WO1995018354A1 - Method and device for measuring position - Google Patents

Method and device for measuring position Download PDF

Info

Publication number
WO1995018354A1
WO1995018354A1 PCT/JP1994/002236 JP9402236W WO9518354A1 WO 1995018354 A1 WO1995018354 A1 WO 1995018354A1 JP 9402236 W JP9402236 W JP 9402236W WO 9518354 A1 WO9518354 A1 WO 9518354A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitter
signal
transmission
ultrasonic
measured
Prior art date
Application number
PCT/JP1994/002236
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Fujitani
Original Assignee
Nakanishi Metal Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP33391793A external-priority patent/JPH07200159A/en
Priority claimed from JP25091394A external-priority patent/JPH08114666A/en
Application filed by Nakanishi Metal Works Co., Ltd. filed Critical Nakanishi Metal Works Co., Ltd.
Publication of WO1995018354A1 publication Critical patent/WO1995018354A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations

Definitions

  • the present invention relates to a two-dimensional or three-dimensional position measuring method and apparatus using ultrasonic waves. Background technology
  • a single transmitter attached to an object to be measured intermittently transmits ultrasonic waves of a constant frequency, and a plurality of receivers in which the ultrasonic waves are arranged at predetermined intervals And measure the elapsed time from the start time of the transmission of ultrasonic waves by the transmitter to the reception time of the ultrasonic waves by each receiver, and calculate the distance from the transmitter to each receiver based on these times. It is known to obtain the position of the measured object based on these distances.
  • three receivers are used for three-dimensional position measurement and two receivers for two-dimensional position measurement.
  • the relationship between the transmitter and the receiver was reversed, and ultrasonic waves were intermittently transmitted from a plurality of transmitters arranged at predetermined intervals, and these ultrasonic waves were attached to the object to be measured.
  • One receiver receives and measures the elapsed time from the start time of ultrasonic transmission by each transmitter to the reception time of ultrasonic wave by the receiver.Based on these times, the measured object is measured in the same manner as above. It is also known to determine the position of Also in this case, three transmitters are used for three-dimensional position measurement and two transmitters are used for two-dimensional position measurement.
  • the latter method in which the receiver is mounted on the object to be measured, does not have the above problems, but has the following problems.
  • the frequency of the ultrasonic waves transmitted from a plurality of transmitters is the same, if the ultrasonic waves are transmitted from each transmitter at the same time, it cannot be distinguished from which transmitter the ultrasonic waves received by the receiver are. Therefore, it is necessary to transmit the ultrasonic waves from each transmitter and measure the distance in a time-division manner.
  • the measurement cycle is about 2 Omsec in a relatively large space of about 3 m on one side.
  • the directivity of the ultrasonic wave increases as the frequency increases, and the frequency of the ultrasonic wave that can be used for position measurement in a three-dimensional space is about 40 kHz or less.
  • a high frequency of about 25 kHz or more is required to distinguish it from the audible band.
  • the frequencies of ultrasonic waves that can be actually used are relatively close to each other, for example, 40, 32, and 25 kHz.
  • An object of the present invention is to solve the above problems and to provide a position measuring method and apparatus capable of performing a wide range of position measurement with high accuracy in a short measurement period by using a method of mounting a receiver on an object to be measured. It is in. Disclosure of the invention
  • the position measurement method intermittently transmits ultrasonic waves having different frequencies from a plurality of transmitters arranged at a predetermined interval. And at almost the same time, these ultrasonic waves are received by a single receiver attached to the object to be measured, and the received signals of the receivers are band-pass filters having a plurality of narrow-band characteristics having different center frequencies. , The received signal for each ultrasonic wave from each transmitter is individually detected, and the time elapsed from the start of transmission of ultrasonic waves by each transmitter to the detection time of the corresponding received signal for each transmitter is detected. The distance from each transmitter to the receiver is calculated based on the distance, and the position of the object to be measured is calculated based on these distances.
  • a position measuring method measures, for example, the position of an object to be measured in a coordinate system based on a display screen of an image display device.
  • a position measuring method measures, for example, a three-dimensional position of an object to be measured in a predetermined space around an imaging device whose angle can be adjusted based on position information.
  • a position measuring device includes a plurality of transmitters arranged at predetermined intervals, one receiver attached to an object to be measured, and intermittently transmitting ultrasonic waves having different frequencies from each transmitter. Transmitters that transmit at almost the same time.Received signals of receivers are passed through multiple bandpass filters with different narrowband characteristics with different center frequencies to individually detect received signals for each transmitter for ultrasonic waves from each transmitter. The distance from each transmitter to the receiver and the measured object based on the elapsed time from the transmission start time of each transmitter and the detection time of the corresponding reception signal for each transmitter. It is characterized by having a processing device for obtaining the position.
  • the band filter is at the same frequency as the corresponding ultrasound.
  • the resonators of these ultrasonic transducers are arranged facing each other at a distance of about one wavelength of the corresponding ultrasonic waves. An input signal is applied to the electrode, and an output signal is extracted from the electrode of the other transducer.
  • an operation section provided with an operation switch means for operating the object to be measured by hand, an expandable and contractible section having a base end fixed to the operation section, and an expandable and contractible section It has a detector fixed to the tip of the unit, and a receiver is attached to the detector.
  • ultrasonic waves having different frequencies are transmitted from a plurality of transmitters almost simultaneously, and the distance from each transmitter to the receiver is measured almost simultaneously.
  • the measurement cycle can be shortened as compared with the case where the distance from the object is measured by time division.
  • the received signal of the receiver is passed through a plurality of band filters having narrow band characteristics having different center frequencies from each other, the received signal for each transmitter with respect to the ultrasonic wave from each transmitter is individually detected. Even with the use of nearby ultrasonic waves, there is little influence from other ultrasonic waves or external noise, and highly accurate measurement is possible. Therefore, a method of attaching a receiver to an object to be measured can be used to accurately measure a wide range of positions in a short measurement period.
  • the bandpass filter has two piezoelectric ultrasonic transducers at the same frequency as the corresponding ultrasonic wave, and the resonators of these ultrasonic transducers are separated by about one wavelength of the corresponding ultrasonic wave.
  • Input signal is applied to the electrode of one of the transducers and output from the electrode of the other transducer. When the signal is taken out, it has excellent blocking characteristics, is less affected by other ultrasonic waves and extraneous noise, and enables more accurate measurement .
  • An operation section provided with an operation switch means for operating the object to be measured by holding it in a hand, an expandable and contractible section having a base end fixed to the operation section, and a distal end of the expandable section
  • an operation switch means for operating the object to be measured by holding it in a hand
  • an expandable and contractible section having a base end fixed to the operation section, and a distal end of the expandable section
  • FIG. 1 is a schematic perspective view of a presentation device showing one embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the presentation device of FIG.
  • FIG. 3 is a side view showing an example of the pointing member.
  • FIG. 4 is a block diagram showing an example of the configuration of the second receiving circuit.
  • FIG. 5 is a longitudinal sectional view showing one example of the bandpass filter.
  • Fig. 6 is a graph showing the cutoff characteristics of the band filter.
  • ⁇ Fig. 7 is a graph showing the cutoff characteristics required for the band filter when no AOC means is provided.
  • FIG. 8 is a timing chart showing an example of a transmission signal.
  • Figure 9 is a timing chart showing the received signal for each transmitter when the transmitted signal is detuned and when it is not detuned.
  • Figure 10 is a timing chart showing the smooth envelope of the half-wave rectified wave of the received signal for each transmitter when the transmitted signal is detuned and when not detuned.
  • Fig. 11 is a timing chart showing a stepped envelope of a half-wave rectified wave of a received signal for each transmitter.
  • Fig. 12 shows a stepped envelop This is a timing chart showing a stepped envelope with a large gap between the loop and the step.
  • Figure 13 is a timing chart showing the relationship between the stepped envelope with the difference between steps increased and the threshold.
  • Figure 14 is a timing chart showing the relationship between the smooth envelope and the threshold value when the received signal levels are different.
  • Figure 15 is a timing chart showing the relationship between the smooth envelope of the received signal and the fluctuation of the threshold.
  • FIG. 11 is a timing chart showing a stepped envelope of a half-wave rectified wave of a received signal for each transmitter.
  • Fig. 12 shows a stepped envelop This is a timing chart showing
  • FIG. 16 is an explanatory diagram showing a method of operating the indicating member when instructing the figure deformation.
  • FIG. 17 is an explanatory diagram showing the relationship between the operation of the pointing member and the figure deformation.
  • FIG. 18 is a block diagram corresponding to FIG. 2 showing another embodiment of the present invention.
  • FIG. 19 is a block diagram corresponding to FIG. 2, showing still another embodiment of the present invention.
  • FIG. 20 is a block diagram corresponding to FIG. 2 showing still another embodiment of the present invention.
  • FIG. 21 is a block diagram corresponding to FIG. 2 showing still another embodiment of the present invention.
  • FIG. 22 is a side view showing another example of the indicating member in a state where the expansion and contraction portion is extended.
  • FIG. 23 is a side view of the pointing member of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 schematically shows an example of the appearance of a presentation device using the method and device of the present invention.
  • Fig. 2 shows the functional configuration of the presentation device.
  • This presentation device is installed in a room such as a conference room event venue.
  • the presentation device is a display provided at a predetermined location on the wall (1) of the room.
  • Screen (2) Two 2D measurement transmitters (3a) (3b) arranged at two locations on the screen (2) at predetermined intervals, and the ceiling in the room
  • Three three-dimensional measurement transmitters (5a), (5b), and (5c) arranged at predetermined intervals on three locations on surface U).
  • Indoor desk It consists of an image display device (10) and a control unit (11) installed above (9).
  • Two-dimensional measurement transmitters (abbreviated as two-dimensional transmitters) are collectively referred to by reference numeral (3), and when it is necessary to distinguish them, the first two-dimensional transmitter (3a) and the second It will be called the transmitter (3b).
  • the three-dimensional measurement transmitters (abbreviated as three-dimensional transmitters) are collectively referred to by reference numeral (5), and when it is necessary to distinguish them, the first three-dimensional transmitter (5a) and the second three-dimensional transmitter, respectively. (5b) and the third transmitter (5c).
  • the presentation device has the following functions: screen (2), pointing member (8), position measuring device (12), image display device (10), television camera (6), It consists of an adjusting device (7) and a control device (13).
  • the display screen (2) is not limited to the one in this embodiment as long as it can display an image.
  • a blackboard-shaped display board may be used as a display screen.
  • a white wall surface may be used as a display screen.
  • the presentation device does not need to be provided with a separate display screen.
  • the image display device (10) is a screen display based on control signals from the control device (13), image information, and the like. (2) It is for displaying a desired image on it, and is composed of, for example, a known liquid crystal projector.
  • the TV camera (6) is mounted on the ceiling (4) via a direction adjustment device (7).
  • the orientation adjustment device (7) is composed of an azimuth angle adjustment servo mechanism (first servo mechanism) (7a) for adjusting the angle (azimuth angle) in the horizontal plane about the vertical axis, and (7a) And a servo mechanism for adjusting the elevation angle (second servo mechanism) (7b) for adjusting the angle (elevation angle) in the vertical plane.
  • the azimuth angle is adjusted by the first servo mechanism (7a) and the elevation angle is adjusted by the second servo mechanism (7b), so that the orientation of the television camera (6) can be changed.
  • the indicating member (8) is used by a speaker or the like to indicate a two-dimensional position on the screen (2) and a three-dimensional position in the space of the room, switching of a measurement mode to be described later, various operation commands, and the like.
  • the position measurement device (12) is an object to be measured by the position measurement device (12).
  • the position measurement device (12) performs measurement mode switching information from the pointing member (8) based on the information. It is for selectively measuring the two-dimensional position on the screen (2) and the three-dimensional position in space indicated by the pointing member (8).
  • the control device (13) controls the direction adjustment device (7) and the TV camera (6) based on the operation command information from the pointing member (8) and the three-dimensional position information measured by the position measurement device (12). Control of image display device (10) based on operation command information from pointing member (8), two-dimensional position information measured by position measurement device (12), image signal from TV camera (6), etc. It is for doing. Although illustration is omitted, the control device (13) includes a microcomputer (not shown) and the like, and an appropriate external storage device and a printing device as necessary. An output device such as a device is provided. The control device (13) is set in advance with three-dimensional position information of the television camera (6) in the space. The control device (13) is functionally provided with image deformation means for performing image deformation described below.
  • Fig. 3 shows the details of the appearance of the pointing member (8)
  • Fig. 2 shows the details of its electrical configuration.
  • the indicating member (8) is provided with a rod-shaped case (14) which is slightly bent at a portion closer to the base end than in the middle of the length, and linearly extends toward the base end and the front end portion with the bending force. ing.
  • An omnidirectional microphone (hereinafter abbreviated as microphone) (15) is attached to the tip of the case (14).
  • the microphone (15) is omnidirectional and has sufficient reception sensitivity to sound in the ultrasonic band of about 40 kHz, and is composed of, for example, an electret condenser microphone. This constitutes a receiver of a position detection device (12) described later.
  • the mode selection button (16), upper button ( ⁇ ), and lower button (18) are attached to the bent part of the case (14).
  • a tip contact detection switch (abbreviated as tip switch) (19) is attached to the tip of the case (14).
  • the mode selection button (16) is a self-holding switching switch that is switched between the on (closed) state and the off (open) state and is held in each state.
  • the other buttons (16) ( Ii) (18) and the switch (19) are self-returning push-button switches that are turned on only during operation.
  • the microphone (15), the button (16) ( ⁇ ) (18) and the switch (19) are connected to the cable (20) and the cable (20) connected to the proximal end of the pointing member (8) as described in detail later.
  • the control unit (1U is connected to the required location via the connector (21).
  • the mode selection button (16) is used for the two-dimensional measurement mode (12) of the position measurement device (12) described later. 2D mode) and 3D measurement It is used to switch modes (abbreviated as 3D mode).
  • the upper button ( ⁇ ) and the lower button (18) are for performing various operation commands described later.
  • the tip switch (19) is used to detect that the tip of the pointing member (8) has contacted the screen (2) when performing handwriting input described later on the screen (2). Things.
  • the position measurement device (12) includes the two-dimensional transmitter (3), three-dimensional transmitter (5) and microphone (15), as well as the mode switching device (22), the transmission device (23), and the reception device. Equipment (24) and processing equipment (25) are provided. The parts of the position measurement device (12) other than the transmitters (3) and (5) and the microphone (15) and the control device (13) are built in the control unit (11).
  • Each of the transmitters (3) (5) is composed of, for example, a piezoelectric ultrasonic transducer.
  • the natural frequency wave of the first transmitter (3a) (5a) for 2D and 3D is 25 kHz
  • the natural vibration of the second transmitter (3b) (5b) for 2D and 3D The number wave is 40 kHz
  • the natural frequency wave of the third transmitter for 3D (5c) is 32 kHz.
  • the transmitter (23) intermittently and almost simultaneously transmits ultrasonic bursts having different frequencies from each two-dimensional transmitter (3) or each three-dimensional transmitter (5) according to the measurement mode described later. It is provided with three transmission circuits (26a) (26b) (26c) and a 50 Hz transmission control oscillation circuit (27).
  • the transmission circuits are collectively referred to by reference numeral (26), and when it is necessary to distinguish them, they will be referred to as a first transmission circuit (26a), a second transmission circuit (2Gb), and a third transmission circuit (26c), respectively.
  • the oscillation circuit (27) is for controlling the transmission interval of the ultrasonic burst, and transmits the transmission start pulse signal A every 2 O msec to each of the transmission circuits (26) and the receiving device (24). And output to the processing device (25).
  • Each transmission circuit (26) is for outputting transmission signals Bl, B2, and B3 having a constant frequency for several cycles when the transmission start pulse signal A is input from the oscillation circuit (27).
  • each transmission circuit (26) is, for example, an oscillation circuit that constantly outputs a transmission pulse signal of a constant frequency, and a gate for a predetermined time when a transmission start pulse signal A is input. It has a gate circuit that opens and outputs several cycles of transmission pulse signals as transmission signals Bl to B3.
  • Each transmitting circuit (26) outputs measurement start pulse signals CI, C2, and C3 in synchronization with the rise of the first pulse of the transmission signals B1 to B3, respectively.
  • the frequencies of the transmission signals Bl to B3 are 25 kHz for the first transmitting circuit (26a), 40 kHz for the second transmitting circuit (26b), and 40 kHz for the third transmitting circuit (26c). 32 kHz ⁇ Actually, the frequency of the transmission signals B 1 to B 3 of each transmission circuit (26) is slightly higher than the natural frequency of the corresponding transmitter (3) (5). Has been detuned.
  • the frequencies of the actual transmission signals Bl to B3 are, for example, 25.2 kHz for the first transmitting circuit (26a) and 40.4 kHz for the second transmitting circuit (26b).
  • the third transmitting circuit (26c) is set to 32.3 kHz.
  • the levels of the transmission signals Bl to B3 of each transmission circuit (26) are controlled based on transmission level control signals D1, D2, and D3 from the processing device (25) described later.
  • FIG. 8 shows an example of the transmission signal B 2.
  • the mode switching device (22) measures the two-dimensional position on the screen (2) based on the state of the mode selection button (16) of the pointing member (8) and the two-dimensional mode and the room. It is for switching to the three-dimensional mode for measuring the three-dimensional position in the space of the two-dimensional measurement.
  • the first transmission circuit (26a) is connected to the first two-dimensional transmitter (3a).
  • the first switch (28) and the second transmission circuit (26b) for switching to the 3D measurement state connected to the 3D first transmitter (5a) are connected to the 2D second transmitter (3b).
  • the 3rd mode can be switched between the 2D measurement state (open state) disconnected from the 3D 3rd transmitter (3c) and the 3D measurement state (closed state) connected to the 3D 3rd transmitter (3c).
  • An opening / closing switch (30) is provided.
  • the switches (28) to (30) of the mode switching device (22) are in the two-dimensional measurement state.
  • the second ultrasonic burst is transmitted from the second three-dimensional transmitter (5b) based on the transmission signal B2 from the second transmission circuit 26b), and the three-dimensional burst is transmitted based on the transmission signal B3 from the third transmission circuit (26c).
  • An ultrasonic burst of 32 kHz (third ultrasonic burst) is transmitted from the third transmitter for transmission (5c).
  • the receiving device (24) converts the reception signal E from the microphone (15) of the pointing member (8) into a band-pass filter having narrow-band characteristics having different center frequencies.
  • a transmission start pulse signal A from the transmission control oscillation circuit (27) and a measurement start pulse signal C 1 to a corresponding measurement start pulse signal from each transmission circuit (26) C 3 is input, and the count control signals F 1, F 2, and F 3 are output from the receiving circuits (32) to the processing device (25).
  • the center frequency of the first filter (31a) is 25 kHz
  • the first receiving circuit (32a) detects the received signal for each first transmitter for the first ultrasonic burst ⁇ second filter
  • the center frequency in the evening (31b) is 40 kHz
  • the second receiving circuit (32b) detects the second transmitter-specific received signal for the second ultrasonic burst.
  • the center frequency of the third filter (31c) is 32 kHz
  • the third receiving circuit (32c) detects the second transmitter-specific received signal for the second ultrasonic burst.
  • the count control signals F1 to F3 from each receiving circuit (32) are used between the time when the corresponding measurement start pulse signals CI to C3 are input and the time when the corresponding received signal for each transmitter is detected. Is on, otherwise it is off.
  • the processing device (25) calculates the corresponding reception signal for each transmitter by the receiving device (24) from the transmission start time of the ultrasonic burst by each two-dimensional transmitter (3) or each three-dimensional transmitter (5). Until the detection time of
  • the counting device ( ⁇ ) has three counters (36a), (36b) and (36).
  • the counters are collectively referred to by the reference numeral (36), and when it is necessary to distinguish them, the first power counter is used.
  • the oscillation circuit (34) is a 1 MHz clock pulse for counting time.
  • the reset signal G from the controller is input, and the count values HI, H2, and H3 of each counter (36) are input to the arithmetic unit (35).
  • the first ultrasonic burst is transmitted by the first transmitter for 3D or 3D transmission (3a) (5a), and then the corresponding received signal for each first transmitter is transmitted to the first receiver circuit (32
  • the second force counter (36b) is used to count the elapsed time until detection by a), and the second force counter (36b) is used by the second or three-dimensional second transmitter (3b) (5b).
  • the third counter (36c) starts transmission of the third ultrasonic burst by the three-dimensional third transmitter (5c), and then transmits the corresponding third-transmitter-specific received signal to the third receiver circuit (36c).
  • Each counter (36) is reset by a reset signal G from the arithmetic unit (35), and counts the elapsed time until detection by 32c). While the corresponding count control signals F1 to F3 are on, the pulse from the oscillation circuit (34) is counted to count the time and the count value when the count is stopped. H1 to H3 are held.
  • the arithmetic unit (35) determines the distance from each two-dimensional transmitter (3) to the microphone (15) or each three-dimensional transmitter (3) based on the count values HI to H3 of each counter (36). This is for determining the distance from the microphone (15) to the microphone (15), and for determining the two-dimensional or three-dimensional position of the microphone (15) based on these distances. (Computer).
  • the arithmetic unit (35) functionally includes A 0 C (automatic output level control) means for controlling the level of the transmission signal of the corresponding transmission circuit (26) according to the reception level of the reception signal for each transmitter. ing.
  • the arithmetic unit (35) contains the ultrasonic wave propagation velocity, the position coordinate information of the two 2D transmitters (3) on the 2D coordinates on the screen (2), and the 3D coordinates in space. Information necessary for position measurement, such as the position coordinate information of the three three-dimensional transmitters (5), is set and stored. ⁇ A temperature sensor is installed at an appropriate location on the presentation device. However, it is also possible to correct the set value of the ultrasonic wave propagation speed according to the temperature change.
  • the arithmetic unit (35) reads the count values H1 to H3 of each counter (36) and stores them.
  • the reset signal G is output to each counter (36).
  • each two-dimensional transmitter (3) or each two-dimensional transmitter (3) is used based on the previously stored count values HI to H3 of each counter (36). Distance from 3D transmitter (5) to microphone (15) and 2D or 3D position of microphone (15)
  • the arithmetic unit (35) uses the AOC means to transmit the transmission signals B 1 to B 1 to the transmitter (3) (5) based on the distance from each transmitter (3) (5) to the microphone (15). Calculates the transmission level value of B3 and sends it to the corresponding transmission circuit (26). Output as 3.
  • the arithmetic unit (35) receives buttons (16) to () of the indicating member (8) and switch signals from the switch (19), and inputs the switch signal information and the measurement mode. Selection information, coordinate information of the measured two-dimensional position and three-dimensional position, and the like are output from the arithmetic unit (35) to the control unit (13).
  • the position measuring device (12) is configured such that each time the transmission start pulse signal A is output from the transmission control oscillation circuit (27), the two-dimensional microphone (15) according to the measurement mode. Measure position or 3D position. Next, the position measurement operation by the position measurement device (12) will be described in detail for each measurement mode.
  • the transmission start pulse signal A is output from the transmission control oscillation circuit (27) when the two-dimensional mode is selected, first, the first and second counters (36a) are operated by the arithmetic unit (35). After reading the count values HI and H2 of (36b) and storing them in memory, etc., the reset signal G is output from the arithmetic unit (35), and each counter (36a ) (36b) is reset, and at the same time or slightly later, the first and second ultrasonic bursts are transmitted from the two two-dimensional transmitters (3), respectively.
  • the first and second transmitting circuits (26a) and (26b) transmit the measurement start pulse signals C 1 and C 2 is output, which turns on the count control signals F 1 and F 2, and the first and second counters (36 a) and (36 b) start counting. . Then, the next transmission start pulse signal A is output. In the meantime, the arithmetic circuit (35) calculates the two-dimensional position coordinates of the microphone (15) and outputs the transmission level control signals D 1 and D 2 as described later.
  • the first ultrasonic burst transmitted from the two-dimensional first transmitter (3a) is received by the microphone (15)
  • the first receiver-specific received signal is detected by the first receiver circuit (32a)
  • the count control signal F1 is turned off
  • the first counter (36a) stops counting.
  • the count value HI held at the first counter (36) is the elapsed time from the transmission start time of the first ultrasonic burst to the detection time of the first transmitter-specific received signal corresponding thereto. That is, it corresponds to the time required for the ultrasonic wave to propagate from the two-dimensional first transmitter (3a) to the microphone (15).
  • the distance from the two two-dimensional transmitters (3) to the microphone (15) is calculated, and based on these distances, the screen (2) of the microphone (15) is calculated.
  • the above two-dimensional position coordinates are calculated.
  • the count value HI of the first counter (36a) corresponds to the time required for the ultrasonic wave to propagate from the first two-dimensional transmitter (3a) to the microphone (15). Therefore, the distance from the first two-dimensional transmitter (3a) to the microphone (15) can be calculated from this time and the propagation speed of the ultrasonic wave.
  • the distance from the second two-dimensional transmitter (3b) to the microphone (15) can be calculated from the count value H2 of the second counter (36b) and the propagation speed of the ultrasonic wave.
  • the two-dimensional position coordinates of the microphone (15) are calculated. can do.
  • the transmission level to the first transmission circuit (26a) is calculated based on the calculated value of the distance from the first two-dimensional transmitter (3a) to the microphone (15). A value is obtained, and this is output to the first transmission circuit (26a) as a transmission level control signal D1.
  • This transmission level value is preferably obtained by selecting a preset step-like value so as to increase as the calculated value of the distance increases.
  • the transmission signal B1 is output based on the transmission level control signal D1.
  • Level is adjusted. That is, the level of the transmission signal B 1 is adjusted based on the calculated value of the distance to the ultrasonic burst two times before. As a result, even if the distance from the transmitter (3a) to the microphone (15) changes, the reception level of the first transmitter-specific reception signal received by the reception circuit (32a) falls within a certain range.
  • a transmission level value for the second transmission circuit (26b) is obtained based on the calculated value of the distance from the second two-dimensional transmitter (3b) to the microphone (15).
  • the signal is output to the second transmitting circuit (26b) as D 2, the transmission start pulse signal A is output next, and the transmission signal B 2 is output from the second transmitting circuit (26b).
  • the level of the transmission signal B 2 is adjusted based on the transmission level control signal D 2. Then, by repeating the above operation, each time the transmission start pulse signal A is output, the two-dimensional position of the microphone (15) is measured.
  • the arithmetic unit (35) uses the three counters (36). After reading and storing the count values H1 to H3, the reset signal G is output from the arithmetic unit (35), and each counter (36) is reset. Later, the first, second and third ultrasonic bursts are transmitted from the three three-dimensional transmitters (5), respectively. At the same time as the transmission of each ultrasonic burst, the measurement start pulse signals C 1, C 2, and C 3 are output from the three transmission circuits (26) to the three reception circuits ( ⁇ ), respectively. The control signals F1, F2 and F3 are turned on, and the three counters (36) start counting.
  • the arithmetic unit (35) calculates the three-dimensional position coordinates of the mig (15) and the transmission level control signal D 1, as described later. D 2 and D 3 are output.
  • the first ultrasonic burst transmitted from the first three-dimensional transmitter (5a) is received by the microphone (15).
  • the signal is detected by the first receiving circuit (32a) and its power is
  • the count control signal F1 is turned off, and the first counter (36a) stops the power count.
  • the second counter (36b) stops counting
  • the third counter (36c) stops counting when the third ultrasonic burst transmitted from the three-dimensional third transmitter (5) is received by the microphone (15).
  • the count value HI of the first counter (36a) is equal to the time required for the ultrasonic wave to propagate from the first three-dimensional transmitter (5a) to the microphone (15).
  • the count value H2 of the counter (36b) is calculated by the time required for the ultrasonic wave to propagate from the second three-dimensional transmitter (5b) to the microphone (15), and the count of the third counter (36c).
  • the value H3 corresponds to the time required for the ultrasonic wave to propagate from the third-dimensional third transmitter (5c) to the microphone (15)
  • the next transmission start pulse signal A is output
  • the arithmetic unit (35) reads and stores the count values H1, H2, and H3, and outputs the reset signal G.
  • the transmission circuit (26), the transmitter (5) The same operation as described above is performed in the circuit (32) and the counter (36) At the same time, in the arithmetic unit (35), based on the previously stored count values HI, H2, and H3, As in the case of the two-dimensional mode, the distances from the three three-dimensional transmitters (5) to the microphone (15) are calculated respectively, and further, these distances and the calculation device (35) are calculated.
  • the three-dimensional position coordinates of the microphone (15) are calculated based on the three-dimensional position coordinate information of the three set three-dimensional transmitters (5).
  • Transmission level values for the three transmission circuits (26) are determined, and these are used as transmission level control signals.
  • the signals are output to the corresponding transmitting circuits (26) as signals Dl, D2, and D3.
  • the two-dimensional position or the three-dimensional position is always measured by the position measuring device (12). That is, while the mode selection button (16) of the indicating member (8) is switched to the two-dimensional mode, the two-dimensional position is measured and the two-dimensional position information is transmitted to the control device (U). ), And while the mode selection button (16) is switched to the 3D mode, the 3D position is measured and the 3D position information is sent to the controller (13). Sent. Then, based on the position information, the switch signal information from the indicating member (8), and the like, the control device (13) uses the direction adjustment device (7), the television camera (6), and the image display device. The image displayed on the screen (2) is controlled by controlling the device (10).
  • the speaker moves the pointing member (8) to an arbitrary position on the screen (2) with the mode selection button (16) switched to the two-dimensional mode
  • the two-dimensional position of the microphone (15) at the tip of the pointing member (8) on the screen (2) is measured.
  • the screen (2 ) Controls such as switching the upper display, and selection of the work menu displayed on the screen (2).
  • the tip switch (19) of the indicating member (8) against the screen (2) to turn it on, the hand switch mode is set and the tip switch (19) is set to the handwriting mode.
  • handwriting input is performed by the pointing member (8), and the information input by handwriting is displayed in this way.
  • handwriting input can be performed with t) o
  • the speaker moves the indicating member (8) to an arbitrary position in the space with the mode selection button (16) switched to the three-dimensional mode side
  • the instruction at that time is given.
  • the three-dimensional position of the tip of the member (8) is measured.
  • the TV camera (6) captures objects such as materials and displays the images. For example, when the tip of the pointing member (8) is brought close to an object such as a document placed at an arbitrary position such as on a desk (9) and an imaging command is issued, the control device (13) causes the control device (13) to perform the imaging command.
  • the position of the tip of the pointing member (8) that is, the three-dimensional position information of the object is stored. Based on this position information and the position information of the television camera (6), the azimuth of the orientation adjustment device (7) is stored. The angle of the camera and the elevation angle are controlled, the TV camera (6) is pointed at the object, the focus of the TV camera (6) is adjusted, the object is imaged, and the TV camera is imaged. Based on the image signal from (6), the captured image of the object can be displayed on the screen (2).
