming signals (BFS) is carried out with the aid of a threshold decision (SCH).
11. Verfahren nach einem der Ansprüche 8 bis 10, bei dem bei der Bildung des Entscheidungssignals (ENTS) als adaptive Filter-Kombinierungsfunktion ein Joint-Detection- Verfahren (JDET) verwendet wird, wobei Ku*Ka korrigierte Impulsantworten (hA') einerseits und Ka Antennensignale andererseits die Ausgangssignale (KSPS,SPS) des Kanalschätzpfads (KSP) einerseits und des Signalpfads (SP) andererseits bilden.11. The method according to any one of claims 8 to 10, is used in the formation of the decision signal (ENTS) as an adaptive filter combination function, a joint detection method (JDET), wherein Ku * Ka corrected impulse responses (hA ') on the one hand and Ka antenna signals on the other hand form the output signals (KSPS, SPS) of the channel estimation path (KSP) on the one hand and the signal path (SP) on the other.
12. Verfahren nach Anspruch 7, gekennzeichnet durch die Ver- wendung in einem UTRA-FDD-Funkkommunikationssystem.12. The method according to claim 7, characterized by the use in a UTRA-FDD radio communication system.
13. Verfahren nach Anspruch 12, bei dem beim Pilotkorrelationsverfahren mit Hilfe eines Delay-Searchers (DELS) , dem die Ka Antennensignale zugeführt sind, den Nutzern zuge- ordnete DPCCH-Kanäle entspreizt und Kt*Ka Koeffizienten von Kt Delays des Delay-Searchers als Antennenimpulsantworten (hA) gebildet werden.13. The method according to claim 12, in which in the pilot correlation method using a delay searcher (DELS) to which the Ka antenna signals are supplied, user-assigned DPCCH channels are despread and Kt * Ka coefficients of Kt delays of the delay searcher as Antenna impulse responses (hA) are formed.
14. Verfahren nach Anspruch 12 oder 13, bei dem die Nachver- arbeitung (NV) der Beamformingsignale (BFS) derart erfolgt, dass diese als Beamimpulsantworten (hB) zur Transformation (T) gelangen.14. The method according to claim 12 or 13, in which the postprocessing (NV) of the beamforming signals (BFS) is carried out in such a way that they arrive as beam impulse responses (HB) for the transformation (T).
15. Verfahren nach einem der Ansprüche 12 bis 14, bei dem bei der Bildung des Entscheidungssignals (ENTS) als adaptive15. The method according to any one of claims 12 to 14, in which in the formation of the decision signal (ENTS) as adaptive
Filter-Kombinierungsfunktion ein Maximum-Ratio-Combining- Verfahren (MRC) verwendet wird. Filter combining function a maximum ratio combining method (MRC) is used.
16. Verfahren nach einem der Ansprüche 13 bis 15, bei dem im Signalpfad (SP) mit Hilfe des Delay-Searchers (DELS) aus den Eingangssignalen des Signalpfades nutzerspezifische DPDCH-Kanäle entspreizt und Kt*Ka Antennen-Delay-Signale berechnet werden, die mit den korrigierten Impulsantworten (hA') zur Bildung des Entscheidungssignals (ENTS) verwendet werden.16. The method according to any one of claims 13 to 15, in which in the signal path (SP) with the aid of the delay searcher (DELS) user-specific DPDCH channels are despread from the input signals of the signal path and Kt * Ka antenna delay signals are calculated with the corrected impulse responses (hA ') to form the decision signal (ENTS).
17. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Berechnung der Antennengewichte (AGEW) mit Hilfe eines Fixed-Beamforming-Verfahrens oder eines Eigenbeam- forming-Verfahrens oder einer Kombination daraus erfolgt. 17. The method according to any one of the preceding claims, in which the calculation of the antenna weights (AGEW) is carried out with the aid of a fixed beamforming method or a self-beamforming method or a combination thereof.
PCT/EP2003/001043 2002-02-13 2003-02-03 Method for beamforming a multi-use receiver with channel estimation WO2003069832A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP02003321A EP1337064A1 (en) 2002-02-13 2002-02-13 Beamforming method for a multiuser receiver with channel estimation
DE10205910.1 2002-02-13
EP02003321.3 2002-02-13
DE2002105910 DE10205910A1 (en) 2002-02-13 2002-02-13 Scalar decision signal formation method for multiple antenna receiver uses channel estimation and beam forming method