  • image deformation such as moving, enlarging / reducing, rotating, projective transformation, etc. is performed to make it easier to see, or stored in advance. Doing In some cases, it is required to combine with another image or add comments etc. by handwriting input.However, it is necessary to select the measurement mode from the pointing member U) and respond to various operation commands. Based on this, the above-described operation can be performed by the image deforming means of the control device.
  • FIG. 16 are diagrams for explaining the operation method of the pointing member (8).
  • the imaging range of the television camera (6) is indicated by a symbol T. ing.
  • the position in the space is represented by three-dimensional rectangular coordinates based on the X, Y, and Z axes. In this case, the X and Y axes are horizontal and the Z axis is vertical.
  • the center point P of the operation is set within the imaging range T of the television camera (6). This operation is performed by bringing the tip of the pointing member (8) (the portion of the microphone (15)) into the imaging range T and double-clicking the lower button (18). If the lower button (18) is double-clicked while the tip of the pointing member (8) is within the imaging range T, the position of the tip of the pointing member (8) measured at that time is changed. Set as center point P. When the setting of the center point P of the operation is completed, the reference vector VQ is set as shown in Fig. 16 (b). ⁇ This operation moves the tip of the pointing member (8) to a desired position in the space.
  • the decision on image processing is made as follows by comparing the comparison vector V a with the reference vector V o. That is, when the comparison vector V a is set, first, the rotation angle 6 »of the comparison vector V o, the change rate AL of the length of the comparison vector V a, and the Z of the comparison vector V a The coordinate change rate ⁇ Z is obtained.
  • the rotation angle 0 is represented by the angle formed by the projection of the comparison vector V a onto the XY plane with respect to the projection of the reference vector V o onto the XY plane.
  • the rate of change of length AL is expressed by the ratio (L ao) of the length L a of the comparison vector V a to the length L o of the reference vector V o.
  • the rate of change of the Z coordinate ⁇ Z is the Z coordinate value Z a of the tip of the comparison vector V a (the end opposite to the center point P of the operation) and the Z coordinate value ⁇ of the tip of the reference vector V o. It is represented by the ratio ((Za-Z0) / L0) of the difference between ⁇ (Za — Z0) and the length Lc of the reference vector Vo. These values are well known It can be obtained using a calculation formula.
  • FIG. 17 shows the setting operation of the center point P, the reference vector VG and the comparison vector V a of the operation by the indicating member (8), and the corresponding operations.
  • FIG. 6 is a diagram showing a relationship with image deformation to be performed.
  • the left side of each figure in FIG. 17 shows the operation of the pointing member (8), (a) and (b) are plan views of the portion of the imaging range T, and (c) is a perspective view of the same portion. ing.
  • the right side of each figure in Fig. 17 shows the state of image deformation on the screen (2), all of which are views of the screen (2) viewed from the front.
  • the reference vector V 0 is set so as to be substantially parallel to the Y axis.
  • the comparison vector V a is set as shown in Fig. 17 (a).
  • the comparison vector V a is set so that the length is not substantially different from the reference vector V G and is substantially horizontal.
  • the rotation angle is larger than the rate of change ⁇ L of the length and the rate of change ⁇ Z of the Z coordinate, the image is rotated, and the image on the screen (2) is indicated by a broken line.
  • the state changes from the state shown to the state shown by the solid line.
  • the direction and degree of rotation of the image are determined based on the direction and magnitude of the rotation angle 0.
  • the comparison vector Va When instructing enlargement / reduction of an image, for example, the comparison vector Va is set as shown in Fig. 17 (b). In this case, compare The vector Va is set in almost the same direction as the reference vector VG. For this reason, the rate of change of the length is larger than the rate of change ⁇ Z of the rotation angle S and the Z coordinate, and the image is enlarged and reduced.
  • the comparison vector Va since the comparison vector Va is longer than the reference vector VQ, and therefore, the length change rate ⁇ L is larger than 1, the image is enlarged and the screen ( 2) The upper image changes from the state shown by the broken line to the state shown by the solid line.
  • the comparison vector V a is shorter than the reference vector VG, the length change rate ⁇ L becomes smaller than 1, and the image is reduced. In this case, the degree of enlargement / reduction of the image is determined based on the length change rate.
  • the comparison vector Va is set as shown in Fig. 17 (c).
  • the comparison vector V a is set so that its length is not substantially different from the reference vector VG, and is approximately in the vertical plane including the reference vector VQ. Therefore, the rate of change ⁇ Z of the Z coordinate becomes larger than the rotation angle 0 and the rate of change AL of the length, and the projective transformation of the image is performed.
  • the image on the screen (2) is indicated by a broken line.
  • the state changes from the state shown to the state shown by the solid line. In this case, the direction and degree of the projective transformation of the image are determined based on the sign (direction) and the magnitude of the rate of change ⁇ ⁇ of the Z coordinate.
  • a light source may be attached to the tip of the indicating member, and the light source may be used to capture the image of the television camera, when the light source emits light, in addition to the method described in the above embodiment.
  • One possible method is to control the direction of the TV camera so that it is in the center of the range, and then align the pin with the light source.
  • this method cannot accurately measure the three-dimensional position of the light source Therefore, it is not possible to instruct an image deformation using the above-described instruction member.
  • the TV camera cannot be pointed in a direction that is not within the field of view of the TV camera.
  • the receiving circuit (26b) includes an amplifying circuit (37b), a band filter (31b) having a narrow band characteristic, Half-wave rectifier circuit (38b), stepped envelope (envelope waveform) generator (39b), shaping circuit (40b), comparator Ulb), FZF (flip-flop) (42 b) and ATLC circuit (automatic threshold adjustment circuit) (43b).
  • the received signal E from the microphone (15) is amplified by the amplifier circuit (37b) and input to the filter (311)).
  • the filter (31b) the second transmitter-specific received signal I (see Fig. 9 (a)) for the second ultrasonic burst from the corresponding second transmitter (3b) (5b) is extracted. This is input to the half-wave rectifier circuit (38b).
  • the received signal I for each second transmitter is half-wave rectified, and in the envelope generation circuit (39b), the half-wave rectified wave of the signal I is converted into a stepped envelope J (Fig. 11). Is generated.
  • the envelope generation circuit (39b) is well known as an AM wave detection circuit, and includes a capacitor (44) and a resistor (45). In a normal detection circuit, a smooth envelope connecting the peaks of the half-wave rectified wave is generated. In this generation circuit (39b), the CR values of the capacitor (44) and the resistor (45) are usually It is smaller so that the envelope rises in steps. In the shaping circuit (40b). After the stepped envelope J is amplified by the amplifier circuit (46), the low-frequency component is removed by the high-pass filter (47), and the stepped envelope with a large difference between the steps of the stairs. K (see Figure 12) is generated This is input to one input terminal of the comparator lb).
  • the threshold value L from the ATLC circuit (43b) is input to the other input terminal of the comparator (41b), and the output signal of the comparator Ulb) is input to FZF U2b).
  • the comparator (41b) compares the stepped envelope with the threshold value L (see Fig. 13), and while the envelope is below the threshold value L, the output signal of the comparator (41b) is off (L0w). When the envelope K exceeds the threshold L, the output signal of the comparator Ulb) is turned on (High level).
  • the AT LC circuit (43b) is a well-known type that adjusts the threshold value L in accordance with the reception level of the signal I in order to improve the measurement accuracy.
  • the first analog switch (48), It includes a first and a second peak hold circuit U9) (50), a second analog switch (51) -scale conversion circuit (52), and a switch control circuit (53).
  • the transmission start pulse signal A from the transmission control oscillation circuit (27) is input to the switch control circuit (53).
  • the switch control circuit (53) outputs The two switches (48) and (51) are interlocked to switch between the first state and the second state.
  • the first switch U8) is switched to the second peak hold circuit (50), and the envelope J is input to the second peak hold circuit (50) and The second switch (51) is switched to the first peak hold circuit (49).
  • the output of the first peak hold circuit (49) is input to the scale conversion circuit (52).
  • the first switch U8) is switched to the first peak hold circuit (49), and the envelope J is switched to the first peak hold circuit U9).
  • the second switch (51) is connected to the second peak hold circuit (50).
  • the output of the second peak hold circuit (50) is input to the scale conversion circuit (52).
  • the scale conversion circuit (52) is adapted to respond to the peak value of the previous envelope J held by each of the peak hold circuits (49) (50) input via the second switch (51).
  • the threshold value L is adjusted, for example, so as to be a fixed ratio (for example, 1 Z 5) with respect to the previous peak value of the envelope J.
  • the transmission start pulse signal A is input to the switch control circuit (53) and the switch U8) (51) is switched to the first state, the reception is performed from the microphone (15) after this.
  • the signal E is input, the envelope J is input to the second peak hold circuit (50) via the first switch (48), and the peak value is held. At this time.
  • the first peak hold circuit (49) holds the peak value of the envelope J input after the previous input of the transmission start pulse signal A, and this is the second switch.
  • the threshold value L is adjusted based on this peak value.
  • the switch control circuit (53) and the switches (48) and (51) are switched to the second state, the microphone (15) ).
  • the received signal E is input, the envelope J is input to the first peak hold circuit (49) via the first switch (48), and the peak value is held.
  • the peak value of the envelope J input after the previous input of the transmission start pulse signal A is held in the second peak hold circuit (50) as described above.
  • the signal is input to the scale conversion circuit (52) via the switch (51) of 2, and the threshold value L is adjusted based on this peak value.
  • the current threshold value L is adjusted according to the peak value of the envelope J input after the previous transmission start pulse signal A was input.
  • the F / F (42b) is for outputting the count control signal F2 to the second counter (36b), and the measurement start pulse signal C2 from the second transmission circuit (26b) is FZF ( 42b).
  • the count control signal F 2 which is the output of the F / F (42b), turns on when the measurement start pulse signal C 2 is input, and turns on when the output signal of the comparator (41b) turns on. It turns off and then keeps on until the measurement start pulse signal C 2 is input.
  • the second receiving circuit (32b) when the transmission start pulse signal A is input, the states of the switches (48) and (51) of the ATLC circuit (43b) are switched, and thereby the scale conversion circuit (52)
  • the threshold L adjusted based on the previous peak value of the envelope J held by the connected peak hold circuit (49) (50) is input to the comparator (b).
  • the transmission signal B2 is output from the second transmission circuit (26b) and the measurement start pulse signal C2 is output, the count control signal F2 from the FZF (42b) is turned on.
  • the comparator (41b) when the stepped envelope K for the second transmitter-specific received signal I extracted by the filter (31b) exceeds the threshold L, this is detected by the comparator (41b), and the comparator (41b) detects this.
  • the output signal of 41b) turns on, and the count control signal F 2 from F ZF (42b) turns off. That is, as described above, the count control signal F 2 is turned on from the input of the measurement start pulse signal C 2 to the detection of the second transmitter-specific received signal I.
  • the filter (31b) includes a pair of piezoelectric ultrasonic transducers (55) and (56) disposed opposite to each other in a cylindrical case (54).
  • Each transducer (55) (56) consists of an elastic body (55a) (56a), a piezoelectric ceramic (55b) (56b), a metal plate (55c) (56c), and a resonator (55d).
  • ) (56d) the elastic members (55a) and (56a) at both ends of the case (54) so that the resonators (55d) and (56d) face each other. It is fixed to the support members (57) (58) fixed to the part.
  • the input-side transducer (55) is connected to the input terminals (59a) and (59b), and the input terminal (59b) is connected to the output terminal of the amplifier circuit (b).
  • the transducer (56) on the output side is connected to the output terminals (Ha) and (60b), and the output terminals (60a and Qb) are connected to the input terminals of the half-wave rectifier circuit (38b).
  • the natural frequency of the two transducers (55) (56) is 40 kHz
  • the spacing between the resonators (55 d) and (56 d) is the corresponding ultrasonic (40 kHz) ) Is set to about one wavelength.
  • the center frequency of this finalizer (31b) is 40 kHz, and its cutoff characteristics (discriminability) are shown by the curve (b) in Fig. 6. Note that the degree of detuning of the transmission signal B 2 of the transmission circuit (26b) with respect to the center frequency of the filter (31b) is determined based on the cutoff characteristics of the filter (31b).
  • the configuration of the first and third receiving circuits (a) and (32c) is almost the same as that of the second receiving circuit (32b).
  • the center frequency of the first filter (31a) is 25 kHz, and the FZF for outputting the count control signal F1 has the first frequency.
  • the measurement start pulse signal C 1 from the transmission circuit (26a) is input.
  • the center of the third filter (31c) The frequency is 32 kHz, and the count control signal F 3 is output.
  • the measurement start pulse signal C3 from the third transmission circuit (26c) is input to the F / F for the measurement.
  • the cutoff characteristic of the first filter (31a) is indicated by a symbol (a)
  • that of the third filter (31c) is indicated by a symbol (c).
  • the frequency of ultrasonic waves transmitted from a plurality of transmitters is set to be the same.
  • the ultrasonic waves are transmitted from each transmitter at the same time, it is not possible to distinguish which transmitter the ultrasonic wave received by the receiver is from, so the transmission of the ultrasonic waves from each transmitter and The distance was measured in a time-sharing manner.
  • the number of transmitters is two and the propagation distance of the ultrasonic wave, that is, the propagation time, is short, so the distance from each transmitter must be measured.
  • the measurement cycle can be set to a sufficiently short value, for example, 1 O msec or less.
  • the number of transmitters is three, and the propagation time of ultrasonic waves is long, so the distance from each transmitter is measured in a time-division manner. In this case, the measurement cycle cannot be shortened sufficiently. In the case of normal position measurement, it is not preferable that the measurement period be longer than 20 msec.
  • the position measuring device (12) transmits ultrasonic waves having different frequencies from the transmitters (3) and (5) almost simultaneously. Since the distance measurement from each transmitter (3) (5) to the microphone (15) is performed almost simultaneously, the measurement cycle can be shortened as compared with the case where distance measurement is performed in a time-division manner.
  • the directivity of the ultrasonic wave increases as the frequency increases, and the frequency of the ultrasonic wave that can be used for position measurement in a three-dimensional space is about 40 kHz or less. Also, if the frequency is too low, it will be close to the audible band, causing harsh noise and being affected by noise.Therefore, it is necessary to increase the frequency to about 25 kHz or more. Become. Thus, the ultrasonic frequencies that can actually be used by the three transmitters are relatively close, for example, 40, 32, and 25 kHz.
  • the received signal E of the microphone (15) is passed through a plurality of band filters (36) having different narrow-band characteristics and having different center frequencies.
  • Transmitter (3) Since the received signal I for each transmitter for the ultrasonic wave from (5) is detected individually, even if an ultrasonic wave of close frequency is used, other ultrasonic waves or extraneous noise can be detected. The measurement is not affected by noise, and highly accurate measurement is possible. Furthermore, since each filter (36) has the above-described configuration, it has excellent blocking characteristics, and is further less affected by other ultrasonic waves or extraneous noise. High-precision measurement becomes possible.
  • the processing device (25) includes AOC means, and the reception level is changed even when the position of the microphone (15) (distance from the transmitters (3) and (5)) changes. Since the levels of the transmission signals B1 to B3 are controlled based on the reception level so that they fall within a certain range, the filter (36) itself has excellent blocking characteristics. In addition, it has excellent cut-off between operating frequencies (SZN ratio).
  • the ultrasonic reception level is inversely proportional to the distance from the sound source. Therefore, assuming that the transmission level of the ultrasonic burst from each transmitter (3) (5) is always constant, if the distance from the corresponding transmitter (3) (5) changes, the reception level Changes. Also, when the position of the microphone (15) changes, a difference occurs between the reception levels of the ultrasonic bursts, and the difference increases as the measurement range in the space increases. Actually, the difference between the reception levels is further increased due to the influence of the reflected wave and the angle between the transmission surface of the transmitters (3) and (5) and the reception surface of the microphone (15). For this reason, the filter (36) is required to have the cutoff characteristics shown in Fig. 7.
  • an attenuation rate of 1 Z 100 000 ( ⁇ 80 dB) or less is required near each other.
  • the transmission level is controlled by the AOC means so that the reception level for each ultrasonic burst falls within a certain range.
  • the breaking characteristics are as shown in Fig. 6 above. That is, the attenuation rate near other frequencies is better at 1 Z500 or less.
  • multiple transmitters may transmit ultrasonic waves of the same frequency, and the distance from each transmitter may be measured in a time-division manner.
  • the position measurement device described above corrects the transmission start time of the ultrasonic burst and the detection time of the received signal corresponding thereto. It needs to be determined.
  • the transmission start time of the ultrasonic burst can be accurately determined in synchronization with the rise of the first pulse of the transmission signal.
  • the envelope of the transmitted signal is a square wave, as shown in Fig. 8.
  • the envelope of the received signal as shown in Fig. 9 (b), is affected by the band-pass characteristics of the signal transmission path.
  • detection of a received signal in a receiving circuit is performed as follows. That is, first, the received signal is half-wave rectified, and the envelope of this half-wave rectified wave is taken. This envelope is a smooth one that connects the peaks of the half-wave rectified wave, as shown in Figs. Then, this envelope is compared with a predetermined threshold value, and when the threshold value is exceeded, it is determined that a received signal has been detected.
  • the level of the received signal varies with the distance from the transmitter. If the receiving circuit is not provided with an ATLC circuit, the received signal is always compared with a fixed threshold. Therefore, as shown in Fig. 14, when the reception level of the received signal changes, detection is performed. A difference occurs between the points, and the difference in the time axis direction becomes a measurement error. Therefore, the receiving circuit An ATLC circuit is provided to adjust the threshold value based on the previous peak value of the received signal so that the ratio of the threshold value to the peak value of the received signal becomes constant.
  • the ATLC circuit uses the peak value of the previous received signal as the estimated value of the peak value of the current received signal, so strictly speaking, the peak value of the previous received signal and the peak value of the current received signal Therefore, the ratio of the threshold value to the peak value of the received signal is not constant. As shown in Fig. 15, the time-axis component of this variation becomes the measurement error. This measurement error depends on the slope of the envelope. However, since the slope of the conventional smooth envelope is gentle, the measurement error due to the variation in the threshold value increases.
  • the level of the transmission signal is controlled by the AOC means so that the reception level of the reception signal is within a certain range. Measurement errors due to level fluctuations are reduced.
  • the receiving circuit (32) has an ATLC circuit (43b), and in addition to using a stepped envelope for detecting a received signal,
  • the shape of the envelope is formed by the shaping circuit UOb), and the transmission signal of the transmitting circuit (26) is determined by the natural frequency of the transmitter (3) (5) and the center frequency of the filter (36).
  • the rising slope of each step of the staircase is steeper than that of a conventional smooth envelope. Then, when detecting the received signal by comparing the envelope with the threshold value. The measurement error is determined by the envelope of the envelope. Thus, for a stepped envelope, the measurement error is determined by the rising slope of each step of the step. Therefore, when the step-shaped envelope is used, the width of the measurement error is small, and the wavelength of the carrier is about 1 Z8. In the case of 25 kHz ultrasonic waves, the carrier wave length is 14 mm at room temperature, so the measurement error is about 2 mm ( ⁇ l mm) at the maximum.
  • the stepped envelope is further formed to increase the difference between the steps of the steps as shown in FIG. 13, so that the width of the measurement error is further increased. Become smaller. If the frequency of the transmitted signal is not detuned with respect to the transmitter and filter frequencies, the received signal will be as shown in Fig. 9 (b), and the smooth envelope of the half-wave rectified wave will be as shown in Fig. 10. It becomes as shown by the solid line (b). On the other hand, if the frequency of the transmitted signal is detuned upward with respect to the transmitter and filter frequencies, the received signal will be as shown in Fig. 9 (a). The result is shown by the broken line (a) at 0. As is clear from FIGS.
  • a TV camera When capturing images of speakers and materials, and displaying the images on the screen, a fixed method of fixing the TV camera and capturing the materials that come within the field of view, Adjust the direction of the TV camera, register several possible positions in advance, and enter a registration number to turn the TV camera in that direction.
  • a sound control method that automatically turns the TV camera in the direction of the voice is adopted.
  • the fixed method it is often difficult to bring the speaker's face, etc., into the field of view, and it is not possible to image materials, etc., which are not within the field of view.
  • the television camera may turn in the wrong direction in response to noise such as a note turning.
  • both the preset method and the voice control method allow you to easily display a TV camera when you want to display materials that are not registered, such as on a desk. It is not possible to point in the direction, and it is necessary to move materials etc. into the field of view of the TV camera. Alternatively, it is necessary to manually turn the television camera in a desired direction using an operation means such as a joystick on the operation pad.
  • an operation means such as a joystick on the operation pad.
  • the speaker cannot concentrate on only the operation because of the operation, and the interest of the audience is distracted.
  • the operation of a TV camera is left to others, it will be difficult to provide smooth materials in line with the progress of the topic.
  • the speaker simply moves the tip of the indicating member (8) to a position near the document and operates the indicating member (8), so that the television camera can be easily operated. (6) can be pointed in that direction. It can be displayed in lean (2).
  • a position measuring device (1 2) is equipped with five transmitters (3) (5) placed on the screen (2) and in the space, and one transmitter attached to the pointing member (8). Since the position is measured using ultrasonic waves using the microphone (15), the transmitter (3) (5) and the microphone (15) must be placed on the screen (2) or in space. There is no need to provide any special equipment for position measurement-position measurement is relatively easy.
  • the indicating member U) is connected to the control unit (11) with the cable (20), and the signal transmission is performed by wire.
  • the signal transmission may be performed wirelessly.
  • FIG. 18 shows an example of the configuration of a presentation device in a case where signal transmission is performed wirelessly.
  • the pointing member (8) is provided with two FM transmitters (64) (65), and the position measuring device (12) is provided with two FM receivers (66) (67). I have. Then, the received signal E from the microphone (15) is wirelessly transmitted from the transmitter (64) to the receiver (66), and further transmitted from the receiver (66) to the receiving device (24). Also, the switch signals from the buttons (16) to (18) and the switch ( ⁇ ⁇ ) are wirelessly transmitted from the transmitter (65) to the receiver (66), and further transmitted to the receiver (66). ) Is transmitted to the mode switching device (22) and the arithmetic circuit (32). Others are the same as in the above embodiment, and the same parts are denoted by the same reference numerals.
  • a wired microphone device or a wireless microphone device provided separately from the above-mentioned presentation device can be used.
  • the small microphone of the microphone device for voice can be attached to an appropriate place such as the clothes of the speaker.
  • the reception signal from the microphone (15) is transmitted wirelessly in the presentation device, and when a wireless microphone device for voice is used separately, the ultrasonic signal.
  • the ultrasonic signal This means that two channels are used for voice and voice signals, and there is a possibility of crosstalk between the two channels within the usable bandwidth specified by the Radio Law. This problem can be solved by transmitting the ultrasonic signal and the audio signal in one channel.
  • FIG. 19 shows an example of a configuration in which the transmission of the ultrasonic signal and the audio signal is performed in one channel in the presentation device shown in FIG.
  • a microphone (receiver) (68) for voice is provided on the pointing member (8) side in addition to the microphone (15) for position measurement. Further, a mixer (69) as signal superimposing means is added to the indicating member (8).
  • a microphone for audio (68) a microphone whose reception sensitivity is limited to an audible band, such as a dynamic microphone, is used.
  • the microphone for sound (68) may be attached to an appropriate place such as the base end portion of the indicating member (8), or may be provided separately from the indicating member (8) and provided on the clothes of the speaker. It may be attached.
  • the received signal from the microphone (15) is mainly an ultrasonic signal received from the transmitter (3) (5)
  • the received signal from the microphone (68) is This is an audio signal in the audible band that receives the voice of the speaker. Then, the ultrasonic signal and the audio signal from the two microphones (15) and (68) are superimposed and output by the mixer (69), and this output is transmitted from the FM transmitter (64) to the FM receiver (66). ) Is transmitted wirelessly.
  • the received signal E received at (66) is input to the low-pass filter (61) in addition to the receiving circuit (32).
  • the reception signal E is obtained by superimposing the ultrasonic signal and the audio signal as described above.
  • the audio signal in the audible band is separated from the reception signal E and amplified.
  • the signal is sent to the speaker (63) via the circuit (62), and the sound is played from the speaker (63).
  • the audio signal output from the low-pass filter (61) is sent to the control device (13) and can be used for commanding and controlling by voice.
  • controlling the amplifier circuit (62) by the control device (13) in response to a command from the indicating member (8) it is possible to prevent sound from being output from the speaker (63) or from being output. it can.
  • the other parts are the same as those in the embodiment of FIG. 18, and the same parts are denoted by the same reference numerals.
  • the transmission of signals between (22) and the arithmetic unit (35) can of course be performed by wire. Also in this case, an analog signal line for the acoustic signal of the ultrasonic signal and the audio signal is also provided.
  • a microphone (15) for position measurement and a microphone (68) for sound are provided separately, but as shown in FIG. 20, the microphone (15) is provided on the pointing member (8).
  • One microphone (15) for position measurement It can also be used for audio.
  • the presentation device shown in FIG. 20 is obtained by removing the microphone (68) for sound and the mixer (69) from the embodiment of FIG.
  • the microphone (15) is a receiver that receives the ultrasonic waves from the transmitters (3) and (5), a receiver for the voice that receives the voice of the speaker, etc., and superimposes the ultrasonic signal and the audio signal. Also serves as a signal superimposing means, and the reception signal E of the microphone (15) is a superposition of an ultrasonic signal and an audio signal.
  • the received signal E from the microphone (15) is transmitted by radio from the FM transmitter (64) to the FM receiver (66), and is received from the receiver (66) to the receiving circuit (32) and the low-pass filter (66). 61).
  • Other parts are the same as those in the embodiment of FIG. 19, and the same parts are denoted by the same reference numerals.
  • the position measuring device (12) measures both the three-dimensional position in space and the two-dimensional position on the screen (2). In some cases, it is not necessary to measure the two-dimensional position.
  • FIG. 21 shows an example of the configuration of the presentation device in a case where the part relating to the two-dimensional position measurement is removed from the embodiment shown in FIG.
  • the mode selection button (16) has been removed from the indicating member (8). Also, the two-dimensional transmitter (3) and the mode switching device (22) are removed from the position measurement device (12), and each transmission circuit (26) is always connected to the corresponding three-dimensional transmitter (5).
  • the other parts are the same as those in the embodiment of FIG. 19, and the same parts are denoted by the same reference numerals.
  • the image display device (10) may display an image on the screen (2) of the above embodiment. However, in this case, the screen (2) is used only for displaying the image. Further, the image display device (10) may display an image on a TV, a liquid crystal display panel, or the like.
  • the presentation can be used for a video conference or the like.
  • the image signal and the audio signal are transmitted from the control unit (U) to the TV installed in another place via appropriate communication means.
  • the image display device (10) may display a three-dimensional image on a stereoscopic TV. In this case, for example, two TV cameras separated by human eyes capture images for the right and left eyes. Using these images, a display screen with a lenticular lens or the like Display a 3D image on top.
  • the voice microphone (68) may be attached to the indicating member U). Further, one microphone (15) may be used for both ultrasonic and audio without providing a separate microphone (68) for audio. Especially in the latter case, when the singer sings with the pointing member (8) when the presentation is used in a karaoke studio or the like, the television camera (6) tracks this and the TV The singer's image is displayed on the display screen of the image display device (10), the singer's image is combined with the singer's image, or the singer is the pointing member. (8) You can adjust the volume by operating.
  • the signal transmission between the pointing member (8) and the position measuring device (12) is performed by wire.
  • the signal transmission between the pointing member (8) and the position measuring device (12) is performed by wire.
  • the presentation device may be permanently installed in a conference room or event hall, etc., and may be used exclusively. Alternatively, the entire presentation device may be portable and installed at a desired location. May be used.
  • the base end provided with the mode switching button (16), the upper button ( ⁇ ) and the lower button (18), and the microphone (15) and the tip switch ( It is also possible to use one that can expand and contract with the tip provided with 19).
  • FIGS. 22 and 23 show an example of the extendable indicating member (77) as described above.
  • the same reference numerals are given to portions corresponding to the indicating rod (8) in the above embodiment.
  • the indicating member (77) includes an operation unit (70), an expansion and contraction unit (71) having a base end fixed to the operation unit (70), and a detection unit (71) fixed to a distal end of the expansion and contraction unit (71). 72).
  • the operation unit (7G) is designed so that the user can operate it by hand.
  • the telescopic part (71) includes a plurality of nested cylinders (73a), (b) and (He).
  • the rear end base body (73a) is fixed to the upper part of the operation section (71), and the detection section (72) is fixed to the front end of the front end cylinder (He).
  • the detection section (72) is fixed to the tip cylinder (73c) and has a tapered tip at the end of the cylindrical case (74), and is attached to the tip of the case (74) so as to be movable back and forth.
  • a pressing member (75) urged forward by a spring (not shown) is provided.
  • FIG. 22 shows a state in which the elastic part (71) is extended
  • FIG. 23 shows a state in which the elastic part (71) is contracted.
  • the elastic part (71) is contracted
  • the rear part of the case (74) of the detecting part (72) is the upper front end of the operating part (70). They are going to enter the club.
  • the operation section (70) is provided with a shortened state detection switch (7 ⁇ ) for detecting that the extendable section (71) is in the shortened state by detecting the case (74).
  • a mode 'selection button (16), an upper button ( ⁇ ), and a lower button (18) similar to the case of the indicator rod (8) of the above embodiment are provided on the operation unit (70). I have.
  • a microphone (15) similar to the case of the indicator rod (8) of the above embodiment is provided in the front part of the pressing member (75) which always projects forward from the case (74) of the detection part (72). .
  • a tip switch (19) similar to that of the indicator rod (8) in the above embodiment is provided in the case (74) of the detection section (72). The tip switch (19) detects that the pressing member (75) has moved to the rear side to detect that the pressing member (75) has been pressed against the screen (2) or the like. It is designed to detect.
  • an extendable spiral coil wire having a plurality of conductors is passed through the tubular body (73a) (731)) (73c) of the extendable portion (71).
  • the power supply and signal transmission between the base end (70) and the detection unit (72) are performed by the wire conductor.
  • the expansion / contraction part ( ⁇ ) is composed of a plurality of sets of cylinders made of a conductor, and these cylinders are used to supply power and transmit signals between the base end (70) and the detection unit (72). It may be.
  • a battery is provided in the detection section (72), and the light-emitting element and the light-receiving element are arranged so that the detection section (72) and the operation section (70) face each other through the cylinder (Ha) (Hb) (lU). May be provided to transmit a signal.
  • this pointing member (77) is used in a presentation device as shown in FIG. 1, for example, the mode selection button (16) is switched to the two-dimensional mode side and the expansion and contraction section (71) is used. Is set to the handwriting mode only when Only while the member (75) is pressed against the screen (2), the position is measured and handwriting input is performed.
  • the position measuring method and apparatus according to the present invention are suitable for use in two-dimensional or three-dimensional position measurement using ultrasonic waves.

Abstract

The position of an object to be measured is found based on the distances from multiple transmitters arranged at prescribed intervals to a receiver attached to the object by receiving ultrasonic waves having different frequencies and transmitted intermittently and nearly synchronously from the transmitters, passing the received signals through multiple band-pass filters having different narrow-band characteristics with different center frequencies, detecting received signals from the transmitters, and then, finding the distances based on the times elapsed after the ultrasonic waves are transmitted from the transmitters until the received signals from the transmitters are detected.

Description

明 細 書 位置計測方法および装置 技 術 分 野  Description Position measurement method and device Technical field
この発明は、 超音波を使用した 2次元または 3次元の位置 計測方法および装置に関する。 背 景 技 術  The present invention relates to a two-dimensional or three-dimensional position measuring method and apparatus using ultrasonic waves. Background technology
この種の位置計測方法と して、 被計測物体に取付けた 1つ の送信器から一定周波数の超音波を間欠的に送信し、 この超 音波を所定の間隔をおいて配置した複数の受信器で受信し、 送信器による超音波の送信開始時刻から各受信器による超音 波の受信時刻までの経過時間を測定し、 これらの時間に基づ いて送信器から各受信器までの距離を求め、 これらの距離に 基づいて被計測物体の位置を求めるものが知られている。 こ の場合、 受信器は、 3次元の位置計測では 3個、 2次元では 2個用いられる。  As this type of position measurement method, a single transmitter attached to an object to be measured intermittently transmits ultrasonic waves of a constant frequency, and a plurality of receivers in which the ultrasonic waves are arranged at predetermined intervals And measure the elapsed time from the start time of the transmission of ultrasonic waves by the transmitter to the reception time of the ultrasonic waves by each receiver, and calculate the distance from the transmitter to each receiver based on these times. It is known to obtain the position of the measured object based on these distances. In this case, three receivers are used for three-dimensional position measurement and two receivers for two-dimensional position measurement.
また、 送信器と受信器の関係を上記と逆にして、 所定の間 隔をおいて配置した複数の送信器から超音波を間欠的に送信 し、 これらの超音波を被計測物体に取付けた 1つの受信器で 受信し、 各送信器による超音波の送信開始時刻から受信器に よる超音波の受信時刻までの経過時間を測定し、 これらの時 間に基づいて上記と同様に被計測物体の位置を求めるものも 知られている。 この場合も、 送信器は、 3次元の位置計測で は 3個、 2次元では 2個用いられる。  In addition, the relationship between the transmitter and the receiver was reversed, and ultrasonic waves were intermittently transmitted from a plurality of transmitters arranged at predetermined intervals, and these ultrasonic waves were attached to the object to be measured. One receiver receives and measures the elapsed time from the start time of ultrasonic transmission by each transmitter to the reception time of ultrasonic wave by the receiver.Based on these times, the measured object is measured in the same manner as above. It is also known to determine the position of Also in this case, three transmitters are used for three-dimensional position measurement and two transmitters are used for two-dimensional position measurement.
前者の被計測物体に送信器を取付ける方式では、 1つの送 信器から送信した 1つの超音波バース トを複数の受信器で受 信し、 各受信器において送信器までの距離を同時に測定でき るので、 計測周期を短くするこ とができる。 しかし、 送信面 と受信面の相対角によっては、 反射波の影響を強く受けて、 計測誤差が生じるという問題がある。 また、 複数の被計測物 体の位置を計測する場合を考えると、 各被計測物体に取付け た送信器から同一周波数の超音波を同時に送信したとすると 各受信器において受信した超音波がどの送信器からのものか 区別ができない。 したがって、 複数の被計測物体の送信器か ら互いに異なる周波数の超音波を送信するようにしたり、 複 数の被計測物の位置の計測を時分割で行ったりする必要があ り、 複数の被計測物体の位置の計測は困難である。 さ らに、 被計測物体側に送信器を取付けるので、 被計測物体のコー ド レス化が困難である。 In the former method, in which the transmitter is attached to the measured object, A single ultrasonic burst transmitted from a transmitter is received by multiple receivers, and the distance to the transmitter can be measured simultaneously by each receiver, so that the measurement cycle can be shortened. However, depending on the relative angle between the transmitting surface and the receiving surface, there is a problem that measurement errors occur due to the strong influence of reflected waves. Considering the case where the positions of a plurality of objects to be measured are measured, if an ultrasonic wave of the same frequency is simultaneously transmitted from a transmitter attached to each of the objects to be measured, Can't tell if it's from a vessel. Therefore, it is necessary to transmit ultrasonic waves having different frequencies from the transmitters of a plurality of objects to be measured, and to measure the positions of a plurality of objects to be measured in a time-division manner. It is difficult to measure the position of the measurement object. Furthermore, since the transmitter is attached to the object to be measured, it is difficult to make the object to be measured cordless.
後者の被計測物体に受信器を取付ける方式では、 上記のよ うな問題はないが、 次のような問題がある。 すなわち、 複数 の送信器から送信する超音波の周波数を同一にした場合、 各 送信器から同時に超音波を送信すると、 受信器で受信した超 音波がどの送信器からのものか区別ができない。 このため、 各送信器からの超音波の送信および距離の測定を時分割で行 う必要がある。 ところで、 3次元の位置計測方法をたとえば 会議室ゃィベン ト会場などのプレゼンテ一ショ ン装置に適用 する場合、 1辺が 3 m程度の比較的広い空間内において、 計 測周期が 2 O m s e c程度で、 計測精度が ± 1 m m程度の位 置計測を行う必要がある。 ところが、 上記のように、 3個の 送信器からの距離の計測を時分割で行うようにすると、 1個 の送信器について、 超音波が 3 mの距離を伝搬するのに 9 m s e cの時間を要し、 3個の送信器では、 超音波の伝搬だけ で 2 7 m s e cの時間を要するため、 計測周期を 2 O m s e c以下にすることができない。 3個の送信器から送信する超 音波の周波数を互いに異なる ものにすれば、 これらの送信器 から同時に超音波を送信して、 2 O m s e c程度の計測周期 で、 比較的広い空間内の位置計測ができる。 ところで、 と く に 3次元の位置計測を行う場合、 超音波の指向性が強いこと は好ま しく ない。 ところが、 超音波は、 周波数が高く なると 指向性が強く なり、 3次元空間における位置計測に使用可能 な超音波の周波数は約 4 0 k H z以下になる。 また、 可聴帯 域と区別するために、 約 2 5 k H z以上の高い周波数が要求 される。 このため、 実際に使用可能な超音波の周波数は、 た とえば、 4 0、 3 2、 2 5 k H z の比較的近接したものにな る。 そして、 このように近接した周波数の超音波を使用する 場合、 通常の帯域フィ ルタでは、 各周波数の超音波を完全に 分離するこ とが困難であり、 他の超音波や外来ノ イズの影響 を受けて、 計測精度が低下するという問題がある。 したがつ て、 やはり、 比較的広い空間内において、 比較的短い計測周 期で、 精度の高い位置計測を行う こ とは困難である。 The latter method, in which the receiver is mounted on the object to be measured, does not have the above problems, but has the following problems. In other words, when the frequency of the ultrasonic waves transmitted from a plurality of transmitters is the same, if the ultrasonic waves are transmitted from each transmitter at the same time, it cannot be distinguished from which transmitter the ultrasonic waves received by the receiver are. Therefore, it is necessary to transmit the ultrasonic waves from each transmitter and measure the distance in a time-division manner. By the way, when a three-dimensional position measurement method is applied to a presentation device such as a conference room event venue, the measurement cycle is about 2 Omsec in a relatively large space of about 3 m on one side. Therefore, it is necessary to perform position measurement with a measurement accuracy of about ± 1 mm. However, as described above, if distance measurement from three transmitters is performed in a time-division manner, it takes 9 m for one transmitter to propagate ultrasonic waves over a distance of 3 m. It takes a time of sec, and the three transmitters require a time of 27 msec just for the propagation of the ultrasonic wave. Therefore, the measurement cycle cannot be reduced to 2 O msec or less. If the frequencies of the ultrasonic waves transmitted from the three transmitters are different from each other, the ultrasonic waves are transmitted simultaneously from these transmitters and the position is measured in a relatively large space with a measurement cycle of about 2 Omsec. Can be. By the way, especially when performing three-dimensional position measurement, strong ultrasonic directivity is not preferable. However, the directivity of the ultrasonic wave increases as the frequency increases, and the frequency of the ultrasonic wave that can be used for position measurement in a three-dimensional space is about 40 kHz or less. In addition, a high frequency of about 25 kHz or more is required to distinguish it from the audible band. For this reason, the frequencies of ultrasonic waves that can be actually used are relatively close to each other, for example, 40, 32, and 25 kHz. When using ultrasonic waves of such close frequencies, it is difficult to completely separate the ultrasonic waves of each frequency using a normal band filter, and the effects of other ultrasonic waves and extraneous noise As a result, there is a problem that the measurement accuracy is reduced. Therefore, it is difficult to perform highly accurate position measurement in a relatively short space within a relatively large space.
この発明の目的は、 上記の問題を解決し、 被計測物体に受 信器を取付ける方式を用い、 広範囲の位置計測を短い計測周 期で精度良く行う ことができる位置計測方法および装置を提 供することにある。 発明の開示  An object of the present invention is to solve the above problems and to provide a position measuring method and apparatus capable of performing a wide range of position measurement with high accuracy in a short measurement period by using a method of mounting a receiver on an object to be measured. It is in. Disclosure of the invention
この発明による位置計測方法は、 所定の間隔をおいて配置 した複数の送信器から互いに周波数の異なる超音波を間欠的 にかつほぼ同時に送信し、 これらの超音波を被計測物体に取 付けた 1つの受信器で受信し、 受信器の受信信号を互いに中 心周波数の異なる複数の狭帯域特性を有する帯域フィ ル夕に 通して、 各送信器からの超音波に対する送信器別受信信号を 個別に検知し、 各送信器による超音波の送信開始時刻から対 応する送信器別受信信号の検知時刻までの経過時間に基づい て各送信器から受信器までの距離を求め、 これらの距離に基 づいて被計測物体の位置を求めることを特徴とするものであ る o The position measurement method according to the present invention intermittently transmits ultrasonic waves having different frequencies from a plurality of transmitters arranged at a predetermined interval. And at almost the same time, these ultrasonic waves are received by a single receiver attached to the object to be measured, and the received signals of the receivers are band-pass filters having a plurality of narrow-band characteristics having different center frequencies. , The received signal for each ultrasonic wave from each transmitter is individually detected, and the time elapsed from the start of transmission of ultrasonic waves by each transmitter to the detection time of the corresponding received signal for each transmitter is detected. The distance from each transmitter to the receiver is calculated based on the distance, and the position of the object to be measured is calculated based on these distances.o
この発明による位置計測方法は、 たとえば、 画像表示装置 の表示スク リ ーンを基準と した座標系における被測定物体の 位置を計測するものである。  A position measuring method according to the present invention measures, for example, the position of an object to be measured in a coordinate system based on a display screen of an image display device.
この発明による位置計測方法は、 たとえば、 位置情報によ つて角度の調整ができる撮像装置の周囲の所定の空間内にお ける被測定物体の 3次元位置を計測するものである。  A position measuring method according to the present invention measures, for example, a three-dimensional position of an object to be measured in a predetermined space around an imaging device whose angle can be adjusted based on position information.
この発明による位置計測装置は、 所定の間隔をおいて配置 された複数の送信器、 被計測物体に取付けられた 1つの受信 器、 各送信器から互いに周波数の異なる超音波を間欠的にか つほぼ同時に送信させる送信装置、 受信器の受信信号を互い に中心周波数の異なる複数の狭帯域特性を有する帯域フィ ル タに通して各送信器からの超音波に対する送信器別受信信号 を個別に検知する受信装置、 ならびに各送信器による超音波 の送信開始時刻から対応する送信器別受信信号の検知時刻ま での経過時間に基づいて各送信器から受信器までの距離およ び被計測物体の位置を求める処理装置を備えていることを特 徴とするものである。  A position measuring device according to the present invention includes a plurality of transmitters arranged at predetermined intervals, one receiver attached to an object to be measured, and intermittently transmitting ultrasonic waves having different frequencies from each transmitter. Transmitters that transmit at almost the same time.Received signals of receivers are passed through multiple bandpass filters with different narrowband characteristics with different center frequencies to individually detect received signals for each transmitter for ultrasonic waves from each transmitter. The distance from each transmitter to the receiver and the measured object based on the elapsed time from the transmission start time of each transmitter and the detection time of the corresponding reception signal for each transmitter. It is characterized by having a processing device for obtaining the position.
好ま しく は、 帯域フィ ル夕が、 対応する超音波と同一周波 数の 2つの圧電式超音波 トラ ンスデューサを備えており、 こ れらの超音波 ト ラ ンスデューザの共振子が対応する超音波の 1波長程度離して対向状に配置され、 一方の トラ ンスデュー ザの電極に入力信号が印加され、 他方の トラ ンスデューザの 電極から出力信号が取出されるようになされている。 Preferably, the band filter is at the same frequency as the corresponding ultrasound. Of the two ultrasonic transducers, and the resonators of these ultrasonic transducers are arranged facing each other at a distance of about one wavelength of the corresponding ultrasonic waves. An input signal is applied to the electrode, and an output signal is extracted from the electrode of the other transducer.
たとえば、 被測定物体が、 操作用スィ ッチ手段が設けられ て手に持って操作されるようになされた操作部、 基端部が操 作部に固定された伸縮可能な伸縮部、 および伸縮部の先端部 に固定された検出部を備えており、 検出部に受信器が取付け られている。  For example, an operation section provided with an operation switch means for operating the object to be measured by hand, an expandable and contractible section having a base end fixed to the operation section, and an expandable and contractible section It has a detector fixed to the tip of the unit, and a receiver is attached to the detector.
この発明の方法および装置によれば、 複数の送信器から互 いに周波数の異なる超音波をほぼ同時に送信して、 各送信器 から受信器までの距離の測定をほぼ同時に行うので、 各送信 器からの距離の測定を時分割で行う場合に比べて、 計測周期 を短く することができる。 また、 受信器の受信信号を互いに 中心周波数の異なる複数の狭帯域特性を有する帯域フィ ル夕 に通して、 各送信器からの超音波に対する送信器別受信信号 を個別に検知するので、 周波数の近接する超音波を使用して も、 他の超音波や外来ノィズの影響を受けることが少なく、 精度の高い計測が可能である。 したがって、 被計測物体に受 信器を取付ける方式を用い、 広範囲の位置計測を短い計測周 期で精度良く行う ことができる。  According to the method and apparatus of the present invention, ultrasonic waves having different frequencies are transmitted from a plurality of transmitters almost simultaneously, and the distance from each transmitter to the receiver is measured almost simultaneously. The measurement cycle can be shortened as compared with the case where the distance from the object is measured by time division. In addition, since the received signal of the receiver is passed through a plurality of band filters having narrow band characteristics having different center frequencies from each other, the received signal for each transmitter with respect to the ultrasonic wave from each transmitter is individually detected. Even with the use of nearby ultrasonic waves, there is little influence from other ultrasonic waves or external noise, and highly accurate measurement is possible. Therefore, a method of attaching a receiver to an object to be measured can be used to accurately measure a wide range of positions in a short measurement period.
帯域フィ ルタが、 対応する超音波と同一周波数の 2つの圧 電式超音波トラ ンスデューサを備えており、 これらの超音波 ト ラ ンスデュ一ザの共振子が対応する超音波の 1波長程度離 して対向状に配置され、 一方の ト ラ ンスデューザの電極に入 力信号が印加され、 他方の トラ ンスデュ一ザの電極から出力 信号が取出されるようになされている場合、 遮断特性が優れ ており、 他の超音波や外来ノ イズの影響を受けることがさ ら に少なく なり、 さ らに精度の高い計測が可能になる。 The bandpass filter has two piezoelectric ultrasonic transducers at the same frequency as the corresponding ultrasonic wave, and the resonators of these ultrasonic transducers are separated by about one wavelength of the corresponding ultrasonic wave. Input signal is applied to the electrode of one of the transducers and output from the electrode of the other transducer. When the signal is taken out, it has excellent blocking characteristics, is less affected by other ultrasonic waves and extraneous noise, and enables more accurate measurement .
被測定物体が、 操作用スィ ッチ手段が設けられて手に持つ て操作されるようになされた操作部、 基端部が操作部に固定 された伸縮可能な伸縮部、 および伸縮部の先端部に固定され た検出部を備えており、 検出部に受信器が取付けられている 場合、 伸縮部をのばした状態で、 簡単に遠く の対象を直接指 示することができ、 伸縮部を縮めた状態で、 容易に手書き入 力ができる。 図面の簡単な説明  An operation section provided with an operation switch means for operating the object to be measured by holding it in a hand, an expandable and contractible section having a base end fixed to the operation section, and a distal end of the expandable section When the receiver is attached to the detector, it can easily indicate a distant object directly with the telescopic part extended. You can easily input handwriting in the contracted state. BRIEF DESCRIPTION OF THE FIGURES
図 1 はこの発明の 1実施例を示すプレゼンテ一ショ ン装置 の概略斜視図である。 図 2 は図 1のプレゼンテーショ ン装置 の構成を示すブロ ッ ク図である。 図 3 は指示部材の 1例を示 す側面図である。 図 4は第 2受信回路の構成の 1例を示すブ ロ ッ ク図である。 図 5 は帯域フィ ルタの 1例を示す縦断面図 である。 図 6は帯域フィ ルタの遮断特性を示すグラフである < 図 7 は A 0 C手段が設けられていない場合に帯域フイ ルクに 要求される遮断特性を示すグラフである。 図 8は送信信号の 1例を示すタイ ミ ングチャー トである。 図 9は送信信号を離 調させた場合と離調させない場合の送信器別受信信号を示す タイ ミ ングチヤ一 トである。 図 1 0は送信信号を離調させた 場合と離調させない場合の送信器別受信信号の半波整流波の 滑らかなエンベロープを示すタイ ミ ングチヤ一 トである。 図 1 1送信器別受信信号の半波整流波の階段状エンベロープを 示すタイ ミ ングチャー トである。 図 1 2 は階段状ェンベロ一 プおよびステップ間の格差を大き く した階段状エンベロープ を示すタイ ミ ングチヤ一 トである。 図 1 3はステップ間の格 差を大き く した階段状エンベロープと しきい値の関係を示す タイ ミ ングチャー トである。 図 1 4は受信信号の受信レベル が異なる場合の滑らかなエンベロープと しきい値の関係を示 すタイ ミ ングチヤ一 トである。 図 1 5 は受信信号の滑らかな エンベロープと しきい値の変動の関係を示す夕ィ ミ ングチヤ 一トである。 図 1 6 は図形変形を指示する際の指示部材の操 作方法を示す説明図である。 図 1 7 は指示部材の操作と図形 変形の関係を示す説明図である。 図 1 8 はこの発明の他の実 施例を示す図 2相当のブロ ッ ク図である。 図 1 9 はこの発明 のさ らに他の実施例を示す図 2相当のブロ ッ ク図である。 図 2 0 はこの発明のさ らに他の実施例を示す図 2相当のプロ ッ ク図である。 図 2 1 はこの発明のさ らに他の実施例を示す図 2相当のブロ ッ ク図である。 図 2 2 は指示部材の他の 1例を 示す伸縮部をのばした状態の側面図である。 図 2 3 は図 2 2 の指示部材の伸縮部を縮めた状態の側面図である。 発明を実施するための最良の形態 以下、 図面を参照して、 この発明の実施例について説明す る o FIG. 1 is a schematic perspective view of a presentation device showing one embodiment of the present invention. FIG. 2 is a block diagram showing the configuration of the presentation device of FIG. FIG. 3 is a side view showing an example of the pointing member. FIG. 4 is a block diagram showing an example of the configuration of the second receiving circuit. FIG. 5 is a longitudinal sectional view showing one example of the bandpass filter. Fig. 6 is a graph showing the cutoff characteristics of the band filter. <Fig. 7 is a graph showing the cutoff characteristics required for the band filter when no AOC means is provided. FIG. 8 is a timing chart showing an example of a transmission signal. Figure 9 is a timing chart showing the received signal for each transmitter when the transmitted signal is detuned and when it is not detuned. Figure 10 is a timing chart showing the smooth envelope of the half-wave rectified wave of the received signal for each transmitter when the transmitted signal is detuned and when not detuned. Fig. 11 is a timing chart showing a stepped envelope of a half-wave rectified wave of a received signal for each transmitter. Fig. 12 shows a stepped envelop This is a timing chart showing a stepped envelope with a large gap between the loop and the step. Figure 13 is a timing chart showing the relationship between the stepped envelope with the difference between steps increased and the threshold. Figure 14 is a timing chart showing the relationship between the smooth envelope and the threshold value when the received signal levels are different. Figure 15 is a timing chart showing the relationship between the smooth envelope of the received signal and the fluctuation of the threshold. FIG. 16 is an explanatory diagram showing a method of operating the indicating member when instructing the figure deformation. FIG. 17 is an explanatory diagram showing the relationship between the operation of the pointing member and the figure deformation. FIG. 18 is a block diagram corresponding to FIG. 2 showing another embodiment of the present invention. FIG. 19 is a block diagram corresponding to FIG. 2, showing still another embodiment of the present invention. FIG. 20 is a block diagram corresponding to FIG. 2 showing still another embodiment of the present invention. FIG. 21 is a block diagram corresponding to FIG. 2 showing still another embodiment of the present invention. FIG. 22 is a side view showing another example of the indicating member in a state where the expansion and contraction portion is extended. FIG. 23 is a side view of the pointing member of FIG. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図 1 は、 この発明の方法および装置を使用したプレゼンテ ーシヨ ン装置の外観の 1例を概略的に示している。 図 2 は、 プレゼンテ一ショ ン装置の機能的な構成を表わしている。  FIG. 1 schematically shows an example of the appearance of a presentation device using the method and device of the present invention. Fig. 2 shows the functional configuration of the presentation device.
このプレゼンテーシ ョ ン装置は、 たとえば会議室ゃィベン ト会場などの室内に設置されている。 プレゼンテーシ ョ ン装 置は、 外観上は、 室の壁面(1 ) の所定箇所に設けられた表示 スク リ ーン (2) 、 スク リ ーン (2) 上の 2箇所に所定の間隔を おいて配置された 2個の 2次元計測用送信器(3 a) (3 b)、 室内 の天井面 U) の 3箇所に所定の間隔をおいて配置された 3個 の 3次元計測用送信器(5a) (5b) (5c). 天井面(4) の所定箇所 に配置されたテレビカメ ラ (撮像装置) (6) 、 テレビカメ ラ (6) の向きを変えるための向き調整装置(7) 、 図示しない発 言者などが手にもって操作するための指示部材(8) 、 室内の 机(9) の上などに設置された画像表示装置(10)および制御ュ ニッ ト (11)より構成されている。 2次元計測用送信器 ( 2次 元用送信器と略す) は符号(3) で総称し、 区別する必要があ るときは、 それぞれ 2次元用第 1送信器(3 a)および同第 2送 信器(3b)と呼ぶこ とにする。 3次元計測用送信器 ( 3次元用 送信器と略す) は符号(5) で総称し、 区別する必要があると きは、 それぞれ 3次元用第 1送信器(5a)、 同第 2送信器(5b) および同第 3送信器(5c) と呼ぶことにする。 プレゼンテ一シ ョ ン装置は、 機能上は、 スク リ ーン (2) 、 指示部材(8) 、 位 置計測装置(12)、 画像表示装置(10)、 テレビカメ ラ (6) 、 向 き調整装置(7) および制御装置(13)より構成されている。 This presentation device is installed in a room such as a conference room event venue. The presentation device is a display provided at a predetermined location on the wall (1) of the room. Screen (2), Two 2D measurement transmitters (3a) (3b) arranged at two locations on the screen (2) at predetermined intervals, and the ceiling in the room Three three-dimensional measurement transmitters (5a), (5b), and (5c) arranged at predetermined intervals on three locations on surface U). Television cameras located at specific locations on ceiling (4) (Imaging device) (6), Direction adjustment device (7) for changing the direction of the TV camera (6), Instruction member (8) for the speaker (not shown) to operate by hand, Indoor desk It consists of an image display device (10) and a control unit (11) installed above (9). Two-dimensional measurement transmitters (abbreviated as two-dimensional transmitters) are collectively referred to by reference numeral (3), and when it is necessary to distinguish them, the first two-dimensional transmitter (3a) and the second It will be called the transmitter (3b). The three-dimensional measurement transmitters (abbreviated as three-dimensional transmitters) are collectively referred to by reference numeral (5), and when it is necessary to distinguish them, the first three-dimensional transmitter (5a) and the second three-dimensional transmitter, respectively. (5b) and the third transmitter (5c). The presentation device has the following functions: screen (2), pointing member (8), position measuring device (12), image display device (10), television camera (6), It consists of an adjusting device (7) and a control device (13).
表示スク リ ーン (2) は、 画像の表示ができるものであれば よ く、 この実施例のものに限られない。 たとえば、 黒板状の 表示板を表示スク リ ーンと して用いてもよい。 また、 白い壁 面を表示スク リ ーンと して用いてもよい。 その場合、 プレゼ ンテ一シ ョ ン装置は別に表示スク リ ーンを備える必要がない, 画像表示装置(10)は、 制御装置(13)からの制御信号、 画像 情報などに基づいてスク リ ーン (2) 上に所望の画像を表示す るためのものであり、 たとえば公知の液晶プロジェクタなど よりなる。 テレ ビカメ ラ (6) は、 向き調整装置(7) を介して天井面(4 ) に取付けられている。 向き調整装置(7) は、 垂直軸を中心 とする水平面内における角度 (アジマス角) を調整するため のアジマス角調整用サーボ機構 (第 1のサーボ機構) (7a)、 および水平軸を中心とする垂直面内における角度 (エレべ一 シヨ ン角) を調整するためのエレベーショ ン角調整用サーボ 機構 (第 2のサーボ機構) (7b)を備えている。 そして、 第 1 のサーボ機構(7a)でアジマス角を調整するとともに、 第 2の サーボ機構(7 b)でエレべ一ショ ン角を調整することにより、 テレビカメ ラ (6) の向きを任意に調整できるようになつてい る o The display screen (2) is not limited to the one in this embodiment as long as it can display an image. For example, a blackboard-shaped display board may be used as a display screen. Also, a white wall surface may be used as a display screen. In that case, the presentation device does not need to be provided with a separate display screen. The image display device (10) is a screen display based on control signals from the control device (13), image information, and the like. (2) It is for displaying a desired image on it, and is composed of, for example, a known liquid crystal projector. The TV camera (6) is mounted on the ceiling (4) via a direction adjustment device (7). The orientation adjustment device (7) is composed of an azimuth angle adjustment servo mechanism (first servo mechanism) (7a) for adjusting the angle (azimuth angle) in the horizontal plane about the vertical axis, and (7a) And a servo mechanism for adjusting the elevation angle (second servo mechanism) (7b) for adjusting the angle (elevation angle) in the vertical plane. The azimuth angle is adjusted by the first servo mechanism (7a) and the elevation angle is adjusted by the second servo mechanism (7b), so that the orientation of the television camera (6) can be changed. O
指示部材(8) は、 発言者などがスク リ ーン (2) 上の 2次元 位置および室の空間内の 3次元位置の指示、 ならびに後述す る計測モー ドの切替え、 各種の操作指令などを行うためのも のであり、 位置計測装置(12)による被計測物体となっている < 位置計測装置(12)は、 指示部材(8) からの計測モー ドの切 替え情報などに基づいて、 指示部材(8) で指示されたスク リ ー ン (2) 上の 2次元位置と空間内の 3次元位置を選択的に計 測するためのものである。  The indicating member (8) is used by a speaker or the like to indicate a two-dimensional position on the screen (2) and a three-dimensional position in the space of the room, switching of a measurement mode to be described later, various operation commands, and the like. The position measurement device (12) is an object to be measured by the position measurement device (12). The position measurement device (12) performs measurement mode switching information from the pointing member (8) based on the information. It is for selectively measuring the two-dimensional position on the screen (2) and the three-dimensional position in space indicated by the pointing member (8).
制御装置(13)は、 指示部材(8) からの操作指令情報、 位置 計測装置(12)で計測された 3次元位置情報などに基づく 向き 調整装置(7) およびテレビカメ ラ (6) の制御、 指示部材(8) からの操作指令情報、 位置計測装置(12)で計測された 2次元 位置情報、 テレビカメ ラ (6) からの画像信号などに基づく画 像表示装置(10)の制御などを行うためのものである。 図示は 省略したが、 制御装置(13)は、 図示しないマイ コ ンなどを備 えており、 また、 必要に応じて、 適当な外部記憶装置、 印刷 装置などの出力装置などが設けられる。 制御装置(13)には、 空間内におけるテレビカメ ラ (6) の 3次元位置情報などがあ らかじめ設定されている。 制御装置(13)は、 機能上、 後述す る画像変形を行うための画像変形手段を備えている。 The control device (13) controls the direction adjustment device (7) and the TV camera (6) based on the operation command information from the pointing member (8) and the three-dimensional position information measured by the position measurement device (12). Control of image display device (10) based on operation command information from pointing member (8), two-dimensional position information measured by position measurement device (12), image signal from TV camera (6), etc. It is for doing. Although illustration is omitted, the control device (13) includes a microcomputer (not shown) and the like, and an appropriate external storage device and a printing device as necessary. An output device such as a device is provided. The control device (13) is set in advance with three-dimensional position information of the television camera (6) in the space. The control device (13) is functionally provided with image deformation means for performing image deformation described below.