Publications (1)

Publication Number Publication Date
WO2003069832A1 true WO2003069832A1 (en) 2003-08-21

Family

ID=27735667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/001043 WO2003069832A1 (en) 2002-02-13 2003-02-03 Method for beamforming a multi-use receiver with channel estimation

Country Status (1)

Country Link
WO (1) WO2003069832A1 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100428651C (en) * 2004-02-17 2008-10-22 大唐移动通信设备有限公司 Down wave beam shaping method and device of radio channel
CN102026387A (en) * 2010-12-20 2011-04-20 中兴通讯股份有限公司 BF (beam forming) control method and device
CN101072066B (en) * 2006-05-08 2011-05-11 中兴通讯股份有限公司 Intelligent antenna realizing method for CDMA communication system
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8098568B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8787347B2 (en) 2005-08-24 2014-07-22 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347234B1 (en) * 1997-09-15 2002-02-12 Adaptive Telecom, Inc. Practical space-time radio method for CDMA communication capacity enhancement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347234B1 (en) * 1997-09-15 2002-02-12 Adaptive Telecom, Inc. Practical space-time radio method for CDMA communication capacity enhancement

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
I-TAI LU ET AL: "Sensitivity study of smart antenna systems with both transmission and reception diversities", MILITARY COMMUNICATIONS CONFERENCE PROCEEDINGS, 1999. MILCOM 1999. IEEE ATLANTIC CITY, NJ, USA 31 OCT.-3 NOV. 1999, PISCATAWAY, NJ, USA,IEEE, US, 31 October 1999 (1999-10-31), pages 949 - 953, XP010369802, ISBN: 0-7803-5538-5 *
JOONSUK KIM ET AL: "Spatial multiuser access with antenna diversity using singular value decomposition", 2000 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS. ICC 2000. GLOBAL CONVERGENCE THROUGH COMMUNICATIONS. CONFERENCE RECORD, PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, NEW ORLEANS, LA, USA, 18-22 JUNE 2000, 2000, Piscataway, NJ, USA, IEEE, USA, pages 1253 - 1257 vol.3, XP002204464, ISBN: 0-7803-6283-7 *
THOMPSON J S ET AL: "PERFORMANCE OF ANTENNA ARRAY RECEIVER ALGORITHMS FOR CDMA", COMMUNICATIONS: THE KEY TO GLOBAL PROSPERITY. GLOBECOM 1996. LONDON, NOV. 18 - 22, 1996, GLOBAL TELECOMMUNICATIONS CONFERENCE (GLOBECOM), NEW YORK, IEEE, US, vol. 1, 18 November 1996 (1996-11-18), pages 570 - 574, XP000742212, ISBN: 0-7803-3337-3 *
YIM C ET AL: "ADAPTIVE ARRAY ANTENNA BASED ON ESTIMATION OF ARRIVAL ANGLES USING DFT ON SPATIAL DOMAIN", ELECTRONICS & COMMUNICATIONS IN JAPAN, PART I - COMMUNICATIONS, SCRIPTA TECHNICA. NEW YORK, US, vol. 76, no. 8, 1 August 1993 (1993-08-01), pages 96 - 107, XP000428985, ISSN: 8756-6621 *