指示部材(8) の外観の詳細が図 3に、 その電気的な構成の 詳細が図 2にそれぞれ示されている。 指示部材(8) は、 長さ の中間より基端寄りの部分で少し屈曲させられこの屈曲部力、 ら基端部および先端部に向かって直線状にのびている棒状の ケース (14)を備えている。 ケース (14)の先端部に、 無指向性 マイ ク ロホン (以下マイク と略す) (15)が取付けられている。 マイ ク (15)は、 無指向性で、 4 0 k H z程度の超音波帯域の 音に対しても十分な受信感度を持ったとえばエレク ト レツ ト • コ ンデンサ · マイ クで構成されており、 後述する位置検出 装置(12)の受信器を構成している。 ケース (14)の屈曲部に、 モー ド選択ボタ ン (16)、 上ボタン (Π)および下ボタ ン (18)が 取付けられている。 ケース (14)の先端部には、 また、 先端接 触検出スィ ッチ (先端スィ ッチと略す) (19)が取付けられて いる。 モー ド選択ボタ ン (16)は、 オン (閉) 状態とオフ (開) 状態に切替えられてそれぞれの状態に保持される自己保持式 の切替えスィ ツチであり、 他のボタ ン (16) (Π) (18)およびス イ ッチ (19)は、 操作されている間だけォン状態になる自己復 帰式の押しボタ ンスィ ッチである。 マイク (15)、 ボタ ン (16) (Π) (18)およびスィ ッチ (19)は、 後に詳しく説明するように、 指示部材(8) の基端部に接続されたケーブル(20)およびコネ クタ (21)を介して、 制御ユニッ ト (1Uの所要箇所に接続され ている。 モー ド選択ボタ ン (16)は、 後述する位置計測装置(1 2)の 2次元計測モ一 ド (2次元モー ドと略す) と 3次元計測 モー ド ( 3次元モー ドと略す) の切替えを行うためのもので ある。 上ボタ ン (Π)および下ボタ ン (18)は、 後述する各種の 操作指令を行うためのものである。 先端スィ ッチ (19)は、 ス ク リーン (2) 上で後述する手書き入力を行う ときに指示部材 (8) の先端がスク リ ーン (2) に接触したこ とを検出するため のものである。 Fig. 3 shows the details of the appearance of the pointing member (8), and Fig. 2 shows the details of its electrical configuration. The indicating member (8) is provided with a rod-shaped case (14) which is slightly bent at a portion closer to the base end than in the middle of the length, and linearly extends toward the base end and the front end portion with the bending force. ing. An omnidirectional microphone (hereinafter abbreviated as microphone) (15) is attached to the tip of the case (14). The microphone (15) is omnidirectional and has sufficient reception sensitivity to sound in the ultrasonic band of about 40 kHz, and is composed of, for example, an electret condenser microphone. This constitutes a receiver of a position detection device (12) described later. The mode selection button (16), upper button (Π), and lower button (18) are attached to the bent part of the case (14). A tip contact detection switch (abbreviated as tip switch) (19) is attached to the tip of the case (14). The mode selection button (16) is a self-holding switching switch that is switched between the on (closed) state and the off (open) state and is held in each state. The other buttons (16) ( Ii) (18) and the switch (19) are self-returning push-button switches that are turned on only during operation. The microphone (15), the button (16) (Π) (18) and the switch (19) are connected to the cable (20) and the cable (20) connected to the proximal end of the pointing member (8) as described in detail later. The control unit (1U is connected to the required location via the connector (21). The mode selection button (16) is used for the two-dimensional measurement mode (12) of the position measurement device (12) described later. 2D mode) and 3D measurement It is used to switch modes (abbreviated as 3D mode). The upper button (Π) and the lower button (18) are for performing various operation commands described later. The tip switch (19) is used to detect that the tip of the pointing member (8) has contacted the screen (2) when performing handwriting input described later on the screen (2). Things.
位置計測装置(12)は、 前述の 2次元用送信器(3) 、 3次元 用送信器(5) およびマイ ク (15)、 ならびにモー ド切替え装置 (22)、 送信装置(23)、 受信装置(24)および処理装置(25)を備 えている。 位置計測装置(12)の送信器(3) (5) とマイ ク (15)を 除く部分および制御装置(13)は、 制御ュニッ ト (11)に内蔵さ れている。  The position measurement device (12) includes the two-dimensional transmitter (3), three-dimensional transmitter (5) and microphone (15), as well as the mode switching device (22), the transmission device (23), and the reception device. Equipment (24) and processing equipment (25) are provided. The parts of the position measurement device (12) other than the transmitters (3) and (5) and the microphone (15) and the control device (13) are built in the control unit (11).
各送信器(3) (5)は、 たとえば圧電式超音波 ト ラ ンスデュー ザで構成されている。 2次元用および 3次元用第 1送信器(3 a) (5a)の固有振動数波は 2 5 k H z、 2次元用および 3次元 用第 2送信器(3b) (5b)の固有振動数波は 4 0 k H z、 3次元 用第 3送信器(5 c)の固有振動数波 3 2 k H zである。  Each of the transmitters (3) (5) is composed of, for example, a piezoelectric ultrasonic transducer. The natural frequency wave of the first transmitter (3a) (5a) for 2D and 3D is 25 kHz, the natural vibration of the second transmitter (3b) (5b) for 2D and 3D The number wave is 40 kHz, the natural frequency wave of the third transmitter for 3D (5c) is 32 kHz.
送信装置(23)は、 後述する計測モー ドに応じて各 2次元用 送信器(3) または各 3次元用送信器(5) から互いに周波数の 異なる超音波バース トを間欠的にかつほぼ同時に送信させる ためのものであり、 3つの送信回路(26a) (26b) (26c) および 5 0 H z の送信制御用発振回路(27)を備えている。 送信回路 は符号(26)で総称し、 区別する必要があるときは、 それぞれ 第 1送信回路(26a) 、 第 2送信回路(2Gb) および第 3送信回 路(26c) と呼ぶことにする。 発振回路(27)は、 超音波バース 卜の送信間隔を制御するためのものであり、 2 O m s e cお きに送信開始パルス信号 Aを各送信回路(26)、 受信装置(24) および処理装置(25)に出力する。 各送信回路(26)は、 発振回 路(27)から送信開始パルス信号 Aが入力したときにそれぞれ 一定周波数の送信信号 B l 、 B 2 、 B 3 を数サイクル分出力 するためのものである。 図示は省略したが、 各送信回路(26) は、 たとえば、 一定周波数の送信用パルス信号を常時出力し ている発振回路、 および送信開始パルス信号 Aが入力したと きに一定時間だけゲー トが開いて数サイ クルの送信用パルス 信号を送信信号 B l 〜 B 3 と して出力するゲー ト回路を備え ている。 また、 各送信回路(26)は、 それぞれ、 送信信号 B 1 〜 B 3 の最初のパルスの立上りに同期して、 計測開始パルス 信号 C I 、 C 2 、 C 3 を出力する。 送信信号 B l 〜 B 3 の周 波数は、 第 1送信回路(26a) が 2 5 k H z、 第 2送信回路(2 6b) が 4 0 k H z、 第 3送信回路(26 c) が 3 2 k H z である < なお、 実際は、 各送信回路(26)の送信信号 B 1 〜 B 3 の周波 数は、 対応する送信器(3) (5)の固有振動数に対して少し上方 に離調させられている。 すなわち、 実際の送信信号 B l 〜 B 3 の周波数は、 たとえば、 第 1送信回路(26 a) が 2 5. 2 k H z、 第 2送信回路(26 b) が 4 0. 4 k H z、 第 3送信回路 (26c) が 3 2. 3 k H z に設定されている。 また、 各送信回 路(26)の送信信号 B l 〜 B 3 のレベルは、 後述する処理装置 (25)からの送信レベル制御信号 D 1 、 D 2 、 D 3 に基づいて 制御される。 送信信号 B 2 の 1例が、 図 8に示されている。 The transmitter (23) intermittently and almost simultaneously transmits ultrasonic bursts having different frequencies from each two-dimensional transmitter (3) or each three-dimensional transmitter (5) according to the measurement mode described later. It is provided with three transmission circuits (26a) (26b) (26c) and a 50 Hz transmission control oscillation circuit (27). The transmission circuits are collectively referred to by reference numeral (26), and when it is necessary to distinguish them, they will be referred to as a first transmission circuit (26a), a second transmission circuit (2Gb), and a third transmission circuit (26c), respectively. The oscillation circuit (27) is for controlling the transmission interval of the ultrasonic burst, and transmits the transmission start pulse signal A every 2 O msec to each of the transmission circuits (26) and the receiving device (24). And output to the processing device (25). Each transmission circuit (26) is for outputting transmission signals Bl, B2, and B3 having a constant frequency for several cycles when the transmission start pulse signal A is input from the oscillation circuit (27). . Although not shown, each transmission circuit (26) is, for example, an oscillation circuit that constantly outputs a transmission pulse signal of a constant frequency, and a gate for a predetermined time when a transmission start pulse signal A is input. It has a gate circuit that opens and outputs several cycles of transmission pulse signals as transmission signals Bl to B3. Each transmitting circuit (26) outputs measurement start pulse signals CI, C2, and C3 in synchronization with the rise of the first pulse of the transmission signals B1 to B3, respectively. The frequencies of the transmission signals Bl to B3 are 25 kHz for the first transmitting circuit (26a), 40 kHz for the second transmitting circuit (26b), and 40 kHz for the third transmitting circuit (26c). 32 kHz <Actually, the frequency of the transmission signals B 1 to B 3 of each transmission circuit (26) is slightly higher than the natural frequency of the corresponding transmitter (3) (5). Has been detuned. That is, the frequencies of the actual transmission signals Bl to B3 are, for example, 25.2 kHz for the first transmitting circuit (26a) and 40.4 kHz for the second transmitting circuit (26b). The third transmitting circuit (26c) is set to 32.3 kHz. The levels of the transmission signals Bl to B3 of each transmission circuit (26) are controlled based on transmission level control signals D1, D2, and D3 from the processing device (25) described later. FIG. 8 shows an example of the transmission signal B 2.
モー ド切替え装置(22)は、 指示部材(8) のモー ド選択ボタ ン (16)の状態に基づいて、 スク リ ーン (2) 上の 2次元位置を 計測する 2次元モー ドと室の空間内の 3次元位置を計測する 3次元モー ドに切替えるためのものであり、 第 1送信回路(2 6a) を 2次元用第 1送信器(3 a)に接続する 2次元計測状態と 3次元用第 1送信器(5a)に接続する 3次元計測状態に切替え るための第 1切替えスィ ッチ (28)、 第 2送信回路(26b) を 2 次元用第 2送信器(3 b)に接続する 2次元計測状態と 3次元用 第 2送信器(5 b)に接続する 3次元計測状態に切替えるための 第 2切替えスィ ッチ (29)、 および第 3送信回路(26c) を 3次 元用第 3送信器(3 c)から切離した 2次元計測状態 (開状態) と 3次元用第 3送信器(3c)に接続する 3次元計測状態 (閉状 態) に切替えられる第 3開閉スィ ッチ (30)を備えている。 指 示部材 U) のモー ド選択ボタ ン (16)が 2次元モー ド側に切替 えられると、 モー ド切替え装置(22)の各スィ ッ チ (28)〜 (30) が 2次元計測状態に切替えられ、 第 1送信回路(26a) からの 送信信号 B 1 に基づいて 2次元用第 1送信器(3 a)から 2 5 k H z の超音波バース ト (第 1超音波バース ト) 力 第 2送信 回路(26b) からの送信信号 B 2 に基づいて 2次元用第 2送信 器(3 b)から 4 0 k H z の超音波バース ト (第 2超音波バース ト) がそれぞれ送信される。 逆に、 指示部材(8) のモー ド選 択ボタ ン (16)が 3次元モー ド側に切替えられると、 モー ド切 替え装置(22)の各スィ ッチ (28)〜(30)が 3次元計測状態に切 替えられ、 第 1送信回路(26a) からの送信信号 B 1 に基づい て 3次元用第 1送信器(5 a)から第 1超音波バース トが、 第 2 送信回路(26b) からの送信信号 B 2 に基づいて 3次元用第 2 送信器(5 b)から第 2超音波バース トが、 第 3送信回路(26 c) からの送信信号 B 3 に基づいて 3次元用第 3送信器(5 c)から 3 2 k H z の超音波バース ト (第 3超音波バース ト) が送信 される。 The mode switching device (22) measures the two-dimensional position on the screen (2) based on the state of the mode selection button (16) of the pointing member (8) and the two-dimensional mode and the room. It is for switching to the three-dimensional mode for measuring the three-dimensional position in the space of the two-dimensional measurement. The first transmission circuit (26a) is connected to the first two-dimensional transmitter (3a). The first switch (28) and the second transmission circuit (26b) for switching to the 3D measurement state connected to the 3D first transmitter (5a) are connected to the 2D second transmitter (3b). ) Connected to the 2D measurement state and the 2D switch (29) for switching to the 3D measurement state connected to the 3D second transmitter (5b), and the 3rd transmission circuit (26c). The 3rd mode can be switched between the 2D measurement state (open state) disconnected from the 3D 3rd transmitter (3c) and the 3D measurement state (closed state) connected to the 3D 3rd transmitter (3c). An opening / closing switch (30) is provided. When the mode selection button (16) of the indicating member U) is switched to the two-dimensional mode, the switches (28) to (30) of the mode switching device (22) are in the two-dimensional measurement state. And a 25 kHz ultrasonic burst (first ultrasonic burst) from the first two-dimensional transmitter (3a) based on the transmission signal B 1 from the first transmission circuit (26a). Force A 40 kHz ultrasonic burst (second ultrasonic burst) is transmitted from the two-dimensional second transmitter (3 b) based on the transmission signal B 2 from the second transmission circuit (26b). Is done. Conversely, when the mode selection button (16) of the indicating member (8) is switched to the three-dimensional mode, each of the switches (28) to (30) of the mode switching device (22) is activated. The state is switched to the three-dimensional measurement state, and based on the transmission signal B1 from the first transmission circuit (26a), the first ultrasonic burst is transmitted from the first three-dimensional transmitter (5a) to the second transmission circuit (5a). The second ultrasonic burst is transmitted from the second three-dimensional transmitter (5b) based on the transmission signal B2 from the second transmission circuit 26b), and the three-dimensional burst is transmitted based on the transmission signal B3 from the third transmission circuit (26c). An ultrasonic burst of 32 kHz (third ultrasonic burst) is transmitted from the third transmitter for transmission (5c).
受信装置 (24)は、 指示部材(8) のマイ ク (15)からの受信信 号 Eを互いに中心周波数の異なる狭帯域特性を有する帯域フ  The receiving device (24) converts the reception signal E from the microphone (15) of the pointing member (8) into a band-pass filter having narrow-band characteristics having different center frequencies.
3 ィ ル夕 (31a) (31b) (31c) に通して各送信器(3) (5)からの超音 波バース トに対する送信器別受信信号を検知するためのもの であり、 3個の受信回路(32a) (32b) (32c) を備えている。 受 信回路は符号(32)で総称し、 区別する必要があるときは、 そ れぞれ第 1受信回路(32a) 、 第 2受信回路(32b) および第 3 受信回路(32c) と呼ぶこ とにする。 フィ ルタ も符号(31)で総 称し、 区別する必要があるときは、 それぞれ第 1 フィ ルタ (3 la) 、 第 2 フィ ルタ (31b) および第 3 フィ ルタ (31c) と呼ぶ ことにする。 各受信回路(32)にマイク (15)からの受信信号 E . 送信制御用発振回路(27)からの送信開始パルス信号 Aおよび 対応する各送信回路(26)からの計測開始パルス信号 C 1 〜 C 3 が入力し、 各受信回路(32)から処理装置(25)にカウ ン ト制 御信号 F 1 、 F 2 、 F 3 が出力される。 第 1 フィ ルタ (31a) の中心周波数は 2 5 k H zであり、 第 1受信回路(32 a) は第 1超音波バース トに対する第 1送信器別受信信号を検知する < 第 2 フィ ル夕 (31b) の中心周波数は 4 0 k H zであり、 第 2 受信回路(32 b) は第 2超音波バース トに対する第 2送信器別 受信信号を検知する。 第 3 フィ ルタ (31c) の中心周波数は 3 2 k H zであり、 第 3受信回路(32 c) は第 2超音波バース ト に対する第 2送信器別受信信号を検知する。 各受信回路(32) からのカウ ン ト制御信号 F 1 〜 F 3 は、 対応する計測開始パ ルス信号 C I 〜C 3 が入力してから対応する送信器別受信信 号を検知するまでの間はオンになり、 それ以外のときはオフ になっている。 Three This is to detect the received signal for each transmitter for the ultrasonic burst from each transmitter (3) (5) through the filter (31a) (31b) (31c). Circuits (32a), (32b), and (32c). The receiving circuits are collectively referred to by reference numeral (32), and when it is necessary to distinguish them, they are referred to as a first receiving circuit (32a), a second receiving circuit (32b), and a third receiving circuit (32c), respectively. And Filters are also collectively referred to by reference numeral (31), and when they need to be distinguished, they are referred to as a first filter (3 la), a second filter (31b), and a third filter (31c), respectively. A reception signal from the microphone (15) is transmitted to each reception circuit (32) E. A transmission start pulse signal A from the transmission control oscillation circuit (27) and a measurement start pulse signal C 1 to a corresponding measurement start pulse signal from each transmission circuit (26) C 3 is input, and the count control signals F 1, F 2, and F 3 are output from the receiving circuits (32) to the processing device (25). The center frequency of the first filter (31a) is 25 kHz, and the first receiving circuit (32a) detects the received signal for each first transmitter for the first ultrasonic burst <second filter The center frequency in the evening (31b) is 40 kHz, and the second receiving circuit (32b) detects the second transmitter-specific received signal for the second ultrasonic burst. The center frequency of the third filter (31c) is 32 kHz, and the third receiving circuit (32c) detects the second transmitter-specific received signal for the second ultrasonic burst. The count control signals F1 to F3 from each receiving circuit (32) are used between the time when the corresponding measurement start pulse signals CI to C3 are input and the time when the corresponding received signal for each transmitter is detected. Is on, otherwise it is off.
処理装置(25)は、 各 2次元用送信器(3) または各 3次元用 送信器(5) による超音波バース トの送信開始時刻から受信装 置(24)による対応する送信器別受信信号の検知時刻までの経  The processing device (25) calculates the corresponding reception signal for each transmitter by the receiving device (24) from the transmission start time of the ultrasonic burst by each two-dimensional transmitter (3) or each three-dimensional transmitter (5). Until the detection time of
4 過時間に基づいて、 各 2次元用送信器(3) または各 3次元用 送信器(5) からマイ ク (15)までの距離およびマイ ク (15)の 2 次元または 3次元位置を求めるためのものであり、 カウ ン ト 装置(33)、 1 MH zのカウン ト用発振回路(34)および位置計 測用演算装置(35)を備えている。 カウ ン ト装置(Π)は、 3個 のカウンタ (36a) (36b) (36 を備えている。 カウンタは符号 (36)で総称し、 区別する必要があるときは、 それぞれ第 1力 ゥ ンタ (36 a) 、 第 2カウ ンタ (36 b) および第 3カウ ンタ (36 c ) と呼ぶことにする。 発振回路(34)は、 時間をカウン トする ための 1 MH zのク ロ ッ クパルスを各カウ ンタ (36)に出力す るためのものである。 各カウ ンタ (36)に、 対応する受信回路 (32)からのカウ ン ト制御信号 F 1 〜F 3 および演算装置(35) からの リ セ ッ ト信号 Gが入力し、 各カウ ンタ (36)のカウ ン ト 値 HI 、 H2 、 H3 が演算装置(35)に入力する。 第 1カウ ン タ (36a) は、 2次元用または 3次元用第 1送信器(3a) (5a)に より第 1超音波バース トの送信を開始してからこれに対応す る第 1送信器別受信信号を第 1受信回路(32 a) により検知す るまでの経過時間をカウン トするためのものである。 第 2力 ゥ ンタ (36b) は、 2次元用または 3次元用第 2送信器(3b) (5 b)により第 2超音波バース トの送信を開始してからこれに対 応する第 2送信器別受信信号を第 2受信回路(32b) により検 知するまでの経過時間をカウ ン トするためのものである。 第 3カウンタ (36c) は、 3次元用第 3送信器(5c)により第 3超 音波バース 卜の送信を開始してからこれに対応する第 3送信 器別受信信号を第 3受信回路(32c) によ り検知するまでの経 過時間をカウ ン 卜するためのものである。 各カウ ンタ (36)は 演算装置(35)からの リ セッ ト信号 Gにより リ セッ ト され、 対 応するカウン ト制御信号 F 1 〜 F 3 がオンになっている間、 発振回路 (34)からのパルスをカウン トすることにより、 時間 をカウン ト し、 カウン トを停止したときのカウン ト値 H 1 〜 H 3 をホール ドするようになっている。 Four To determine the distance from each 2D transmitter (3) or each 3D transmitter (5) to the microphone (15) and the 2D or 3D position of the microphone (15) based on the elapsed time It is equipped with a counting device (33), a 1 MHz counting oscillation circuit (34), and an arithmetic device for position measurement (35). The counting device (Π) has three counters (36a), (36b) and (36). The counters are collectively referred to by the reference numeral (36), and when it is necessary to distinguish them, the first power counter is used. (36a), the second counter (36b) and the third counter (36c) The oscillation circuit (34) is a 1 MHz clock pulse for counting time. Is output to each counter (36), and the counter control signals F 1 to F 3 from the corresponding receiving circuit (32) and the arithmetic unit (35) are output to each counter (36). The reset signal G from the controller is input, and the count values HI, H2, and H3 of each counter (36) are input to the arithmetic unit (35). The first ultrasonic burst is transmitted by the first transmitter for 3D or 3D transmission (3a) (5a), and then the corresponding received signal for each first transmitter is transmitted to the first receiver circuit (32 The second force counter (36b) is used to count the elapsed time until detection by a), and the second force counter (36b) is used by the second or three-dimensional second transmitter (3b) (5b). (2) For counting the elapsed time from the start of transmission of the ultrasonic burst to the detection of the corresponding received signal by the second transmitter by the second receiving circuit (32b). The third counter (36c) starts transmission of the third ultrasonic burst by the three-dimensional third transmitter (5c), and then transmits the corresponding third-transmitter-specific received signal to the third receiver circuit (36c). Each counter (36) is reset by a reset signal G from the arithmetic unit (35), and counts the elapsed time until detection by 32c). While the corresponding count control signals F1 to F3 are on, the pulse from the oscillation circuit (34) is counted to count the time and the count value when the count is stopped. H1 to H3 are held.
演算装置(35)は、 各カウ ンタ (36)のカウ ン ト値 H I 〜H 3 に基づいて各 2次元用送信器(3) からマイク (15)までの距離 または各 3次元用送信器(15)からマイク (15)までの距離を求 め、 さ らにこれらの距離に基づいてマイク (15)の 2次元位置 または 3次元位置を求めるためのものであり、 図示しないマ イ コン (マイ ク ロコ ンピュータ) などを備えている。 また、 演算装置(35)は、 機能上、 送信器別受信信号の受信レベルに 応じて対応する送信回路(26)の送信信号のレベルを制御する A 0 C (自動出力レベル制御) 手段を備えている。 演算装置 (35)には、 超音波の伝搬速度、 スク リ ーン (2) 上の 2次元座 標における 2個の 2次元用送信器(3) の位置座標情報、 空間 内の 3次元座標における 3個の 3次元用送信器(5) の位置座 標情報など、 位置計測に必要な情報が設定、 記憶されている < なお、 プレゼンテーシ ョ ン装置の適当箇所に温度センサを設 けて、 温度変化に応じて超音波の伝搬速度の設定値を補正す るようにすることもできる。 演算装置(35)は、 送信制御用発 振回路(27)から送信開始パルス信号 Aが入力するたびに、 各 カウンタ (36)のカウン ト値 H 1 〜H 3 を読込んで、 これらを 記憶し、 各カウ ンタ (36)にリセッ ト信号 Gを出力する。 そし て、 次の送信開始パルス信号 Aが入力するまでの間に、 先に 記憶した各カウンタ (36)のカウン ト値 H I 〜H 3 に基づいて, 各 2次元用送信器(3) または各 3次元用送信器(5) からマイ ク (15)までの距離およびマイ ク (15)の 2次元または 3次元位  The arithmetic unit (35) determines the distance from each two-dimensional transmitter (3) to the microphone (15) or each three-dimensional transmitter (3) based on the count values HI to H3 of each counter (36). This is for determining the distance from the microphone (15) to the microphone (15), and for determining the two-dimensional or three-dimensional position of the microphone (15) based on these distances. (Computer). In addition, the arithmetic unit (35) functionally includes A 0 C (automatic output level control) means for controlling the level of the transmission signal of the corresponding transmission circuit (26) according to the reception level of the reception signal for each transmitter. ing. The arithmetic unit (35) contains the ultrasonic wave propagation velocity, the position coordinate information of the two 2D transmitters (3) on the 2D coordinates on the screen (2), and the 3D coordinates in space. Information necessary for position measurement, such as the position coordinate information of the three three-dimensional transmitters (5), is set and stored. <A temperature sensor is installed at an appropriate location on the presentation device. However, it is also possible to correct the set value of the ultrasonic wave propagation speed according to the temperature change. Each time the transmission start pulse signal A is input from the transmission control oscillation circuit (27), the arithmetic unit (35) reads the count values H1 to H3 of each counter (36) and stores them. The reset signal G is output to each counter (36). Until the next transmission start pulse signal A is input, each two-dimensional transmitter (3) or each two-dimensional transmitter (3) is used based on the previously stored count values HI to H3 of each counter (36). Distance from 3D transmitter (5) to microphone (15) and 2D or 3D position of microphone (15)
6 置を演算する。 また、 演算装置(35)は、 A O C手段により、 各送信器(3) (5)からマイ ク (15)までの距離に基づいて、 その 送信器(3) (5)に対する送信信号 B 1 〜B 3 の送信レベル値を 演算し、 これを対応する送信回路(26)に送信レベル制御信号 D 1 〜! 3 と して出力する。 演算装置(35)には、 指示部材(8 ) のボタ ン (16)〜( )およびスィ ッ チ (19)からのスィ ッチ信 号が入力し、 これらのスィ ツチ信号情報、 計測モー ドの選択 情報、 計測された 2次元位置および 3次元位置の座標情報な どが、 演算装置(35)から制御装置(13)に出力される。 6 Calculate the position. Further, the arithmetic unit (35) uses the AOC means to transmit the transmission signals B 1 to B 1 to the transmitter (3) (5) based on the distance from each transmitter (3) (5) to the microphone (15). Calculates the transmission level value of B3 and sends it to the corresponding transmission circuit (26). Output as 3. The arithmetic unit (35) receives buttons (16) to () of the indicating member (8) and switch signals from the switch (19), and inputs the switch signal information and the measurement mode. Selection information, coordinate information of the measured two-dimensional position and three-dimensional position, and the like are output from the arithmetic unit (35) to the control unit (13).
位置計測装置(12)は、 上記の構成により、 送信制御用発振 回路(27)から送信開始パルス信号 Aが出力されるたびに、 計 測モー ドに応じて、 マイ ク (15)の 2次元位置または 3次元位 置を計測する。 次に、 計測モー ドごとに、 上記の位置計測装 置(12)による位置計測動作を詳し く説明する。  With the above-described configuration, the position measuring device (12) is configured such that each time the transmission start pulse signal A is output from the transmission control oscillation circuit (27), the two-dimensional microphone (15) according to the measurement mode. Measure position or 3D position. Next, the position measurement operation by the position measurement device (12) will be described in detail for each measurement mode.
2次元モー ドが選択されている場合、 送信制御用発振回路 (27)から送信開始パルス信号 Aが出力されると、 まず、 演算 装置(35)により、 第 1 および第 2 カウンタ (36 a) (36 b)のカウ ン ト値 H I 、 H 2 が読込まれて、 メ モ リなどに記憶された後. 演算装置(35)から リ セ ッ ト信号 Gが出力されて、 各カウ ンタ (36a) (36b)がリセッ トされ、 これと同時かわずかに後に、 2 個の 2次元用送信器(3) から第 1 および第 2超音波バース ト がそれぞれ送信される。 各超音波バース トの送信開始と同時 に、 第 1 および第 2送信回路(26 a) (26 b)から第 1および第 2 受信回路(32a) (32b)にそれぞれ計測開始パルス信号 C 1 、 C 2 が出力され、 これによ り、 カウ ン ト制御信号 F 1 、 F 2 が オ ンになって、 第 1 および第 2カウ ンタ (36 a) (36 b)がカウ ン トを開始する。 そして、 次の送信開始パルス信号 Aが出力さ れるまでの間に、 演算回路(35)により、 後述するように、 マ イ ク (15)の 2次元位置座標の演算および送信レベル制御信号 D 1 、 D 2 の出力が行われる。 第 1および第 2超音波バース トの送信開始後、 2次元用第 1送信器(3 a)から送信された第 1超音波バース トがマイ ク (15)で受信される と、 これに対す る第 1送信器別受信信号が第 1受信回路(32a) で検知されて. そのカウ ン ト制御信号 F 1 がォフになり、 第 1カウ ンタ (36a ) がカウ ン トを停止する。 このとき、 第 1カウ ンタ (36 に ホール ドされるカウン ト値 HI は、 第 1超音波バース トの送 信開始時刻からこれに対する第 1送信器別受信信号の検知時 刻までの経過時間、 すなわち 2次元用第 1送信器(3 a)からマ イク (15)まで超音波が伝搬するのに要する時間に相当してい る。 同様に、 2次元用第 2送信器(3b)からの第 2超音波バ一 ス トがマイ ク (15)で受信されると、 これに対する第 2送信器 別受信信号が第 2受信回路(32b) で検知されて、 そのカウ ン ト制御信号 F 2 がオフになり、 第 2カウ ンタ (36 b) がカウ ン トを停止する。 このとき、 第 2カウンタ (36 b) にホール ドさ れるカウ ン ト値 H2 は、 第 2超音波バース トの送信開始時刻 からこれに対する第 2送信器別受信信号の検知時刻までの経 過時間、 すなわち 2次元用第 2送信器(3 b)からマイク (15)ま で超音波が伝搬するのに要する時間に相当している。 次の送 信開始パルス信号 Aが出力されると、 上記と同様に、 演算装 置(35)により、 カウン ト値 HI 、 H 2 が読込まれて記憶され、 リセッ ト信号 Gが出力される。 そして、 送信回路(26 a) (26 b). 送信器(3) 、 受信回路(32a) (32b)およびカウ ンタ (36a) (36b) において、 上記と同様の動作が行われる。 同時に、 演算装置 (35)において、 先に記憶したカウン ト値 H 1 、 H 2 に基づい て、 2個の 2次元用送信器(3) からマイ ク (15)までの距離が それぞれ演算され、 さ らにこれらの距離に基づいてマイ ク (1 5)のスク リ ーン (2) 上の 2次元位置座標が演算される。 前述 のように、 第 1 カウ ンタ (36a) のカウ ン ト値 H I は、 2次元 用第 1送信器(3 a)からマイ ク (15)まで超音波が伝搬するのに 要する時間に対応しているので、 この時間と超音波の伝搬速 度より、 2次元用第 1送信器(3 a)からマイク (15)までの距離 が演算できる。 同様に、 第 2カウンタ (36 b) のカウン ト値 H 2 と超音波の伝搬速度より、 2次元用第 2送信器(3b)からマ イク (15)までの距離が演算できる。 そして、 これらの距離と 演算装置(35)に設定されている 2個の 2次元用送信器(3) の 2次元位置座標情報に基づいて、 マイ ク (15)の 2次元位置座 標を演算する こ とができる。 一方、 演算装置(35)の A 0 C手 段において、 2次元用第 1送信器(3a)からマイク (15)までの 距離の演算値に基づいて、 第 1送信回路(26a) に対する送信 レベル値が求められ、 これが送信レベル制御信号 D 1 と して 第 1送信回路(26a) に出力される。 この送信レベル値は、 距 離の演算値が大き く なるにつれて大き く なるように、 好ま し く は、 あらかじめ設定されている階段状の値を選択するこ と により求められる。 そして、 次に送信開始パルス信号 Aが出 力されて、 第 1送信回路(26a) から送信信号 B 1 が出力され るときに、 上記の送信レベル制御信号 D 1 に基づいて、 送信 信号 B 1 のレベルが調整される。 すなわち、 前々回の超音波 バース トに対する距離の演算値に基づいて、 送信信号 B 1 の レベルが調整される。 その結果、 送信器(3 a)からマイク (15) までの距離が変化しても、 受信回路(32a) で受信される第 1 送信器別受信信号の受信レベルが一定の範囲内に入るように When the transmission start pulse signal A is output from the transmission control oscillation circuit (27) when the two-dimensional mode is selected, first, the first and second counters (36a) are operated by the arithmetic unit (35). After reading the count values HI and H2 of (36b) and storing them in memory, etc., the reset signal G is output from the arithmetic unit (35), and each counter (36a ) (36b) is reset, and at the same time or slightly later, the first and second ultrasonic bursts are transmitted from the two two-dimensional transmitters (3), respectively. Simultaneously with the start of transmission of each ultrasonic burst, the first and second transmitting circuits (26a) and (26b) transmit the measurement start pulse signals C 1 and C 2 is output, which turns on the count control signals F 1 and F 2, and the first and second counters (36 a) and (36 b) start counting. . Then, the next transmission start pulse signal A is output. In the meantime, the arithmetic circuit (35) calculates the two-dimensional position coordinates of the microphone (15) and outputs the transmission level control signals D 1 and D 2 as described later. After the transmission of the first and second ultrasonic bursts is started, when the first ultrasonic burst transmitted from the two-dimensional first transmitter (3a) is received by the microphone (15), a response is made to this. The first receiver-specific received signal is detected by the first receiver circuit (32a), the count control signal F1 is turned off, and the first counter (36a) stops counting. At this time, the count value HI held at the first counter (36) is the elapsed time from the transmission start time of the first ultrasonic burst to the detection time of the first transmitter-specific received signal corresponding thereto. That is, it corresponds to the time required for the ultrasonic wave to propagate from the two-dimensional first transmitter (3a) to the microphone (15). 2 When the ultrasonic burst is received by the microphone (15), a second transmitter-specific received signal corresponding thereto is detected by the second receiving circuit (32b), and the count control signal F 2 is received. The counter is turned off, the second counter (36b) stops counting, and the count value H2 held in the second counter (36b) is determined by the transmission of the second ultrasonic burst. Elapsed time from the start time to the detection time of the second transmitter-specific received signal, that is, the 2D second transmission This is equivalent to the time required for the ultrasonic wave to propagate from the transmitter (3b) to the microphone (15) When the next transmission start pulse signal A is output, the arithmetic unit ( According to 35), the count values HI and H2 are read and stored, and the reset signal G is output.The transmission circuit (26a) (26b). (32b) and counters (36a) and (36b) perform the same operation as described above, and at the same time, in the arithmetic unit (35), based on the previously stored count values H 1 and H 2. Then, the distance from the two two-dimensional transmitters (3) to the microphone (15) is calculated, and based on these distances, the screen (2) of the microphone (15) is calculated. The above two-dimensional position coordinates are calculated. As described above, the count value HI of the first counter (36a) corresponds to the time required for the ultrasonic wave to propagate from the first two-dimensional transmitter (3a) to the microphone (15). Therefore, the distance from the first two-dimensional transmitter (3a) to the microphone (15) can be calculated from this time and the propagation speed of the ultrasonic wave. Similarly, the distance from the second two-dimensional transmitter (3b) to the microphone (15) can be calculated from the count value H2 of the second counter (36b) and the propagation speed of the ultrasonic wave. Then, based on these distances and the two-dimensional position coordinate information of the two two-dimensional transmitters (3) set in the arithmetic unit (35), the two-dimensional position coordinates of the microphone (15) are calculated. can do. On the other hand, in the A 0 C means of the arithmetic unit (35), the transmission level to the first transmission circuit (26a) is calculated based on the calculated value of the distance from the first two-dimensional transmitter (3a) to the microphone (15). A value is obtained, and this is output to the first transmission circuit (26a) as a transmission level control signal D1. This transmission level value is preferably obtained by selecting a preset step-like value so as to increase as the calculated value of the distance increases. Next, when the transmission start pulse signal A is output and the first transmission circuit (26a) outputs the transmission signal B1, the transmission signal B1 is output based on the transmission level control signal D1. Level is adjusted. That is, the level of the transmission signal B 1 is adjusted based on the calculated value of the distance to the ultrasonic burst two times before. As a result, even if the distance from the transmitter (3a) to the microphone (15) changes, the reception level of the first transmitter-specific reception signal received by the reception circuit (32a) falls within a certain range. To
9 なる。 同様に、 2次元用第 2送信器(3 b)からマイク (15)まで の距離の演算値に基づいて、 第 2送信回路(26b) に対する送 信レベル値が求められ、 これが送信レベル制御信号 D 2 と し て第 2送信回路(26b) に出力され、 次に送信開始パルス信号 Aが出力されて、 第 2送信回路(26b) から送信信号 B 2 が出 力されるときに、 上記の送信レベル制御信号 D 2 に基づいて 送信信号 B 2 のレベルが調整される。 そして、 上記の動作が 繰返されることにより、 送信開始パルス信号 Aが出力される たびに、 マイ ク (15)の 2次元位置が計測される。 9 Become. Similarly, a transmission level value for the second transmission circuit (26b) is obtained based on the calculated value of the distance from the second two-dimensional transmitter (3b) to the microphone (15). The signal is output to the second transmitting circuit (26b) as D 2, the transmission start pulse signal A is output next, and the transmission signal B 2 is output from the second transmitting circuit (26b). The level of the transmission signal B 2 is adjusted based on the transmission level control signal D 2. Then, by repeating the above operation, each time the transmission start pulse signal A is output, the two-dimensional position of the microphone (15) is measured.
3次元モー ドが選択されている場合も、 計測制御用発振回 路(27)から送信開始パルス信号 Aが出力されると、 まず、 演 算装置(35)により、 3個のカウンタ (36)のカウ ン ト値 H 1 〜 H 3 が読込まれて記憶された後、 演算装置(35)から リセッ ト 信号 Gが出力されて、 各カウンタ (36)がリセッ 卜され、 これ と同時かわずかに後に、 3個の 3次元用送信器(5) から第 1 - 第 2および第 3超音波バース 卜がそれぞれ送信される。 各超 音波バース トの送信開始と同時に、 3個の送信回路(26)から 3つの受信回路(Π)にそれぞれ計測開始パルス信号 C 1 、 C 2 、 C 3 が出力され、 これにより、 カウン ト制御信号 F 1 、 F 2 、 F 3 がオンになって、 3個のカウ ンタ (36)がカウ ン ト を開始する。 そして、 次の送信開始パルス信号 Aが出力され るまでの間に、 演算装置(35)により、 後述するように、 マイ グ(15)の 3次元位置座標の演算および送信レベル制御信号 D 1 、 D 2 、 D 3 の出力が行われる。 各超音波バース トの送信 開始後、 3次元用第 1送信器(5a)から送信された第 1超音波 バース トがマイク (15)で受信されると、 これに対する第 1送 信器別受信信号が第 1受信回路(32a) で検知されて、 その力 ゥ ン ト制御信号 F 1 がオフになり、 第 1カウ ンタ (36 a) が力 ゥ ン トを停止する。 同様に、 3次元用第 2送信器(5b)から送 信された第 2超音波バース トがマイク (15)で受信されると、 第 2カウ ンタ (36b) がカウ ン トを停止し、 3次元用第 3送信 器(5 から送信された第 3超音波バ一ス トがマイク (15)で受 信されると、 第 3カウンタ (36 c) がカウン トを停止する。 こ の場合も、 第 1カウ ンタ (36 a) のカウ ン ト値 HI は 3次元用 第 1送信器(5 a)からマイ ク (15)まで超音波が伝搬するのに要 する時間に、 第 2カウ ンタ (36b) のカウ ン ト値 H2 は 3次元 用第 2送信器(5 b)からマイ ク (15)まで超音波が伝搬するのに 要する時間に、 第 3カウンタ (36 c) のカウ ン ト値 H3 は 3次 元用第 3送信器(5 c)からマイ ク (15)まで超音波が伝搬するの に要する時間にそれぞれ相当している。 次の送信開始パルス 信号 Aが出力されると、 上記と同様に、 演算装置(35)により カウン ト値 H1 、 H2 、 H 3 が読込まれて記憶され、 リセッ ト信号 Gが出力される。 そして、 送信回路(26)、 送信器(5) 受信回路(32)およびカウンタ (36)において、 上記と同様の動 作が行われる。 同時に、 演算装置(35)において、 先に記憶し たカウ ン ト値 HI 、 H 2 、 H 3 に基づいて、 2次元モー ドの 場合と同様に、 3個の 3次元用送信器(5) からマイ ク (15)ま での距離がそれぞれ演算され、 さ らにこれらの距離と演算装 置(35)に設定されている 3個の 3次元用送信器(5) の 3次元 位置座標情報に基づいて、 マイク (15)の 3次元位置座標が演 算される。 一方、 演算装置(35)の A 0 C手段において、 2次 元計測モー ドの場合と同様に、 3個の送信器(5) からマイク (15)までの距離の演算値に基づいて、 3つの送信回路(26)に 対する送信レベル値が求められ、 これらが送信レベル制御信 号 D l 、 D 2 、 D 3 と して対応する送信回路(26)に出力され る。 そして、 上記の動作が繰返されることにより、 送信開始 パルス信号 Aが出力されるたびに、 マイク (15)の 3次元位置 が計測される。 Even when the three-dimensional mode is selected, when the transmission start pulse signal A is output from the measurement control oscillation circuit (27), first, the arithmetic unit (35) uses the three counters (36). After reading and storing the count values H1 to H3, the reset signal G is output from the arithmetic unit (35), and each counter (36) is reset. Later, the first, second and third ultrasonic bursts are transmitted from the three three-dimensional transmitters (5), respectively. At the same time as the transmission of each ultrasonic burst, the measurement start pulse signals C 1, C 2, and C 3 are output from the three transmission circuits (26) to the three reception circuits (Π), respectively. The control signals F1, F2 and F3 are turned on, and the three counters (36) start counting. Then, before the next transmission start pulse signal A is output, the arithmetic unit (35) calculates the three-dimensional position coordinates of the mig (15) and the transmission level control signal D 1, as described later. D 2 and D 3 are output. After the start of transmission of each ultrasonic burst, the first ultrasonic burst transmitted from the first three-dimensional transmitter (5a) is received by the microphone (15). The signal is detected by the first receiving circuit (32a) and its power is The count control signal F1 is turned off, and the first counter (36a) stops the power count. Similarly, when the second ultrasonic burst transmitted from the second three-dimensional transmitter (5b) is received by the microphone (15), the second counter (36b) stops counting, and The third counter (36c) stops counting when the third ultrasonic burst transmitted from the three-dimensional third transmitter (5) is received by the microphone (15). In this case, In addition, the count value HI of the first counter (36a) is equal to the time required for the ultrasonic wave to propagate from the first three-dimensional transmitter (5a) to the microphone (15). The count value H2 of the counter (36b) is calculated by the time required for the ultrasonic wave to propagate from the second three-dimensional transmitter (5b) to the microphone (15), and the count of the third counter (36c). The value H3 corresponds to the time required for the ultrasonic wave to propagate from the third-dimensional third transmitter (5c) to the microphone (15) The next transmission start pulse signal A is output When, Similarly to the above, the arithmetic unit (35) reads and stores the count values H1, H2, and H3, and outputs the reset signal G. Then, the transmission circuit (26), the transmitter (5) The same operation as described above is performed in the circuit (32) and the counter (36) At the same time, in the arithmetic unit (35), based on the previously stored count values HI, H2, and H3, As in the case of the two-dimensional mode, the distances from the three three-dimensional transmitters (5) to the microphone (15) are calculated respectively, and further, these distances and the calculation device (35) are calculated. The three-dimensional position coordinates of the microphone (15) are calculated based on the three-dimensional position coordinate information of the three set three-dimensional transmitters (5). In the C means, based on the calculated value of the distance from the three transmitters (5) to the microphone (15), as in the case of the two-dimensional measurement mode, Transmission level values for the three transmission circuits (26) are determined, and these are used as transmission level control signals. The signals are output to the corresponding transmitting circuits (26) as signals Dl, D2, and D3. By repeating the above operation, the three-dimensional position of the microphone (15) is measured each time the transmission start pulse signal A is output.
上記のプレゼンテーショ ン装置において、 上記のように、 位置計測装置(12)により、 常時、 2次元位置または 3次元位 置の計測が行われる。 すなわち、 指示部材(8) のモー ド選択 ボタ ン (16)が 2次元モー ド側に切替えられている間は、 2次 元位置の計測が行われて、 2次元位置情報が制御装置(U)に 送られ、 モー ド選択ボタ ン (16)が 3次元モー ド側に切替えら れている間は、 3次元位置の計測が行われて、 3次元位置情 報が制御装置(13)に送られる。 そして、 制御装置(13)におい て、 これらの位置情報、 指示部材(8) からのスィ ッチ信号情 報などに基づいて、 向き調整装置(7) 、 テレビカメ ラ (6) お よび画像表示装置(10)を制御するこ とによ り、 スク リ ーン (2 ) に表示される画像の制御が行われる。  In the above presentation device, as described above, the two-dimensional position or the three-dimensional position is always measured by the position measuring device (12). That is, while the mode selection button (16) of the indicating member (8) is switched to the two-dimensional mode, the two-dimensional position is measured and the two-dimensional position information is transmitted to the control device (U). ), And while the mode selection button (16) is switched to the 3D mode, the 3D position is measured and the 3D position information is sent to the controller (13). Sent. Then, based on the position information, the switch signal information from the indicating member (8), and the like, the control device (13) uses the direction adjustment device (7), the television camera (6), and the image display device. The image displayed on the screen (2) is controlled by controlling the device (10).
たとえば、 発言者が、 モー ド選択ボタ ン (16)を 2次元モー ド側に切替えた状態で、 指示部材(8) をスク リ ーン (2) 上の 任意の位置に移動させると、 そのときの指示部材(8) の先端 のマイク (15)の部分のスク リ ーン (2) 上の 2次元位置が計測 される。 そして、 このような 2次元位置の計測と、 上ボタ ン (11)および下ボタン ( )を使用した指示部材(8) からの種々 の操作指令とを組合わせるこ とにより、 たとえばスク リーン (2) 上の表示の切替えなどの制御、 スク リ ーン (2) 上に表示 された作業メニューの選択などが行われる。 また、 指示部材 (8) の先端スィ ッチ (19)をスク リ ーン (2) に押付けてオン状 態にするこ とにより、 手書きモー ドに設定され、 先端スィ ッ チ (1 9)をスク リ ーン (2) に押付けて移動させることにより、 指示部材(8 ) による手書き入力が行われ、 このようにして手 書き入力された情報の表示などが行われる。 あるいは、 たと えば下ボタ ン (1 8)を押したまま (オンにしたまま) 指示部材 (8) を移動させるこ とによって、 手書き入力を行うようにす る と t)でさる o For example, if the speaker moves the pointing member (8) to an arbitrary position on the screen (2) with the mode selection button (16) switched to the two-dimensional mode, The two-dimensional position of the microphone (15) at the tip of the pointing member (8) on the screen (2) is measured. By combining such two-dimensional position measurement with various operation commands from the pointing member (8) using the upper button (11) and the lower button (), for example, the screen (2 ) Controls such as switching the upper display, and selection of the work menu displayed on the screen (2). Also, by pressing the tip switch (19) of the indicating member (8) against the screen (2) to turn it on, the hand switch mode is set and the tip switch (19) is set to the handwriting mode. By pushing the switch (19) against the screen (2) and moving it, handwriting input is performed by the pointing member (8), and the information input by handwriting is displayed in this way. Or, for example, by pressing the lower button (1 8) (while keeping the button on) and moving the indicating member (8), handwriting input can be performed with t) o
また、 発言者が、 モー ド選択ボタ ン (1 6)を 3次元モ一 ド側 に切替えた状態で、 指示部材(8 ) を空間内の任意の位置に移 動させると、 そのときの指示部材(8) の先端の 3次元位置が 計測される。 そ して、 このよ うな 3次元位置の計測と、 上ボ タ ン (Π )および下ボタ ン (1 8)を使用した指示部材(8) からの 種々の操作指令とを組合わせることにより、 テレビカメ ラ (6 ) による資料などの対象物の撮像、 その画像の表示などが行 われる。 たとえば、 指示部材(8 ) の先端を机(9 ) の上などの 任意の位置に置かれた資料などの対象物に近付けて撮像指令 を行う と、 制御装置(1 3)によ り、 そのときの指示部材(8) の 先端の位置すなわち対象物の 3次元位置情報が記憶され、 こ の位置情報およびテレビカメ ラ (6) の位置情報に基づき、 .向 き調整装置(7) のアジマス角およびエレベーシ ョ ン角が制御 されて、 テレビカメ ラ (6) が対象物に向けられるとともに、 テレビカメ ラ (6) のピン トが調整され、 対象物が撮像される, そして、 テレビカメ ラ (6) からの画像信号に基づいて、 撮像 した対象物の画像をスク リ ーン (2) 上に表示したりすること ができる。  When the speaker moves the indicating member (8) to an arbitrary position in the space with the mode selection button (16) switched to the three-dimensional mode side, the instruction at that time is given. The three-dimensional position of the tip of the member (8) is measured. Then, by combining such three-dimensional position measurement with various operation commands from the pointing member (8) using the upper button (Π) and the lower button (18), The TV camera (6) captures objects such as materials and displays the images. For example, when the tip of the pointing member (8) is brought close to an object such as a document placed at an arbitrary position such as on a desk (9) and an imaging command is issued, the control device (13) causes the control device (13) to perform the imaging command. The position of the tip of the pointing member (8), that is, the three-dimensional position information of the object is stored. Based on this position information and the position information of the television camera (6), the azimuth of the orientation adjustment device (7) is stored. The angle of the camera and the elevation angle are controlled, the TV camera (6) is pointed at the object, the focus of the TV camera (6) is adjusted, the object is imaged, and the TV camera is imaged. Based on the image signal from (6), the captured image of the object can be displayed on the screen (2).
テレビカメ ラ (6) で撮像した画像をスク リ ーン (2) 上に表 示する場合、 画像の移動、 拡大 · 縮小、 回転、 射影変換など の画像変形を行って見やすく したり、 あらかじめ記憶してい る別の画像と合成したり、 手書き入力でコメ ン トなどを追記 したりする こ とが要求されることがあるが、 指示部材 U) か らの計測モー ドの選択、 種々の操作指令に基づいて、 制御装 置の画像変形手段により、 上記のような動作を行わせること ができる。 When displaying an image captured by a TV camera (6) on a screen (2), image deformation such as moving, enlarging / reducing, rotating, projective transformation, etc. is performed to make it easier to see, or stored in advance. Doing In some cases, it is required to combine with another image or add comments etc. by handwriting input.However, it is necessary to select the measurement mode from the pointing member U) and respond to various operation commands. Based on this, the above-described operation can be performed by the image deforming means of the control device.
次に、 図 1 6および図 1 7を参照して、 画像変形のうちの 拡大 · 縮小、 回転、 射影変換の場合の指示部材(8) の操作お よび画像変形処理の 1例について詳し く説明する。  Next, with reference to FIGS. 16 and 17, a detailed description will be given of an example of the operation of the indicating member (8) and the image deformation processing in the case of enlargement / reduction, rotation, and projective transformation in the image deformation. I do.
図 1 6の (a) 、 (b) および ) は指示部材(8) の操作方法 を説明するための図であり、 各図において、 テレビカメ ラ (6 ) の撮像範囲が符号 Tで示されている。 また、 空間内の位置 は、 X軸、 Y軸および Z軸による 3次元直交座標で表わされ るようになっている。 この場合、 X軸および Y軸は水平であ り、 Z軸は垂直となっている。  (A), (b) and) in FIG. 16 are diagrams for explaining the operation method of the pointing member (8). In each figure, the imaging range of the television camera (6) is indicated by a symbol T. ing. The position in the space is represented by three-dimensional rectangular coordinates based on the X, Y, and Z axes. In this case, the X and Y axes are horizontal and the Z axis is vertical.
画像変形を指示する場合、 まず、 図 1 6 (a) に示すよ うに、 テレビカメ ラ (6) の撮像範囲 T内に操作の中心点 Pを設定す る。 この操作は、 指示部材(8) の先端 (マイ ク (15)の部分) を撮像範囲 T内にもってきて、 下ボタ ン (18)をダブルク リ ッ クすることにより行われる。 指示部材(8) の先端が撮像範囲 T内にある状態で、 下ボタ ン (18)がダブルク リ ッ クされると、 そのときに計測された指示部材(8) の先端の位置が操作の中 心点 P と して設定される。 操作の中心点 Pの設定が終了する と、 図 1 6 (b) に示すように、 基準べク トル V Q を設定する < この操作は、 指示部材(8) の先端を空間内所望の位置に移動 させた後に、 下ボタ ン (18)をク リ ッ クすることにより行われ る。 操作の中心点 Pの設定後、 1回目の下ボタ ン (18)のク リ ッ クが行われると、 操作の中心点 Pからそのときに計測され た指示部材 ) の先端の位置までのベク トルが求められ、 こ れが基準べク トル V Q と して設定される。 基準べク トル V o の設定が終了すると、 図 1 6 (c) に示すように、 比較べク ト ル V a を設定する。 この操作も、 指示部材(8) の先端を空間 内所望の位置に移動させた後に、 下ボタ ン (18)をク リ ッ クす る こ とによ り行われる。 この操作は、 何度も繰返して行う こ とができる。 操作の中心点 Pの設定後、 2回目以降のの下ボ タ ン (18)のク リ ッ クが行われると、 操作の中心点 Pからその ときに計測された指示部材(8) の先端の位置までのべク トル が求められ、 これがそのときの比較ベク トル V a と して設定 される。 そ して、 比較べク トル V a が設定されるたびに、 比 較べク トル V a に基づいて画像変形の種類が決定され、 決定 された画像処理が実行される。 When instructing image deformation, first, as shown in Fig. 16 (a), the center point P of the operation is set within the imaging range T of the television camera (6). This operation is performed by bringing the tip of the pointing member (8) (the portion of the microphone (15)) into the imaging range T and double-clicking the lower button (18). If the lower button (18) is double-clicked while the tip of the pointing member (8) is within the imaging range T, the position of the tip of the pointing member (8) measured at that time is changed. Set as center point P. When the setting of the center point P of the operation is completed, the reference vector VQ is set as shown in Fig. 16 (b). <This operation moves the tip of the pointing member (8) to a desired position in the space. After moving, this is done by clicking the lower button (18). After setting the operation center point P, if the first click of the lower button (18) is performed, measurement is performed from the operation center point P at that time. The vector up to the position of the tip of the pointing member) is determined, and this is set as the reference vector VQ. After setting the reference vector V o, the comparison vector V a is set as shown in Fig. 16 (c). This operation is also performed by moving the tip of the pointing member (8) to a desired position in the space and then clicking the lower button (18). This operation can be repeated many times. After the center point P of the operation is set, when the lower button (18) is clicked for the second time or later, the tip of the pointing member (8) measured at that time from the center point P of the operation The vector up to the position is obtained, and this is set as the comparison vector Va at that time. Then, each time the comparison vector Va is set, the type of image deformation is determined based on the comparison vector Va, and the determined image processing is executed.
画像処理の決定は、 比較べク トル V a を基準ベク トル V o と比較することにより次のようにして行われる。 すなわち、 比較べク トル V a が設定されると、 まず、 比較べク トル V o の回転角度 6»、 比較べク トル V a の長さの変化率 A Lおよび 比較べク トル V a の Z座標の変化率 Δ Zが求められる。 回転 角度 0は、 基準べク トル V o の X Y平面への射影に対して比 較べク トル V a の X Y平面への射影のなす角度によって表わ される。 長さの変化率 A Lは、 比較べク トル V a の長さ L a と、 基準べク トル V o の長さ L o との比 ( L a o ) によ つて表わされる。 Z座標の変化率 Δ Ζは、 比較べク トル V a の先端 (操作の中心点 Pに対して反対側の端) の Z座標値 Z a と基準ベク トル V o の先端の Z座標値 Ζ ο の差 ( Z a — Z 0 ) と、 基準べク トル V o の長さ L c との比 ( ( Z a - Z 0 ) / L 0 ) によって表わされる。 なお、 これらの値は、 周知の 計算式を用いて求めることができる。 The decision on image processing is made as follows by comparing the comparison vector V a with the reference vector V o. That is, when the comparison vector V a is set, first, the rotation angle 6 »of the comparison vector V o, the change rate AL of the length of the comparison vector V a, and the Z of the comparison vector V a The coordinate change rate ΔZ is obtained. The rotation angle 0 is represented by the angle formed by the projection of the comparison vector V a onto the XY plane with respect to the projection of the reference vector V o onto the XY plane. The rate of change of length AL is expressed by the ratio (L ao) of the length L a of the comparison vector V a to the length L o of the reference vector V o. The rate of change of the Z coordinate Δ Z is the Z coordinate value Z a of the tip of the comparison vector V a (the end opposite to the center point P of the operation) and the Z coordinate value 先端 of the tip of the reference vector V o. It is represented by the ratio ((Za-Z0) / L0) of the difference between ο (Za — Z0) and the length Lc of the reference vector Vo. These values are well known It can be obtained using a calculation formula.
次に、 回転角度 、 長さの変化率 Δ Lおよび Z座標の変化 率△ Zの 3つの量が適当な重みをつけて比較され、 回転角度 が最も優勢な場合は画像の回転が、 長さの変化率 Δ Lがも 最も優勢な場合は画像の拡大 · 縮小が、 Z座標の変化率厶 Z が最も優勢な場合は画像の射影変換がそれぞれ実行される。  Next, the three quantities of rotation angle, rate of change of length ΔL and rate of change of Z coordinate △ Z are compared with appropriate weights, and when the rotation angle is most dominant, the rotation of the image is When the rate of change ΔL is also the most dominant, the image is scaled up and down.
図 1 7の (a) 、 (b) および(c) は、 指示部材(8) による操 作の中心点 P、 基準べク トル V G および比較べク トル V a の 設定操作と、 これに対応する画像変形との関係を示す図であ る。 図 1 7の各図の左側は指示部材(8) の操作を表わすもの であり、 (a) および(b) は撮像範囲 Tの部分の平面図、 (c) は同じ部分の斜視図となっている。 図 1 7の各図の右側はス ク リ ーン (2) 上における画像変形の様子を示すものであり、 全てスク リ ーン (2) を正面から見た図となっている。 また、 図 1 7の場合、 基準べク トル V 0 は Y軸とほぼ平行になるよ うに設定されている。  (A), (b) and (c) in Fig. 17 show the setting operation of the center point P, the reference vector VG and the comparison vector V a of the operation by the indicating member (8), and the corresponding operations. FIG. 6 is a diagram showing a relationship with image deformation to be performed. The left side of each figure in FIG. 17 shows the operation of the pointing member (8), (a) and (b) are plan views of the portion of the imaging range T, and (c) is a perspective view of the same portion. ing. The right side of each figure in Fig. 17 shows the state of image deformation on the screen (2), all of which are views of the screen (2) viewed from the front. In the case of FIG. 17, the reference vector V 0 is set so as to be substantially parallel to the Y axis.
画像の回転を指示する場合、 たとえば図 1 7 (a) に示すよ うな比較べク トル V a の設定を行う。 この場合、 比較べク ト ル V a は、 基準べク トル V G と長さがあま り変らないように. かつほぼ水平になるように設定されている。 このため、 長さ の変化率 Δ Lおよび Z座標の変化率 Δ Zに比べて、 回転角度 が大き く なり、 画像の回転が行われて、 スク リ ー ン (2) 上 の画像が破線で示す状態から実線で示す状態に変化する。 な お、 この場合、 画像の回転の方向および度合は、 回転角度 0 の方向および大きさに基づいて決定される。  When instructing image rotation, for example, the comparison vector V a is set as shown in Fig. 17 (a). In this case, the comparison vector V a is set so that the length is not substantially different from the reference vector V G and is substantially horizontal. For this reason, the rotation angle is larger than the rate of change ΔL of the length and the rate of change ΔZ of the Z coordinate, the image is rotated, and the image on the screen (2) is indicated by a broken line. The state changes from the state shown to the state shown by the solid line. In this case, the direction and degree of rotation of the image are determined based on the direction and magnitude of the rotation angle 0.
画像の拡大 ·縮小を指示する場合、 たとえば図 1 7 (b) に 示すような比較べク トル V a の設定を行う。 この場合、 比較 べク トル V a は、 基準べク トル V G とほぼ同じ方向に設定さ れている。 このため、 回転角度 Sおよび Z座標の変化率 Δ Z に比べて、 長さの変化率 が大き く なり、 画像の拡大 '縮 小が行われる。 図の場合は、 比較べク トル V a が基準べク ト ル V Q より長く、 したがって、 長さの変化率 Δ Lが 1 より大 きいため、 画像の拡大が行われて、 スク リ ーン (2 ) 上の画像 が破線で示す状態から実線で示す状態に変化する。 比較べク トル V a が基準べク トル V G より短い場合は、 長さの変化率 Δ Lが 1 より小さ く なり、 画像の縮小が行われる。 なお、 こ の場合、 画像の拡大 · 縮小の度合は、 長さの変化率 の大 きさに基づいて決定される。 When instructing enlargement / reduction of an image, for example, the comparison vector Va is set as shown in Fig. 17 (b). In this case, compare The vector Va is set in almost the same direction as the reference vector VG. For this reason, the rate of change of the length is larger than the rate of change ΔZ of the rotation angle S and the Z coordinate, and the image is enlarged and reduced. In the case of the figure, since the comparison vector Va is longer than the reference vector VQ, and therefore, the length change rate ΔL is larger than 1, the image is enlarged and the screen ( 2) The upper image changes from the state shown by the broken line to the state shown by the solid line. When the comparison vector V a is shorter than the reference vector VG, the length change rate ΔL becomes smaller than 1, and the image is reduced. In this case, the degree of enlargement / reduction of the image is determined based on the length change rate.
画像の射影変換を指示する場合、 たとえば図 1 7 ( c ) に示 すような比較べク トル V a の設定を行う。 この場合、 比較べ ク トル V a は、 基準べク トル V G と長さがあま り変らないよ うに、 かつ基準べク トル V Q を含む垂直面内に大体く るよう に設定されている o このため、 回転角度 0および長さの変化 率 A Lに比べて、 Z座標の変化率 Δ Ζが大き く なり、 画像の 射影変換が行われて、 スク リ ーン (2 ) 上の画像が破線で示す 状態から実線で示す状態に変化する。 なお、 この場合、 画像 の射影変換の方向および度合は、 Z座標の変化率 Δ Ζの符号 (方向) および大きさに基づいて決定される。  When instructing projective transformation of an image, for example, the comparison vector Va is set as shown in Fig. 17 (c). In this case, the comparison vector V a is set so that its length is not substantially different from the reference vector VG, and is approximately in the vertical plane including the reference vector VQ. Therefore, the rate of change Δ Z of the Z coordinate becomes larger than the rotation angle 0 and the rate of change AL of the length, and the projective transformation of the image is performed. The image on the screen (2) is indicated by a broken line. The state changes from the state shown to the state shown by the solid line. In this case, the direction and degree of the projective transformation of the image are determined based on the sign (direction) and the magnitude of the rate of change Δ Δ of the Z coordinate.
なお、 テレビカメ ラを撮像対象に向けるだけであれば、 上 記実施例で説明した方法以外に、 指示部材の先端に光源を取 付け、 光源が発光したときに、 光源がテレビカメ ラの撮像範 囲の中心にく るようにテレビカメ ラの向きを制御し、 光源に ピンとを合わせるという方法が考えられる。 しかし、 この方 法では、 光源の 3次元位置を正確に計測するこ とができない ので、 上記のような指示部材を用いた画像変形の指示を行う こ とはできない。 また、 テレビカメ ラの視野内にない方向に テレビカメ ラを向けることもできない。 If the television camera is only aimed at the object to be imaged, a light source may be attached to the tip of the indicating member, and the light source may be used to capture the image of the television camera, when the light source emits light, in addition to the method described in the above embodiment. One possible method is to control the direction of the TV camera so that it is in the center of the range, and then align the pin with the light source. However, this method cannot accurately measure the three-dimensional position of the light source Therefore, it is not possible to instruct an image deformation using the above-described instruction member. Also, the TV camera cannot be pointed in a direction that is not within the field of view of the TV camera.
第 2受信回路(32b) の構成の 1例が、 図 4に示されている, この受信回路(26b) は、 増幅回路(37b) 、 狭帯域特性を有す る帯域フィ ルタ (31b) 、 半波整流回路(38 b) 、 階段状ェンべ ロープ (包絡波形) 生成回路(39b) 、 成形回路(40b) 、 比較 器 Ulb) 、 F Z F (フ リ ップ · フ ロ ップ) (42 b) および A T L C回路 (自動しきい値調整回路) (43b) を備えている。  One example of the configuration of the second receiving circuit (32b) is shown in FIG. 4. The receiving circuit (26b) includes an amplifying circuit (37b), a band filter (31b) having a narrow band characteristic, Half-wave rectifier circuit (38b), stepped envelope (envelope waveform) generator (39b), shaping circuit (40b), comparator Ulb), FZF (flip-flop) (42 b) and ATLC circuit (automatic threshold adjustment circuit) (43b).
第 2受信回路(32b) において、 マイ ク (15)からの受信信号 Eは、 増幅回路(37b) で増幅されて、 フィ ルタ (311)) に入力 する。 フィ ルタ (31b) において、 対応する第 2送信器(3 b) (5 b)からの第 2超音波バース トに対する第 2送信器別受信信号 I (図 9 (a) 参照) が取出され、 これが半波整流回路(38b) に入力する。 半波整流回路(38b) において、 第 2送信器別受 信信号 I が半波整流され、 エンベロープ生成回路(39b) にお いて、 信号 I の半波整流波から階段状エンベロープ J (図 1 1参照) が生成される。 エンベロープ生成回路(39b) は、 A M波の検波回路と してよく知られている ものであり、 コ ンデ ンサ(44) と抵抗(45)から構成されている。 通常の検波回路で は、 半波整流波の各ピークを結ぶ滑らかなエンベロープが生 成されるが、 この生成回路(39b) では、 コ ンデンサ(44)と抵 抗(45)の C R値を通常より小さ く して、 エンベロープの立上 りが階段状になるようにしている。 成形回路(40b) において. 階段状エンベロープ J が増幅回路(46)で増幅された後、 高域 フィ ルタ (47)で低周波成分が除かれて、 階段のステップ間の 格差の大きい階段状エンベロープ K (図 1 2参照) が生成さ れ、 これが比較器 lb) の一方の入力端子に入力する。 比較 器(41b) の他方の入力端子に A T L C回路(43b) からのしき い値 Lが入力し、 比較器 Ulb) の出力信号が FZF U2b) に 入力する。 比較器(41b) において、 階段状エンベロープ と しきい値 Lが比較され (図 1 3参照) 、 エンベロープ がし きい値 L以下の間は、 比較器(41b) の出力信号はオフ (L 0 wレベル) であり、 エンベロープ Kがしきい値 Lを越えたと きに、 比較器 Ulb) の出力信号はオン (H i g h レベル) に なる。 In the second receiving circuit (32b), the received signal E from the microphone (15) is amplified by the amplifier circuit (37b) and input to the filter (311)). At the filter (31b), the second transmitter-specific received signal I (see Fig. 9 (a)) for the second ultrasonic burst from the corresponding second transmitter (3b) (5b) is extracted. This is input to the half-wave rectifier circuit (38b). In the half-wave rectification circuit (38b), the received signal I for each second transmitter is half-wave rectified, and in the envelope generation circuit (39b), the half-wave rectified wave of the signal I is converted into a stepped envelope J (Fig. 11). Is generated. The envelope generation circuit (39b) is well known as an AM wave detection circuit, and includes a capacitor (44) and a resistor (45). In a normal detection circuit, a smooth envelope connecting the peaks of the half-wave rectified wave is generated. In this generation circuit (39b), the CR values of the capacitor (44) and the resistor (45) are usually It is smaller so that the envelope rises in steps. In the shaping circuit (40b). After the stepped envelope J is amplified by the amplifier circuit (46), the low-frequency component is removed by the high-pass filter (47), and the stepped envelope with a large difference between the steps of the stairs. K (see Figure 12) is generated This is input to one input terminal of the comparator lb). The threshold value L from the ATLC circuit (43b) is input to the other input terminal of the comparator (41b), and the output signal of the comparator Ulb) is input to FZF U2b). The comparator (41b) compares the stepped envelope with the threshold value L (see Fig. 13), and while the envelope is below the threshold value L, the output signal of the comparator (41b) is off (L0w). When the envelope K exceeds the threshold L, the output signal of the comparator Ulb) is turned on (High level).
AT L C回路(43b) は、 計測精度を向上させるために、 信 号 Iの受信レベルにあわせてしきい値 Lを調整する公知のも のであり、 第 1のアナログスィ ッチ (48)、 第 1および第 2の ピーク ホール ド回路 U9) (50)、 第 2のアナログスィ ッチ (51) - スケール変換回路(52)およびスィ ツチ制御回路(53)を備えて いる。 送信制御用発振回路(27)からの送信開始パルス信号 A がスィ ツ チ制御回路(53)に入力し、 送信開始パルス信号 Aが 入力するたびに、 スィ ッチ制御回路(53)により、 2つのスィ ッチ (48) (51)が連動して第 1の状態と第 2の状態に切替えら れる。 第 1の状態では、 第 1のスィ ッチ U8)が第 2のピーク ホール ド回路(50)側に切替えられて、 エンベロープ Jが第 2 のピークホール ド回路(50)に入力するとともに、 第 2のスィ ッチ (51)が第 1のピークホール ド回路(49)側に切替えられて. 第 1のピークホール ド回路(49)の出力がスケール変換回路(5 2)に入力する。 逆に、 第 2の状態では、 第 1のスィ ッチ U8) が第 1のピークホール ド回路(49)側に切替えられて、 ェンべ ロープ Jが第 1のピークホール ド回路 U 9)に入力するととも に、 第 2のスィ ッチ (51)が第 2のピークホール ド回路(50)側 に切替えられて、 第 2のピークホール ド回路(50)の出力がス ケ一ル変換回路(52)に入力する。 スケール変換回路(52)は、 第 2のスィ ツチ (5 1 )を介して入力する各ピークホール ド回路 ( 49 ) ( 50 )にホール ドされている前回のエンベロープ J のピー ク値に応じてしきい値 Lの大きさを調整する ものである。 し きい値 Lは、 たとえば、 前回のエンベロープ J のピーク値に 対して一定の割合 (たとえば 1 Z 5 ) になるように調整され る。 スィ ッチ制御回路(53)に送信開始パルス信号 Aが入力し て、 スィ ッチ U 8) (51)が第 1の状態に切替えられた場合、 こ の後にマイ ク (1 5)から受信信号 Eが入力すると、 ェンベロ一 プ J が第 1のスィ ッチ (48)を介して第 2のピークホール ド回 路(50)に入力し、 そのピーク値がホール ドされる。 このとき. 第 1 のピークホール ド回路(49)には、 前回の送信開始パルス 信号 Aの入力の後に入力したエンベロープ J のピーク値がホ 一ル ドされており、 これが第 2のスィ ッチ (51 )を介してスケ —ル変換回路(52)に入力し、 このピーク値に基づいてしきい 値 Lが調整される。 スィ ッチ制御回路(53)に次の送信開始パ ルス信号 Aが入力して、 スィ ッチ (48) (51)が第 2の状態に切 替えられた場合、 この後にマイ ク (1 5)から受信信号 Eが入力 すると、 エンベロープ J が第 1 のスィ ッチ (48)を介して第 1 のピークホール ド回路(49)に入力し、 そのピーク値がホール ドされる。 このとき、 第 2のピークホールド回路(50)には、 上記のように、 前回の送信開始パルス信号 Aの入力の後に入 力したエンベロープ J のピーク値がホール ドされており、 こ れが第 2のスィ ッチ (51)を介してスケール変換回路(52)に入 力し、 このピーク値に基づいてしきい値 Lが調整される。 そ して、 送信開始パルス信号 Aが入力するたびにこのような動 作が繰返されるこ とによ り、 前回の送信開始パルス信号 Aの 入力後に入力したエンベロープ J のピーク値に応じて今回の しきい値 Lが調整される。 The AT LC circuit (43b) is a well-known type that adjusts the threshold value L in accordance with the reception level of the signal I in order to improve the measurement accuracy. The first analog switch (48), It includes a first and a second peak hold circuit U9) (50), a second analog switch (51) -scale conversion circuit (52), and a switch control circuit (53). The transmission start pulse signal A from the transmission control oscillation circuit (27) is input to the switch control circuit (53). Each time the transmission start pulse signal A is input, the switch control circuit (53) outputs The two switches (48) and (51) are interlocked to switch between the first state and the second state. In the first state, the first switch U8) is switched to the second peak hold circuit (50), and the envelope J is input to the second peak hold circuit (50) and The second switch (51) is switched to the first peak hold circuit (49). The output of the first peak hold circuit (49) is input to the scale conversion circuit (52). Conversely, in the second state, the first switch U8) is switched to the first peak hold circuit (49), and the envelope J is switched to the first peak hold circuit U9). And the second switch (51) is connected to the second peak hold circuit (50). The output of the second peak hold circuit (50) is input to the scale conversion circuit (52). The scale conversion circuit (52) is adapted to respond to the peak value of the previous envelope J held by each of the peak hold circuits (49) (50) input via the second switch (51). It adjusts the size of the threshold value L. The threshold value L is adjusted, for example, so as to be a fixed ratio (for example, 1 Z 5) with respect to the previous peak value of the envelope J. When the transmission start pulse signal A is input to the switch control circuit (53) and the switch U8) (51) is switched to the first state, the reception is performed from the microphone (15) after this. When the signal E is input, the envelope J is input to the second peak hold circuit (50) via the first switch (48), and the peak value is held. At this time. The first peak hold circuit (49) holds the peak value of the envelope J input after the previous input of the transmission start pulse signal A, and this is the second switch. It is input to the scale conversion circuit (52) via (51), and the threshold value L is adjusted based on this peak value. When the next transmission start pulse signal A is input to the switch control circuit (53) and the switches (48) and (51) are switched to the second state, the microphone (15) ), The received signal E is input, the envelope J is input to the first peak hold circuit (49) via the first switch (48), and the peak value is held. At this time, the peak value of the envelope J input after the previous input of the transmission start pulse signal A is held in the second peak hold circuit (50) as described above. The signal is input to the scale conversion circuit (52) via the switch (51) of 2, and the threshold value L is adjusted based on this peak value. Each time the transmission start pulse signal A is input, By repeating this operation, the current threshold value L is adjusted according to the peak value of the envelope J input after the previous transmission start pulse signal A was input.
F / F (42b) は第 2カウ ンタ (36b) にカウ ン ト制御信号 F 2 を出力するためのものであり、 第 2送信回路(26b) からの 計測開始パルス信号 C 2 が F ZF (42b) に入力する。 F /F (42b) の出力であるカウン ト制御信号 F 2 は、 計測開始パル ス信号 C 2 が入力したときにオンになり、 比較器(41b) の出 力信号がオンになったときにオフになり、 その後、 計測開始 パルス信号 C 2 が入力するまでオンの状態に保たれる。  The F / F (42b) is for outputting the count control signal F2 to the second counter (36b), and the measurement start pulse signal C2 from the second transmission circuit (26b) is FZF ( 42b). The count control signal F 2, which is the output of the F / F (42b), turns on when the measurement start pulse signal C 2 is input, and turns on when the output signal of the comparator (41b) turns on. It turns off and then keeps on until the measurement start pulse signal C 2 is input.
上記の第 2受信回路(32b) において、 送信開始パルス信号 Aが入力すると、 A T L C回路(43b) のスィ ッチ (48) (51)の 状態が切替えられ、 これにより スケール変換回路(52)に接続 されたピークホール ド回路(49 ) ( 50 )にホール ドされている前 回のエンベロープ J のピーク値に基づいて調整されたしきい 値 Lが比較器( b) に入力する。 この後、 第 2送信回路(26b ) から送信信号 B 2 が出力されて、 計測開始パルス信号 C 2 が出力されると、 F Z F (42b) からのカウ ン ト制御信号 F 2 がオンになる。 そして、 フィ ルタ (31b) で取出された第 2送 信器別受信信号 I に対する階段状エンベロープ Kがしきい値 Lを越えたときに、 これが比較器(41b) により検知されて、 比較器(41b) の出力信号がオンになり、 F ZF (42b) からの カウン ト制御信号 F 2 がオフになる。 すなわち、 前に説明し たように、 計測開始パルス信号 C 2 が入力してから、 第 2送 信器別受信信号 I が検知されるまでの間、 カウン ト制御信号 F 2 がオンになる。  In the second receiving circuit (32b), when the transmission start pulse signal A is input, the states of the switches (48) and (51) of the ATLC circuit (43b) are switched, and thereby the scale conversion circuit (52) The threshold L adjusted based on the previous peak value of the envelope J held by the connected peak hold circuit (49) (50) is input to the comparator (b). Thereafter, when the transmission signal B2 is output from the second transmission circuit (26b) and the measurement start pulse signal C2 is output, the count control signal F2 from the FZF (42b) is turned on. Then, when the stepped envelope K for the second transmitter-specific received signal I extracted by the filter (31b) exceeds the threshold L, this is detected by the comparator (41b), and the comparator (41b) detects this. The output signal of 41b) turns on, and the count control signal F 2 from F ZF (42b) turns off. That is, as described above, the count control signal F 2 is turned on from the input of the measurement start pulse signal C 2 to the detection of the second transmitter-specific received signal I.
第 2受信回路(32b) における第 2 フィ ルタ (31b) の構成の 1例が、 図 5に示されている。 このフィ ルタ (31b) は、 円筒 状のケース (54)内に対向状に配置された 1対の圧電式超音波 トラ ンスデューサ (55) (56)を備えている。 各トランスデュー サ( 55 ) ( 56 )は、 弾性体(55 a) (56 a)、 圧電セラ ミ ッ クス (55 b) ( 56 b) . 金属板(55c) (56c)および共振子(55d) (56d)より構成さ れた公知のものであり、 共振子(55d) (56d)が互いに対向する ように、 弾性体(55 a) (56 a)の部分で、 ケース (54)の両端部に 固定された支持部材(57) (58)に固定されている。 入力側の ト ラ ンスデューサ(55)は入力端子(59 a) (59b)に接続され、 入力 端子 ) (59b)は増幅回路( b) の出力端子に接続されてい る。 出力側の トラ ンスデューサ (56)は出力端子(Ha) (60b)に 接続され、 出力端子(60a) Qb)は半波整流回路(38b) の入力 端子に接続されている。 2個の ト ラ ンスデューサ(55) (56)の 固有振動数は 4 0 k H zであり、 共振子(55 d) (56 d)の相互間 隔は対応する超音波 ( 4 0 k H z ) の 1波長程度に設定され ている。 このフ イ ノレタ (31b) の中心周波数は 4 0 k H zであ り、 その遮断特性 (弁別性) が図 6に曲線(b) で示されてい る。 なお、 前述のフィ ルタ (31b) の中心周波数に対する送信 回路(26b) の送信信号 B 2 の離調の程度は、 フィ ルタ (31b) の遮断特性に基づいて決定される。 The configuration of the second filter (31b) in the second receiving circuit (32b) One example is shown in FIG. The filter (31b) includes a pair of piezoelectric ultrasonic transducers (55) and (56) disposed opposite to each other in a cylindrical case (54). Each transducer (55) (56) consists of an elastic body (55a) (56a), a piezoelectric ceramic (55b) (56b), a metal plate (55c) (56c), and a resonator (55d). ) (56d), the elastic members (55a) and (56a) at both ends of the case (54) so that the resonators (55d) and (56d) face each other. It is fixed to the support members (57) (58) fixed to the part. The input-side transducer (55) is connected to the input terminals (59a) and (59b), and the input terminal (59b) is connected to the output terminal of the amplifier circuit (b). The transducer (56) on the output side is connected to the output terminals (Ha) and (60b), and the output terminals (60a and Qb) are connected to the input terminals of the half-wave rectifier circuit (38b). The natural frequency of the two transducers (55) (56) is 40 kHz, and the spacing between the resonators (55 d) and (56 d) is the corresponding ultrasonic (40 kHz) ) Is set to about one wavelength. The center frequency of this finalizer (31b) is 40 kHz, and its cutoff characteristics (discriminability) are shown by the curve (b) in Fig. 6. Note that the degree of detuning of the transmission signal B 2 of the transmission circuit (26b) with respect to the center frequency of the filter (31b) is determined based on the cutoff characteristics of the filter (31b).
第 1 および第 3受信回路( a) (32c)の構成は、 第 2受信回 路(32b) のそれとほぼ同様である。 第 1受信回路(32a) にお いては、 第 1 フィ ルタ (31a) の中心周波数は 2 5 k H zであ り、 カウ ン ト制御信号 F 1 を出力するための F ZFには第 1 送信回路(26a) からの計測開始パルス信号 C 1 が入力する。 第 3受信回路(32c) においては、 第 3 フ ィ ルタ (31c) の中心. 周波数は 3 2 k H z であり、 カウ ン ト制御信号 F 3 を出力す るための F / Fには第 3送信回路(26 c) からの計測開始パル ス信号 C 3 が入力する。 図 6に、 第 1 フィ ルタ (31a) の遮断 特性が符号(a) で、 第 3 フ ィ ルタ (31c) のそれが符号(c) で それぞれ示されている。 The configuration of the first and third receiving circuits (a) and (32c) is almost the same as that of the second receiving circuit (32b). In the first receiving circuit (32a), the center frequency of the first filter (31a) is 25 kHz, and the FZF for outputting the count control signal F1 has the first frequency. The measurement start pulse signal C 1 from the transmission circuit (26a) is input. In the third receiving circuit (32c), the center of the third filter (31c). The frequency is 32 kHz, and the count control signal F 3 is output. The measurement start pulse signal C3 from the third transmission circuit (26c) is input to the F / F for the measurement. In FIG. 6, the cutoff characteristic of the first filter (31a) is indicated by a symbol (a), and that of the third filter (31c) is indicated by a symbol (c).
上記のような位置計測装置において、 2次元または 3次元 の位置計測を行う場合、 従来は、 複数の送信器から送信する 超音波の周波数を同一にしていた。 ところが、 このようにし た場合、 各送信器から同時に超音波を送信すると、 受信器で 受信した超音波がどの送信器からのものか区別ができないた め、 各送信器からの超音波の送信および距離の測定を時分割 で行っていた。 比較的小さい表示スク リ ーン上の 2次元位置 を計測する場合、 送信器の数が 2個であり、 しかも超音波の 伝搬距離すなわち伝搬時間も短いため、 各送信器からの距離 の測定を時分割で行っても、 計測周期をたとえば 1 O m s e c以下の十分に短い値にすることができる。 ところが、 比較 的広い空間内の 3次元位置を計測する場合、 送信器の数が 3 個であり、 しかも超音波の伝搬時間も長く なるため、 各送信 器からの距離の測定を時分割で行う と、 計測周期を十分に短 く することができなく なる。 通常の位置計測の場合、 計測周 期が 2 0 m s e c より長く なるこ とは好ま しく ない。 たとえ ば、 1辺が 3 m程度の空間内の 3次元位置の計測を考えると. 1個の送信器について、 超音波が 3 mの距離を伝搬するのに 9 m s e cの時間を要し、 3個の送信器では、 超音波の伝搬 だけで 2 7 m s e cの時間を要するため、 計測周期を 2 0 m s e c以下にすることはできない。  Conventionally, when performing two-dimensional or three-dimensional position measurement with the above-described position measurement device, the frequency of ultrasonic waves transmitted from a plurality of transmitters is set to be the same. However, in this case, if the ultrasonic waves are transmitted from each transmitter at the same time, it is not possible to distinguish which transmitter the ultrasonic wave received by the receiver is from, so the transmission of the ultrasonic waves from each transmitter and The distance was measured in a time-sharing manner. When measuring a two-dimensional position on a relatively small display screen, the number of transmitters is two and the propagation distance of the ultrasonic wave, that is, the propagation time, is short, so the distance from each transmitter must be measured. Even when time division is performed, the measurement cycle can be set to a sufficiently short value, for example, 1 O msec or less. However, when measuring a three-dimensional position in a relatively large space, the number of transmitters is three, and the propagation time of ultrasonic waves is long, so the distance from each transmitter is measured in a time-division manner. In this case, the measurement cycle cannot be shortened sufficiently. In the case of normal position measurement, it is not preferable that the measurement period be longer than 20 msec. For example, consider the measurement of a three-dimensional position within a space of about 3 m on one side.For a single transmitter, it takes 9 msec for an ultrasonic wave to propagate a distance of 3 m, and 3 With only one transmitter, it takes 27 msec for the propagation of ultrasonic waves alone, so the measurement cycle cannot be reduced to less than 20 msec.
これに対し、 上記の位置計測装置(12)では、 複数の送信器 (3) (5)から互いに周波数の異なる超音波をほぼ同時に送信し て、 各送信器(3 ) (5 )からマイク (1 5 )までの距離の測定をほぼ 同時に行うので、 距離の測定を時分割で行う場合に比べて、 計測周期を短く することができる。 In contrast, the position measuring device (12) transmits ultrasonic waves having different frequencies from the transmitters (3) and (5) almost simultaneously. Since the distance measurement from each transmitter (3) (5) to the microphone (15) is performed almost simultaneously, the measurement cycle can be shortened as compared with the case where distance measurement is performed in a time-division manner.
超音波を使用して 3次元の位置計測を行う場合、 超音波の 指向性が強いことは好ま しく ない。 ところが、 超音波は、 周 波数が高く なると指向性が強く なり、 3次元空間の位置計測 に使用可能な超音波の周波数は約 4 0 k H z以下になる。 ま た、 周波数をあま り低くすると、 可聴帯域に近く なり、 耳障 りな雑音が発生したり、 ノイズの影響を受けたりするため、 周波数を約 2 5 k H z以上にするこ とが必要になる。 このた め、 3個の送信器で実際に使用可能な超音波の周波数は、 た とえば、 4 0、 3 2、 2 5 k H z の比較的近接したものにな る。 そして、 このよ う に近接した周波数の超音波を使用する 場合、 通常の帯域フィ ルタでは、 各周波数の超音波を完全に 分離することが困難であり、 他の周波数や外来ノイズの影響 を受けて、 計測精度が低下するという問題がある。 したがつ て、 やはり、 比較的広い空間内において、 比較的短い計測周 期で、 精度の高い位置計測を行う ことは困難である。  When three-dimensional position measurement is performed using ultrasonic waves, strong directivity of ultrasonic waves is not preferable. However, the directivity of the ultrasonic wave increases as the frequency increases, and the frequency of the ultrasonic wave that can be used for position measurement in a three-dimensional space is about 40 kHz or less. Also, if the frequency is too low, it will be close to the audible band, causing harsh noise and being affected by noise.Therefore, it is necessary to increase the frequency to about 25 kHz or more. Become. Thus, the ultrasonic frequencies that can actually be used by the three transmitters are relatively close, for example, 40, 32, and 25 kHz. When using ultrasonic waves of such close frequencies, it is difficult to completely separate the ultrasonic waves of each frequency with a normal band filter, and it is affected by other frequencies and external noise. Therefore, there is a problem that measurement accuracy is reduced. Therefore, it is difficult to perform highly accurate position measurement in a relatively short space within a relatively large space.
これに対し、 上記の位置計測装置(1 2)では、 マイ ク (1 5 )の 受信信号 Eを互いに中心周波数の異なる複数の狭帯域特性を 有する帯域フィ ルタ (3 6)に通して、 各送信器(3) (5)からの超 音波に対する送信器別受信信号 I を個別に検知するようにな つているので、 周波数の近接する超音波を使用しても、 他の 超音波や外来ノィズの影響を受けるこ とが少なく、 精度の高 い計測が可能である。 さ らに、 各フィ ルタ (3 6 )が上記のよう な構成を有するので、 遮断特性が優れており、 他の超音波や 外来ノィズの影響を受けることがさ らに少なく なり、 さ らに 精度の高い計測が可能になる。 In contrast, in the position measuring device (12), the received signal E of the microphone (15) is passed through a plurality of band filters (36) having different narrow-band characteristics and having different center frequencies. Transmitter (3) Since the received signal I for each transmitter for the ultrasonic wave from (5) is detected individually, even if an ultrasonic wave of close frequency is used, other ultrasonic waves or extraneous noise can be detected. The measurement is not affected by noise, and highly accurate measurement is possible. Furthermore, since each filter (36) has the above-described configuration, it has excellent blocking characteristics, and is further less affected by other ultrasonic waves or extraneous noise. High-precision measurement becomes possible.
また、 上記の位置計測装置(12)では、 処理装置(25)が A O C手段を備え、 マイ ク (15)の位置 (送信器(3) (5)からの距離) が変つても受信レベルが一定の範囲内に入るように、 受信レ ベルに基づいて送信信号 B 1 〜B 3 のレベルを制御している ので、 フ ィ ルタ (36)自体の遮断特性が優れているこ と と相俟 つて、 使甩周波数間の遮断性 (SZN比) が優れている。  Further, in the position measuring device (12), the processing device (25) includes AOC means, and the reception level is changed even when the position of the microphone (15) (distance from the transmitters (3) and (5)) changes. Since the levels of the transmission signals B1 to B3 are controlled based on the reception level so that they fall within a certain range, the filter (36) itself has excellent blocking characteristics. In addition, it has excellent cut-off between operating frequencies (SZN ratio).
超音波の受信レベルは、 音源からの距離に反比例する。 こ のため、 各送信器(3) (5)からの超音波バース トの送信レベル が常に一定であるとすると、 対応する送信器(3) (5)からの距 離が変わる と、 受信レベルが変わる。 また、 マイク (15)の位 置が変わる と、 各超音波バース トの受信レベルの間に差が生 じ、 この差は空間内の計測範囲が広く なるほど大き く なる。 また、 実際は、 反射波の影響や、 送信器(3) (5)の送信面とマ イ ク (15)の受信面の角度の影響などによって、 受信レベルの 差はさ らに大き く なる。 このため、 フィ ルタ (36)には、 図 7 に示すような遮断特性が要求される。 すなわち、 互いに他の 周波数の付近では 1 Z 1 0 0 0 0 (― 8 0 d B) 以下の減衰 率が要求される。 これに対し、 上記実施例の場合は、 A O C 手段により、 各超音波バース トに対する受信レベルが一定の 範囲に入るように、 送信レベルが制御されているので、 フィ ル夕 (36)に要求される遮断特性は前述の図 6のようになる。 すなわち、 他の周波数の付近における減衰率は 1 Z5 0 0以 下でよく なる。 しかし、 図 6に示すような遮断特性も、 従来 の電子回路による帯域フィ ルタでは実現が困難であり、 フィ ル夕 (36)を上記のような構成にするこ とにより実現が可能に なった。 しかしながら、 計測周期が長く ても差支えのない用途にお いては、 複数の送信器から同一周波数の超音波を送信して、 各送信器からの距離の測定を時分割で行うようにしてもよい, 上記のような位置計測装置においては、 送信器から受信器 (マイ ク) までの距離を正確に測定するために、 超音波バー ス 卜の送信開始時刻とこれに対する受信信号の検知時刻を正 確に定める必要がある。 超音波バース トの送信開始時刻は、 送信信号の最初のパルスの立上りに同期して正確に定めるこ とができる。 送信信号のエンベロープは、 図 8に示すように. 方形波であるが、 受信信号のエンベロープは、 図 9 ( b ) に示 すように、 信号伝送路の帯域通過特性などの影響を受けて傾 斜状に立上る。 このため、 受信信号の検知時刻を正確に定め ることは困難である。 受信回路における受信信号の検知は、 従来、 次のように行われている。 すなわち、 まず、 受信信号 を半波整流し、 この半波整流波のエンベロープをとる。 この エンベロープは、 図 1 4や図 1 5 に示すよ う に、 半波整流波 の各ピークを結ぶ滑らかなものである。 そして、 このェンべ ロープを所定のしきい値と比較し、 しきい値を越えた時点で 受信信号を検知したと判断する。 The ultrasonic reception level is inversely proportional to the distance from the sound source. Therefore, assuming that the transmission level of the ultrasonic burst from each transmitter (3) (5) is always constant, if the distance from the corresponding transmitter (3) (5) changes, the reception level Changes. Also, when the position of the microphone (15) changes, a difference occurs between the reception levels of the ultrasonic bursts, and the difference increases as the measurement range in the space increases. Actually, the difference between the reception levels is further increased due to the influence of the reflected wave and the angle between the transmission surface of the transmitters (3) and (5) and the reception surface of the microphone (15). For this reason, the filter (36) is required to have the cutoff characteristics shown in Fig. 7. That is, an attenuation rate of 1 Z 100 000 (−80 dB) or less is required near each other. In contrast, in the case of the above embodiment, the transmission level is controlled by the AOC means so that the reception level for each ultrasonic burst falls within a certain range. The breaking characteristics are as shown in Fig. 6 above. That is, the attenuation rate near other frequencies is better at 1 Z500 or less. However, it is difficult to realize the cutoff characteristics as shown in Fig. 6 with a conventional band filter using an electronic circuit, and the filter (36) can be realized with the above configuration. . However, in applications where a long measurement cycle is acceptable, multiple transmitters may transmit ultrasonic waves of the same frequency, and the distance from each transmitter may be measured in a time-division manner. In order to accurately measure the distance from the transmitter to the receiver (microphone), the position measurement device described above corrects the transmission start time of the ultrasonic burst and the detection time of the received signal corresponding thereto. It needs to be determined. The transmission start time of the ultrasonic burst can be accurately determined in synchronization with the rise of the first pulse of the transmission signal. The envelope of the transmitted signal is a square wave, as shown in Fig. 8. The envelope of the received signal, as shown in Fig. 9 (b), is affected by the band-pass characteristics of the signal transmission path. It rises obliquely. Therefore, it is difficult to accurately determine the detection time of the received signal. Conventionally, detection of a received signal in a receiving circuit is performed as follows. That is, first, the received signal is half-wave rectified, and the envelope of this half-wave rectified wave is taken. This envelope is a smooth one that connects the peaks of the half-wave rectified wave, as shown in Figs. Then, this envelope is compared with a predetermined threshold value, and when the threshold value is exceeded, it is determined that a received signal has been detected.
ところが、 上記のような従来の計測方法には、 次のような 問題がある。  However, the conventional measurement methods described above have the following problems.
まず、 前にも説明したように、 受信信号のレベルは、 送信 器からの距離によって変化する。 そして、 受信回路に A T L C回路が設けられていない場合、 受信信号を常に一定のしき い値と比較する こ とになるので、 図 1 4に示すように、 受信 信号の受信レベルが変化すると、 検知点の間に差が生じ、 そ の時間軸方向の差が測定誤差となる。 このため、 受信回路に A T L C回路を設け、 前回の受信信号のピーク値に基づいて しきい値を調整し、 受信信号のピーク値に対する しきい値の 割合が一定になるようにしている。 ところが、 A T L C回路 は、 前回の受信信号のピーク値を今回の受信信号のピーク値 の推定値と しているので、 厳密には、 前回の受信信号のピー ク値と今回の受信波のピーク値は異なることから、 受信信号 のピーク値に対する しきい値の割合は一定にはならず、 図 1 5に示すように、 この変動分の時間軸方向の成分が測定誤差 となる。 この測定誤差はエンベロープのスロープによるが、 従来の滑らかなエンベロープのスロープは緩やかであるから, しきい値の変動分による測定誤差は大き く なる。 First, as explained earlier, the level of the received signal varies with the distance from the transmitter. If the receiving circuit is not provided with an ATLC circuit, the received signal is always compared with a fixed threshold. Therefore, as shown in Fig. 14, when the reception level of the received signal changes, detection is performed. A difference occurs between the points, and the difference in the time axis direction becomes a measurement error. Therefore, the receiving circuit An ATLC circuit is provided to adjust the threshold value based on the previous peak value of the received signal so that the ratio of the threshold value to the peak value of the received signal becomes constant. However, the ATLC circuit uses the peak value of the previous received signal as the estimated value of the peak value of the current received signal, so strictly speaking, the peak value of the previous received signal and the peak value of the current received signal Therefore, the ratio of the threshold value to the peak value of the received signal is not constant. As shown in Fig. 15, the time-axis component of this variation becomes the measurement error. This measurement error depends on the slope of the envelope. However, since the slope of the conventional smooth envelope is gentle, the measurement error due to the variation in the threshold value increases.
これに対し、 上記の位置計測装置(12)では、 A O C手段に より、 受信信号の受信レベルが一定の範囲内になるように、 送信信号のレベルが制御されているので、 従来のような受信 レベルの変動による測定誤差は小さ く なる。  On the other hand, in the position measuring device (12), the level of the transmission signal is controlled by the AOC means so that the reception level of the reception signal is within a certain range. Measurement errors due to level fluctuations are reduced.
また、 上記の位置計測装置(12)では、 受信回路(32)が A T L C回路(43b) を備えているこ とに加えて、 受信信号の検知 に階段状エンベロープを用いているこ と、 この階段状ェンべ ロープを成形回路 UOb) によって成形していること、 送信器 (3) (5)の固有振動数およびフィ ルタ (36)の中心周波数に対し て、 送信回路(26)の送信信号 B 1 〜 B 3 の周波数を上方に離 調させているこ とにより、 従来のものに比べて計測精度が向 上する。  In the position measuring device (12), the receiving circuit (32) has an ATLC circuit (43b), and in addition to using a stepped envelope for detecting a received signal, The shape of the envelope is formed by the shaping circuit UOb), and the transmission signal of the transmitting circuit (26) is determined by the natural frequency of the transmitter (3) (5) and the center frequency of the filter (36). By detuning the frequencies B1 to B3 upward, the measurement accuracy is improved compared to the conventional one.
図 1 1から明らかなように、 階段状のエンベロープを用い ると、 階段の各ステッ プの立上りのスロープは、 従来の滑ら かなエンベロープのスロープに比べて、 急になる。 そ して、 エンベロープと しきい値を比較して受信信号を検知する場合. 測定誤差はェンベロ一プのス口ープで決まる。 したがつて、 階段状エンベロープの場合は、 測定誤差は、 階段の各ステツ プの立上りのスロープで決まる。 このため、 階段状ェンベロ —プを用いると、 測定誤差の幅が小さ く、 搬送波の波長の約 1 Z 8程度になる。 2 5 k H z の超音波の場合、 搬送波の波 長は室温で 1 4 mmであるから、 測定誤差は最大で 2 mm (± l mm) 程度になる。 また、 上記実施例の場合は、 さ ら に階段状エンベロープを成形して、 図 1 3に示すように、 階 段のステップ間の格差を大き く しているので、 測定誤差の幅 はさ らに小さ く なる。 送信器およびフィ ルタの周波数に対し て送信信号の周波数を離調させない場合、 受信信号は図 9 (b ) のようになり、 その半波整流波の滑らかなエンベロープを とると、 図 1 0に実線(b) で示すようになる。 これに対し、 送信器およびフィ ルタの周波数に対して送信信号の周波数を 上方に離調させると、 受信信号は図 9 (a) のよ うになり、 そ の滑らかなエンベロープをとると、 図 1 0に破線(a) で示す ようになる。 図 9および図 1 0から明らかなように、 送信信 号を離調させるこ とにより、 受信信号の波形にひずみが生じ るが、 離調させない場合に比べて、 エンベロープのスロープ は大き く なる。 したがって、 階段状エンベロープをとつた場 合も、 離調させない場合に比べて、 階段の各ステッ プの立上 りのスロープが大き く なり、 したがって、 測定誤差の幅はさ らに小さ く なる。 なお、 この場合は、 受信信号を検知する点 を定めるだけであるから、 送信信号に対して受信信号を忠実 に再現する必要はなく、 離調により受信信号にひずみが生じ ても差支えがない。 As is clear from Fig. 11, when a staircase-shaped envelope is used, the rising slope of each step of the staircase is steeper than that of a conventional smooth envelope. Then, when detecting the received signal by comparing the envelope with the threshold value. The measurement error is determined by the envelope of the envelope. Thus, for a stepped envelope, the measurement error is determined by the rising slope of each step of the step. Therefore, when the step-shaped envelope is used, the width of the measurement error is small, and the wavelength of the carrier is about 1 Z8. In the case of 25 kHz ultrasonic waves, the carrier wave length is 14 mm at room temperature, so the measurement error is about 2 mm (± l mm) at the maximum. In the case of the above embodiment, the stepped envelope is further formed to increase the difference between the steps of the steps as shown in FIG. 13, so that the width of the measurement error is further increased. Become smaller. If the frequency of the transmitted signal is not detuned with respect to the transmitter and filter frequencies, the received signal will be as shown in Fig. 9 (b), and the smooth envelope of the half-wave rectified wave will be as shown in Fig. 10. It becomes as shown by the solid line (b). On the other hand, if the frequency of the transmitted signal is detuned upward with respect to the transmitter and filter frequencies, the received signal will be as shown in Fig. 9 (a). The result is shown by the broken line (a) at 0. As is clear from FIGS. 9 and 10, when the transmitted signal is detuned, the waveform of the received signal is distorted, but the slope of the envelope becomes larger than in the case where no detuning is performed. Therefore, even when a stepped envelope is used, the rising slope of each step of the staircase becomes larger than when no detuning is performed, and the width of the measurement error is further reduced. In this case, since it is only necessary to determine the point at which the received signal is detected, there is no need to faithfully reproduce the received signal with respect to the transmitted signal, and there is no problem even if the received signal is distorted due to detuning.
従来のプレゼンテーショ ン装置において、 テレビカメ ラで 発言者や資料などを撮像して、 その画像をス ク リ ー ン上に表 示するような場合、 テレビカメ ラを固定しておき、 その視野 内にもってきた資料などを撮像する固定方式、 テレビカメ ラ の向きの調整ができるようにし、 想定される位置を数箇所あ らかじめ登録しておき、 登録番号を入力してテレビカメ ラを その方向に向けるプリセッ ト方式、 あるいは発言者の声のす る方向に自動的にテレビカメ ラを向ける音声制御方式などが 採用される。 ところが、 固定方式の場合は、 発言者の顔など を視野内にもってく るこ とが困難な場合が多く、 また、 視野 内にない資料などを撮像することはできない。 また、 音声制 御方式の場合は、 テレビカメ ラがノー トをめく る音などの雑 音に反応して、 間違った方向を向いてしま う こ とがある。 さ らに、 プリ セッ ト方式および音声制御方式の両方式と も、 た とえば、 机の上など、 登録していない場所にある資料などを 表示したい場合には、 テレビカメ ラを容易にその方向に向け ることができず、 資料などをテレビカメ ラの視野内に移動す る必要がある。 あるいは、 操作パッ ド上のジョイスティ ッ ク などの操作手段を使用して、 手動操作でテレビカメ ラを所望 の方向に向ける必要がある。 しかし、 このようにした場合、 操作のために発言者が発言だけに集中できず、 聴衆の興味が そがれるという問題がある。 また、 テレビカメ ラなどの操作 を他人に任せた場合は、 話題の進行に即した円滑な資料の提 供が困難になる。 In a conventional presentation device, a TV camera When capturing images of speakers and materials, and displaying the images on the screen, a fixed method of fixing the TV camera and capturing the materials that come within the field of view, Adjust the direction of the TV camera, register several possible positions in advance, and enter a registration number to turn the TV camera in that direction. A sound control method that automatically turns the TV camera in the direction of the voice is adopted. However, in the case of the fixed method, it is often difficult to bring the speaker's face, etc., into the field of view, and it is not possible to image materials, etc., which are not within the field of view. Also, in the case of the audio control method, the television camera may turn in the wrong direction in response to noise such as a note turning. In addition, both the preset method and the voice control method allow you to easily display a TV camera when you want to display materials that are not registered, such as on a desk. It is not possible to point in the direction, and it is necessary to move materials etc. into the field of view of the TV camera. Alternatively, it is necessary to manually turn the television camera in a desired direction using an operation means such as a joystick on the operation pad. However, in this case, there is a problem in that the speaker cannot concentrate on only the operation because of the operation, and the interest of the audience is distracted. Also, if the operation of a TV camera is left to others, it will be difficult to provide smooth materials in line with the progress of the topic.
これに対し、 上記のプレゼンテ一シヨ ン装置では、 発言者 が指示部材(8 ) の先端を資料などの近く に移動して、 指示部 材(8 ) を操作するだけで、 簡単に、 テレビカメ ラ (6 ) をその 方向に向けることができ、 これで資料などを撮像して、 スク リ ー ン (2) に表示することができる。 また、 位置計測装置(1 2)がスク リ ー ン (2) 上および空間内に配置された 5個の送信 器(3) (5)と、 指示部材(8) に取付けられた 1個のマイク (15) を用いて、 超音波を使用して位置を計測するものであるから スク リーン (2) 上や空間内に、 送信器(3) (5)やマイク (15)以 外に、 位置を計測するための特別な装置を設ける必要がなく - 比較的簡単に位置の計測ができる。 On the other hand, in the above presentation device, the speaker simply moves the tip of the indicating member (8) to a position near the document and operates the indicating member (8), so that the television camera can be easily operated. (6) can be pointed in that direction. It can be displayed in lean (2). In addition, a position measuring device (1 2) is equipped with five transmitters (3) (5) placed on the screen (2) and in the space, and one transmitter attached to the pointing member (8). Since the position is measured using ultrasonic waves using the microphone (15), the transmitter (3) (5) and the microphone (15) must be placed on the screen (2) or in space. There is no need to provide any special equipment for position measurement-position measurement is relatively easy.
上記実施例では、 指示部材 U) を制御ュニッ ト (11)にケー ブル(20)で接続して、 信号の伝送を有線で行っているが、 こ れを無線で行うようにしてもよい。  In the above embodiment, the indicating member U) is connected to the control unit (11) with the cable (20), and the signal transmission is performed by wire. However, the signal transmission may be performed wirelessly.
図 1 8は、 信号の伝送を無線で行うようにした場合のプレ ゼンテーシ ョ ン装置の構成の 1例を示している。  FIG. 18 shows an example of the configuration of a presentation device in a case where signal transmission is performed wirelessly.
図 1 8において、 指示部材(8) に 2つの F M送信器(64) (6 5)が設けられ、 位置計測装置(12)に 2つの F M受信器(66) (6 7)が設けられている。 そして、 マイ ク (15)からの受信信号 E が送信器(64)から受信器(66)に無線で伝送され、 さ らに受信 器(66)から受信装置(24)に伝送される。 また、 ボタ ン (16)〜 (18)およびスィ ッチ (Π)からのスィ ッチ信号が送信器(65)か ら受信器(66)に無線で伝送され、 さ らに受信器(66)からモー ド切替え装置(22)および演算回路(32)に伝送される。 他は上 記実施例の場合と同様であり、 同じ部分には同一の符号を付 している。  In Fig. 18, the pointing member (8) is provided with two FM transmitters (64) (65), and the position measuring device (12) is provided with two FM receivers (66) (67). I have. Then, the received signal E from the microphone (15) is wirelessly transmitted from the transmitter (64) to the receiver (66), and further transmitted from the receiver (66) to the receiving device (24). Also, the switch signals from the buttons (16) to (18) and the switch (さ れ) are wirelessly transmitted from the transmitter (65) to the receiver (66), and further transmitted to the receiver (66). ) Is transmitted to the mode switching device (22) and the arithmetic circuit (32). Others are the same as in the above embodiment, and the same parts are denoted by the same reference numerals.
発言者の音声をスピー力を通して出力する必要がある場合、 上記のプレゼンテーシヨ ン装置とは別に設けた音声用の有線 マイ ク装置あるいは無線マイク装置を用いることができる。 その場合、 音声用のマイク装置の小型マイクを発言者の衣服 などの適当箇所に取付けることができる。 図 1 8に示すように、 プレゼンテーシ ョ ン装置においてマ イ ク (15)からの受信信号の伝送を無線で行い、 これとは別に 音声用の無線マイ ク装置を用いた場合、 超音波信号と音声信 号で 2つのチャネルを用いることになり、 電波法に定められ た使用可能なバン ド幅内では 2つのチャネル間でク ロス トー クの可能性が生じる。 この問題は、 超音波信号と音声信号の 伝送を 1チャネルで行うようにするこ とにより解決される。 If it is necessary to output the voice of the speaker through speed, a wired microphone device or a wireless microphone device provided separately from the above-mentioned presentation device can be used. In this case, the small microphone of the microphone device for voice can be attached to an appropriate place such as the clothes of the speaker. As shown in Fig. 18, the reception signal from the microphone (15) is transmitted wirelessly in the presentation device, and when a wireless microphone device for voice is used separately, the ultrasonic signal This means that two channels are used for voice and voice signals, and there is a possibility of crosstalk between the two channels within the usable bandwidth specified by the Radio Law. This problem can be solved by transmitting the ultrasonic signal and the audio signal in one channel.
図 1 9 は、 図 1 8に示すプレゼンテーショ ン装置において. さ らに超音波信号と音声信号の伝送を 1 チャネルで行うよう にした場合の構成の 1例を示している。  FIG. 19 shows an example of a configuration in which the transmission of the ultrasonic signal and the audio signal is performed in one channel in the presentation device shown in FIG.
図 1 9において、 指示部材(8) 側に、 位置計測用のマイク (15)とは別に、 音声用のマイ ク (受信器) (68)が設けられて いる。 また、 指示部材(8) に、 信号重畳手段と しての ミ キサ (69)が付加されている。 音声用のマイ ク (68)には、 たとえば ダイナ ミ ッ ク · マイクなど、 受信感度が可聴帯域に制限され たマイ クが使用される。 音声用のマイ ク (68)は、 指示部材(8 ) の基端側の部分などの適当箇所に取付けられてもよいし、 指示部材(8) と別に設けられて、 発言者の衣服などに取付け られるようにしてもよい。 一方、 制御ュニッ ト (11)側に、 超 音波領域周波数遮断用低域フィ ルタ (61)、 オーディ オ増幅回 路(62)およびスピーカ (63)が付加されている。 この場合、 マ ィク (15)からの受信信号は主に送信器(3) (5)からの超音波バ 一ス トを受信した超音波信号であり、 マイク (68)からの受信 信号は発言者の音声を受信した可聴帯域の音声信号である。 そして、 ミ キサ (69)により、 2個のマイ ク (15) (68)からの超 音波信号と音声信号が重畳されて出力され、 この出力が F M 送信器(64)から F M受信器(66)に無線で伝送される。 受信器 (66)で受信された受信信号 Eは、 受信回路(32)の他に、 低域 フィ ルタ (61)に入力する。 この受信信号 E は、 上記のよ うに 超音波信号と音声信号が重畳したものとなつているが、 低域 フィ ルタ (61)において、 受信信号 Eから可聴帯域の音声信号 が分離され、 これが増幅回路(62)を介してスピーカ (63)に送 られ、 スピーカ (63)から音声が流される。 低域フィ ルタ (61) の出力である音声信号は制御装置(13)に送られ、 音声による 指令、 制御などのために使用することができる。 また、 指示 部材(8) からの指令に応じて制御装置(13)で増幅回路(62)を 制御することにより、 音声がスピーカ (63)から出力されたり , 出力されないようにしたりするこ とができる。 他は図 1 8の 実施例の場合と同様であり、 同じ部分には同一の符号を付し ている。 In FIG. 19, a microphone (receiver) (68) for voice is provided on the pointing member (8) side in addition to the microphone (15) for position measurement. Further, a mixer (69) as signal superimposing means is added to the indicating member (8). As the microphone for audio (68), a microphone whose reception sensitivity is limited to an audible band, such as a dynamic microphone, is used. The microphone for sound (68) may be attached to an appropriate place such as the base end portion of the indicating member (8), or may be provided separately from the indicating member (8) and provided on the clothes of the speaker. It may be attached. On the other hand, on the control unit (11) side, a low-frequency filter (61) for cutting off the ultrasonic frequency, an audio amplification circuit (62) and a speaker (63) are added. In this case, the received signal from the microphone (15) is mainly an ultrasonic signal received from the transmitter (3) (5), and the received signal from the microphone (68) is This is an audio signal in the audible band that receives the voice of the speaker. Then, the ultrasonic signal and the audio signal from the two microphones (15) and (68) are superimposed and output by the mixer (69), and this output is transmitted from the FM transmitter (64) to the FM receiver (66). ) Is transmitted wirelessly. Receiver The received signal E received at (66) is input to the low-pass filter (61) in addition to the receiving circuit (32). The reception signal E is obtained by superimposing the ultrasonic signal and the audio signal as described above. However, in the low-pass filter (61), the audio signal in the audible band is separated from the reception signal E and amplified. The signal is sent to the speaker (63) via the circuit (62), and the sound is played from the speaker (63). The audio signal output from the low-pass filter (61) is sent to the control device (13) and can be used for commanding and controlling by voice. In addition, by controlling the amplifier circuit (62) by the control device (13) in response to a command from the indicating member (8), it is possible to prevent sound from being output from the speaker (63) or from being output. it can. The other parts are the same as those in the embodiment of FIG. 18, and the same parts are denoted by the same reference numerals.
図 1 9に示す実施例の場合、 超音波信号と音声信号の伝送 のための占有チャネルが 1 チャネルですみ、 ク ロス ト ークが 生じることがない。 また、 音声用の無線マイク装置を別に用 意しないですむため、 コス ト低減ができる。  In the case of the embodiment shown in FIG. 19, only one occupied channel for transmitting the ultrasonic signal and the audio signal is required, and no crosstalk occurs. Also, since a separate wireless microphone device for voice is not required, cost can be reduced.
なお、 図 1 9に示す実施例において、 ミ キサ(69) と受信回 路(32)および低域フィ ルタ (61)との間の信号の伝送、 ならび にボタ ン (16)〜 (18)およびスィ ッチ (19) とモー ド切替え装置 In the embodiment shown in FIG. 19, signal transmission between the mixer (69) and the receiving circuit (32) and the low-pass filter (61), and the buttons (16) to (18) And switch (19) and mode switching device
(22)および演算装置(35) との間の信号の伝送は、 有線で行う ことももちろん可能である。 そして、 このようにした場合も、 超音波信号および音声信号の音響信号用のアナ口グ信号線がThe transmission of signals between (22) and the arithmetic unit (35) can of course be performed by wire. Also in this case, an analog signal line for the acoustic signal of the ultrasonic signal and the audio signal is also provided.
1本ですむ。 You only need one.
図 1 9の実施例では、 位置計測用のマイク (15) と音声用の マイ ク (68)が別に設けられているが、 図 2 0に示すように、 指示部材(8) に設けられた 1個のマイク (15)で位置計測用と 音声用を兼ねるようにすること もできる。 In the embodiment of FIG. 19, a microphone (15) for position measurement and a microphone (68) for sound are provided separately, but as shown in FIG. 20, the microphone (15) is provided on the pointing member (8). One microphone (15) for position measurement It can also be used for audio.
図 2 0に示すプレゼンテーシ ョ ン装置は、 図 1 9の実施例 から音声用のマイ ク (68)と ミ キサ(69)が除かれたものである, この場合、 指示部材(8) のマイ ク (15)は、 送信器(3) (5)から の超音波を受信する受信器、 発言者などの音声を受信する音 声用の受信器、 および超音波信号と音声信号を重畳する信号 重畳手段を兼ねており、 マイク (15)の受信信号 Eは、 超音波 信号と音声信号が重畳したものとなっている。 マイ ク (15)か らの受信信号 Eは、 F M送信器(64)から F M受信器(66)に無 線で伝送され、 受信器(66)から受信回路(32)および低域フィ ルタ (61)に伝送される。 他は図 1 9の実施例の場合と同様で あり、 同じ部分には同一の符号を付している。  The presentation device shown in FIG. 20 is obtained by removing the microphone (68) for sound and the mixer (69) from the embodiment of FIG. The microphone (15) is a receiver that receives the ultrasonic waves from the transmitters (3) and (5), a receiver for the voice that receives the voice of the speaker, etc., and superimposes the ultrasonic signal and the audio signal. Also serves as a signal superimposing means, and the reception signal E of the microphone (15) is a superposition of an ultrasonic signal and an audio signal. The received signal E from the microphone (15) is transmitted by radio from the FM transmitter (64) to the FM receiver (66), and is received from the receiver (66) to the receiving circuit (32) and the low-pass filter (66). 61). Other parts are the same as those in the embodiment of FIG. 19, and the same parts are denoted by the same reference numerals.
図 2 0 に示す実施例の場合、 超音波信号用と音声信号用の マイクが 1つですむため、 さ らにコス ト低減ができる。  In the case of the embodiment shown in FIG. 20, only one microphone for the ultrasonic signal and one microphone for the audio signal is required, so that the cost can be further reduced.
上記の実施例では、 位置計測装置(12)が空間内の 3次元位 置の計測とスク リ ーン (2) 上の 2次元位置の計測の両方を行 うようになっているが、 用途によっては、 2次元位置の計測 を行う必要がない場合がある。  In the above embodiment, the position measuring device (12) measures both the three-dimensional position in space and the two-dimensional position on the screen (2). In some cases, it is not necessary to measure the two-dimensional position.
図 2 1 は、 図 1 9 に示す実施例から 2次元位置計測に関す る部分を除いた場合のプレゼンテーシ ョ ン装置の構成の 1例 を示している。  FIG. 21 shows an example of the configuration of the presentation device in a case where the part relating to the two-dimensional position measurement is removed from the embodiment shown in FIG.
図 2 1 において、 指示部材(8) から、 モー ド選択ボタ ン (1 6)が除かれている。 また、 位置計測装置(12)から、 2次元用 送信器(3) およびモー ド切替え装置(22)が除かれ、 各送信回 路(26)が常に対応する 3次元用送信器(5) に接続されている, 他は図 1 9の実施例の場合と同様であり、 同じ部分には同一 の符号を付している。 図 2 1の実施例の場合、 画像表示装置(10)は、 上記実施例 のスク リ ーン (2) 上に画像を表示する ものであってもよい。 しかし、 この場合、 スク リ ーン (2) は画像の表示のためだけ に使用される。 また、 画像表示装置(10)は、 T V、 液晶表示 パネルなどに画像を表示するものであったもよい。 画像表示 装置(10)が T Vを使用したものである場合、 プレゼンテーシ ヨ ンをテレビ会議などに使用するこ とができる。 その場合、 画像信号や音声信号を、 制御装置(U)から適当な通信手段を 介して、 他の場所に設置された T Vに伝送するようにする。 画像表示装置(10)は、 立体 T Vに 3次元画像を表示するもの であってもよい。 その場合、 たとえば、 人間の目の間隔程度 離した 2台のテレビカメ ラで右目用と左目用の画像を撮像し. これらの画像を用いて、 レンチキユラ · レンズなどを貼った 表示スク リ ーン上に 3次元画像を表示するようにする。 In FIG. 21, the mode selection button (16) has been removed from the indicating member (8). Also, the two-dimensional transmitter (3) and the mode switching device (22) are removed from the position measurement device (12), and each transmission circuit (26) is always connected to the corresponding three-dimensional transmitter (5). The other parts are the same as those in the embodiment of FIG. 19, and the same parts are denoted by the same reference numerals. In the case of the embodiment of FIG. 21, the image display device (10) may display an image on the screen (2) of the above embodiment. However, in this case, the screen (2) is used only for displaying the image. Further, the image display device (10) may display an image on a TV, a liquid crystal display panel, or the like. When the image display device (10) uses a TV, the presentation can be used for a video conference or the like. In such a case, the image signal and the audio signal are transmitted from the control unit (U) to the TV installed in another place via appropriate communication means. The image display device (10) may display a three-dimensional image on a stereoscopic TV. In this case, for example, two TV cameras separated by human eyes capture images for the right and left eyes. Using these images, a display screen with a lenticular lens or the like Display a 3D image on top.
図 2 1 に示す実施例において、 音声用のマイ ク (68)は指示 部材 U) に取付けられていてもよい。 また、 音声用のマイク (68)を別に設けずに、 1個のマイク (15)で超音波用と音声用 の両方を兼ねるようにしてもよい。 と く に後のようにした場 合、 プレゼンテーショ ンをカラオケスタジオなどで使用した ときに、 歌い手が指示部材(8) を持って歌う と、 テレビカメ ラ (6) がこれを追尾し、 T Vなどの画像表示装置(10)の表示 スク リ ーン (画面) 上に歌い手の画像を表示したり、 歌のィ メ ージ画像と歌い手の画像を合成して表示したり、 あるいは 歌い手が指示部材(8) を操作して音量の調整などを行つたり することができる。  In the embodiment shown in FIG. 21, the voice microphone (68) may be attached to the indicating member U). Further, one microphone (15) may be used for both ultrasonic and audio without providing a separate microphone (68) for audio. Especially in the latter case, when the singer sings with the pointing member (8) when the presentation is used in a karaoke studio or the like, the television camera (6) tracks this and the TV The singer's image is displayed on the display screen of the image display device (10), the singer's image is combined with the singer's image, or the singer is the pointing member. (8) You can adjust the volume by operating.
また、 図 2 1 に示す実施例において、 指示部材(8) と位置 計測装置(12)との間の信号の伝送を有線で行うようにするこ とももちろん可能である。 Further, in the embodiment shown in FIG. 21, the signal transmission between the pointing member (8) and the position measuring device (12) is performed by wire. Of course it is possible.
プレゼンテーシ ョ ン装置は、 会議室やイベン ト会場などに 常設して、 専用的に使用するようにしてもよいし、 プレゼン テーショ ン装置全体を携帯可能なものにして、 所望の場所に 設置して使用するようにしてもよい。  The presentation device may be permanently installed in a conference room or event hall, etc., and may be used exclusively. Alternatively, the entire presentation device may be portable and installed at a desired location. May be used.
指示部材 U) と して、 モー ド切替えボタ ン (16)、 上ボタ ン (Π)および下ボタ ン (18)が設けられた基端部と、 マイ ク (15) および先端スィ ッチ (19)が設けられた先端部との間が伸縮で きるようになつたものを使用するこ と もできる。  As the indicating member U), the base end provided with the mode switching button (16), the upper button (Π) and the lower button (18), and the microphone (15) and the tip switch ( It is also possible to use one that can expand and contract with the tip provided with 19).
図 2 2および図 2 3は、 上記のような伸縮可能な指示部材 (77)の 1例を示している。 なお、 これらの図面において、 上 記実施例の指示棒(8) と対応する部分には同一の符号を付し ている。  FIGS. 22 and 23 show an example of the extendable indicating member (77) as described above. In these drawings, the same reference numerals are given to portions corresponding to the indicating rod (8) in the above embodiment.
この指示部材(77)は、 操作部(70)、 基端部が操作部(70)に 固定された伸縮部(71)、 および伸縮部(71)の先端部に固定さ れた検出部(72)を備えている。 操作部(7G)は、 使用者が手で 持って操作できるようになつている。 伸縮部(71)は、 入れ子 式になった複数の筒体(73 a) ( b) (He) を備えている。 後端 の基端筒体(73a) が操作部(71)の上部に固定され、 先端筒体 (He) の先端部に検出部(72)が固定されている。 検出部(72) は、 先端筒体(73c) に固定されて先端部が先細テーパ状にな つた円筒状ケース (74)、 およびケース (74)の先端部に前後移 動自在に取付けられて図示しないばねにより前向きに付勢さ れている押付け部材(75)を備えている。  The indicating member (77) includes an operation unit (70), an expansion and contraction unit (71) having a base end fixed to the operation unit (70), and a detection unit (71) fixed to a distal end of the expansion and contraction unit (71). 72). The operation unit (7G) is designed so that the user can operate it by hand. The telescopic part (71) includes a plurality of nested cylinders (73a), (b) and (He). The rear end base body (73a) is fixed to the upper part of the operation section (71), and the detection section (72) is fixed to the front end of the front end cylinder (He). The detection section (72) is fixed to the tip cylinder (73c) and has a tapered tip at the end of the cylindrical case (74), and is attached to the tip of the case (74) so as to be movable back and forth. A pressing member (75) urged forward by a spring (not shown) is provided.
図 2 2は伸縮部(71)がのびた状態、 図 2 3は伸縮部(71)が 縮んだ状態を示している。 伸縮部(71)が縮んだ状態において は、 検出部(72)のケース (74)の後部が操作部(70)の上部前端 部内に入るようになつている。 操作部(70)には、 ケース (74) を検出するこ とによ り伸縮部(71)が短縮状態になつているこ とを検出する短縮状態検出スィ ッチ (7δ)が設けられている。 上記実施例の指示棒(8) の場合と同様のモ一 ド'選択ボタ ン (1 6)、 上ボタ ン (Π)および下ボタ ン (18)が、 操作部(70)に設け られている。 上記実施例の指示棒(8) の場合と同様のマイク (15)が、 検出部(72)のケース (74)より常に前方に突出してい る押付け部材(75)の前部内に設けられている。 上記実施例の 指示棒(8) の場合と同様の先端スィ ツチ (19)が、 検出部(72) のケース (74)内に設けられている。 この先端スィ ッチ (19)は. 押付け部材(75)が後側に移動したこ とを検出するこ とにより . 押付け部材(75)がスク リ ー ン (2) などに押し付けられたこと を検出するようになっている。 FIG. 22 shows a state in which the elastic part (71) is extended, and FIG. 23 shows a state in which the elastic part (71) is contracted. When the elastic part (71) is contracted, the rear part of the case (74) of the detecting part (72) is the upper front end of the operating part (70). They are going to enter the club. The operation section (70) is provided with a shortened state detection switch (7δ) for detecting that the extendable section (71) is in the shortened state by detecting the case (74). I have. A mode 'selection button (16), an upper button (Π), and a lower button (18) similar to the case of the indicator rod (8) of the above embodiment are provided on the operation unit (70). I have. A microphone (15) similar to the case of the indicator rod (8) of the above embodiment is provided in the front part of the pressing member (75) which always projects forward from the case (74) of the detection part (72). . A tip switch (19) similar to that of the indicator rod (8) in the above embodiment is provided in the case (74) of the detection section (72). The tip switch (19) detects that the pressing member (75) has moved to the rear side to detect that the pressing member (75) has been pressed against the screen (2) or the like. It is designed to detect.
図示は省略したが、 伸縮部(71)の筒体(73 a) ( 731)) ( 73 c) 内 に、 複数の導体を有する伸縮可能なスパイ ラル状コイル線が 通されており、 このコイル線の導線により、 基端部(70)と検 出部(72) との間の電力供給および信号伝送が行われるように なっている。 伸縮部(Π)を導電体よりなる複数組の筒体で構 成し、 これらの筒体により、 基端部(70)と検出部(72)との間 の電力供給および信号伝送を行うようにしてもよい。 あるい は、 検出部(72)に電池を設け、 検出部(72)と操作部(70)に、 筒体(Ha) (Hb) (l U) 内を通して対向するように発光素子と 受光素子を設けて、 信号の伝送を行うようにしてもよい。  Although not shown, an extendable spiral coil wire having a plurality of conductors is passed through the tubular body (73a) (731)) (73c) of the extendable portion (71). The power supply and signal transmission between the base end (70) and the detection unit (72) are performed by the wire conductor. The expansion / contraction part (Π) is composed of a plurality of sets of cylinders made of a conductor, and these cylinders are used to supply power and transmit signals between the base end (70) and the detection unit (72). It may be. Alternatively, a battery is provided in the detection section (72), and the light-emitting element and the light-receiving element are arranged so that the detection section (72) and the operation section (70) face each other through the cylinder (Ha) (Hb) (lU). May be provided to transmit a signal.
この指示部材(77)を図 1 に示すようなプレゼンテーシ ョ ン 装置において使用する場合、 たとえば、 モー ド選択ボタ ン (1 6)が 2次元モー ド側に切替えられ、 かつ伸縮部(71)が短縮状 態になつているときだけ、 手書きモー ドに設定され、 押付け 部材(7 5)がスク リ ー ン (2) に押付けられている間だけ、 位置 が計測されて、 手書き入力が行われる。 When this pointing member (77) is used in a presentation device as shown in FIG. 1, for example, the mode selection button (16) is switched to the two-dimensional mode side and the expansion and contraction section (71) is used. Is set to the handwriting mode only when Only while the member (75) is pressed against the screen (2), the position is measured and handwriting input is performed.
他は、 上記実施例の指示部材(8) の場合と同様である。 産業上の利用可能性  Other points are the same as those of the pointing member (8) of the above embodiment. Industrial applicability
こ の発明による位置計測方法および装置は、 超音波を使用 した 2次元または 3次元の位置計測に使用されるのに適して いる。  The position measuring method and apparatus according to the present invention are suitable for use in two-dimensional or three-dimensional position measurement using ultrasonic waves.

Claims

請求の範囲 . 所定の間隔をおいて配置した複数の送信器から互いに周 波数の異なる超音波を間欠的にかつほぼ同時に送信し、 こ れらの超音波を被計測物体に取付けた 1つの受信器で受信 し、 受信器の受信信号を互いに中心周波数の異なる複数の 狭帯域特性を有する帯域フィ ルタに通して、 各送信器から の超音波に対する送信器別受信信号を個別に検知し、 各送 信器による超音波の送信開始時刻から対応する送信器別受 信信号の検知時刻までの経過時間に基づいて各送信器から 受信器までの距離を求め、 これらの距離に基づいて被計測 物体の位置を求めることを特徴とする位置計測方法。 Claims. A plurality of transmitters arranged at predetermined intervals intermittently transmit ultrasonic waves having different frequencies intermittently and almost simultaneously, and receive one ultrasonic wave attached to the object to be measured. The signal received by the receiver is passed through a plurality of band-pass filters having narrow-band characteristics having different center frequencies from each other, and the received signal for each transmitter for the ultrasonic wave from each transmitter is individually detected. The distance from each transmitter to the receiver is determined based on the elapsed time from the start time of transmission of ultrasonic waves by the transmitter to the detection time of the corresponding reception signal for each transmitter, and the measured object is determined based on these distances. A position measuring method characterized by obtaining a position of a position.
. 画像表示装置の表示ス ク リ ー ンを基準と した座標系にお ける被測定物体の位置を計測するこ とを特徴とする請求の 範囲第 1項に記載の位置測定方法。2. The position measuring method according to claim 1, wherein the position of the object to be measured is measured in a coordinate system based on a display screen of the image display device.
. 位置情報によって角度の調整ができる撮像装置の周囲の 所定の空間内における被測定物体の 3次元位置を計測する ことを特徴とする請求の範囲第 1項に記載の位置測定方法 (. 所定の間隔をおいて配置された複数の送信器、 被計測物 体に取付けられた 1つの受信器、 各送信器から互いに周波 数の異なる超音波を間欠的にかつほぼ同時に送信させる送 信装置、 受信器の受信信号を互いに中心周波数の異なる複 数の狭帯域特性を有する帯域フィ ルタに通して各送信器か らの超音波に対する送信器別受信信号を個別に検知する受 信装置、 ならびに各送信器による超音波の送信開始時刻か ら対応する送信器別受信信号の検知時刻までの経過時間に 基づいて各送信器から受信器までの距離および被計測物体 の位置を求める処理装置を備えていることを特徴とする位 置計測装置。 . Position measuring method according to claim 1, characterized in that to measure the three-dimensional position of the object to be measured in a predetermined space around the image pickup device capable of adjusting angle by the position information (. Prescribed A plurality of transmitters arranged at intervals, one receiver attached to the object to be measured, a transmission device that transmits ultrasonic waves of different frequencies from each transmitter intermittently and almost simultaneously, Receiver that individually detects the received signal for each transmitter for the ultrasonic wave from each transmitter by passing the received signal of the transmitter through a plurality of band-pass filters having narrow band characteristics having different center frequencies, and each transmitter The distance from each transmitter to the receiver and the object to be measured are based on the elapsed time from the ultrasonic transmission start time by the transmitter to the detection time of the corresponding reception signal for each transmitter A position measuring device comprising a processing device for determining the position of the position.
5 . 帯域フィ ルタが、 対応する超音波と同一周波数の 2つの 圧電式超音波 ト ラ ンスデューサを備えており、 これらの超 音波トラ ンスデューザの共振子が対応する超音波の 1波長 程度離して対向状に配置され、 一方の トラ ンスデューザの 電極に入力信号が印加され、 他方の ト ラ ンスデューサの電 極から出力信号が取出されるようになされていることを特 徴とする請求の範囲第 4項に記載の位置計測装置。  5. The bandpass filter has two piezoelectric ultrasonic transducers of the same frequency as the corresponding ultrasonic wave, and the resonators of these ultrasonic transducers face each other at a distance of about one wavelength of the corresponding ultrasonic wave. Claim 4 characterized in that the input signal is applied to the electrode of one of the transducers and the output signal is extracted from the electrode of the other transducer. The position measuring device according to item 1.
6 . 被測定物体が、 操作用スィ ッチ手段が設けられて手に持 つて操作されるようになされた操作部、 基端部が操作部に 固定された伸縮可能な伸縮部、 および伸縮部の先端部に固 定された検出部を備えており、 検出部に受信器が取付けら れていることを特徴とする請求の範囲第 5項に記載の位置 計測装置。 6. An operation section provided with an operation switch means for operating the object to be measured by holding it with a hand, an expandable and contractible section having a base end fixed to the operation section, and an expandable and contractible section. 6. The position measuring device according to claim 5, further comprising: a detector fixed to a tip of the sensor, wherein a receiver is attached to the detector.
PCT/JP1994/002236 1993-12-28 1994-12-26 Method and device for measuring position WO1995018354A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP5/333917 1993-12-28
JP33391793A JPH07200159A (en) 1993-12-28 1993-12-28 Position indication bar for pointing device
JP6/250913 1994-10-17
JP25091394A JPH08114666A (en) 1994-10-17 1994-10-17 Method and apparatus for measuring position

Publications (1)

Publication Number Publication Date
WO1995018354A1 true WO1995018354A1 (en) 1995-07-06

Family

ID=26539986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002236 WO1995018354A1 (en) 1993-12-28 1994-12-26 Method and device for measuring position

Country Status (2)

Country Link
TW (1) TW250542B (en)
WO (1) WO1995018354A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100375906C (en) * 2004-06-08 2008-03-19 清华大学 Ultrasonic positioning and ranging microacoustic system based on silicon microprocessing technology
US8994591B2 (en) 1996-09-09 2015-03-31 Tracbeam Llc Locating a mobile station and applications therefor
US9060341B2 (en) 1996-09-09 2015-06-16 Tracbeam, Llc System and method for hybriding wireless location techniques
US9134398B2 (en) 1996-09-09 2015-09-15 Tracbeam Llc Wireless location using network centric location estimators
US9875492B2 (en) 2001-05-22 2018-01-23 Dennis J. Dupray Real estate transaction system
US10641861B2 (en) 2000-06-02 2020-05-05 Dennis J. Dupray Services and applications for a communications network
US10684350B2 (en) 2000-06-02 2020-06-16