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US11032035B2 (en) 2000-09-13 2021-06-08 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9426012B2 (en) 2000-09-13 2016-08-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8098568B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8098569B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
CN100428651C (en) * 2004-02-17 2008-10-22 大唐移动通信设备有限公司 Down wave beam shaping method and device of radio channel
US10517114B2 (en) 2004-07-21 2019-12-24 Qualcomm Incorporated Efficient signaling over access channel
US10237892B2 (en) 2004-07-21 2019-03-19 Qualcomm Incorporated Efficient signaling over access channel
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US10849156B2 (en) 2004-07-21 2020-11-24 Qualcomm Incorporated Efficient signaling over access channel
US11039468B2 (en) 2004-07-21 2021-06-15 Qualcomm Incorporated Efficient signaling over access channel
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8547951B2 (en) 2005-03-16 2013-10-01 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9693339B2 (en) 2005-08-08 2017-06-27 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US9240877B2 (en) 2005-08-22 2016-01-19 Qualcomm Incorporated Segment sensitive scheduling
US9860033B2 (en) 2005-08-22 2018-01-02 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9246659B2 (en) 2005-08-22 2016-01-26 Qualcomm Incorporated Segment sensitive scheduling
US8787347B2 (en) 2005-08-24 2014-07-22 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US10805038B2 (en) 2005-10-27 2020-10-13 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8681764B2 (en) 2005-11-18 2014-03-25 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
CN101072066B (en) * 2006-05-08 2011-05-11 中兴通讯股份有限公司 Intelligent antenna realizing method for CDMA communication system
WO2012083773A1 (en) * 2010-12-20 2012-06-28 中兴通讯股份有限公司 Method and device for controlling beam-forming
CN102026387A (en) * 2010-12-20 2011-04-20 中兴通讯股份有限公司 BF (beam forming) control method and device

Similar Documents

Publication Publication Date Title
WO2003069832A1 (en) Method for beamforming a multi-use receiver with channel estimation
DE60110039T2 (en) LINEAR SIGNAL SEPARATION THROUGH POLARIZATION DIVERSITY
DE69727476T2 (en) METHOD AND DEVICE FOR INTERFERENCE SUPPRESSION WITH DIFFERENT BEAMS, POLARISATIONS AND PHASE REFERENCES
EP1327314B1 (en) Beam-shaping method
DE10026077B4 (en) Beamforming method
DE69635256T2 (en) Adaptive decision-feedback equalization for communication systems
DE60118896T2 (en) MULTI-USER DETECTION USING AN ADAPTIVE COMBINATION OF SIMULTANEOUS CAPTURE AND SEQUENTIAL INTERFERENCE SUPPRESSION
DE112006001299B4 (en) Method for reducing interference in a radio system
DE102011004257B4 (en) Device and method for antenna diversity reception
EP1166393A1 (en) Beamforming method and device
DE19623667A1 (en) Principle information detection method for receiver in DS-CDMA system
DE102008024232A1 (en) Anti-interference processing unit and method for interference suppression in wireless data communication
DE10051144C2 (en) Method for improving channel estimation in a radio communication system
DE60213713T2 (en) Signal processing method and apparatus in a CDMA radio transmission system
EP1320200B1 (en) Method for transmitting signals between a first and second radio station and radio station
DE69926024T2 (en) Adaptive receiving device with group antenna
DE102011004259B4 (en) Device and method for antenna diversity reception
DE602005005245T2 (en) Adaptive equalization of a CDMA signal in the frequency domain
DE10026076C2 (en) Method and device for evaluating an uplink radio signal
EP1661264B1 (en) Method for transmitting signals in a radiocommunication system and corresponding transmitter station
DE19943687C1 (en) Method and arrangement for beamforming a rake receiver for one-user reception for the uplink channel in mobile radio systems
EP1337064A1 (en) Beamforming method for a multiuser receiver with channel estimation
DE10205910A1 (en) Scalar decision signal formation method for multiple antenna receiver uses channel estimation and beam forming method
DE10329632A1 (en) Method and apparatus for weighting channel coefficients in a rake receiver
DE102009061742B3 (en) Receiving and processing data

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP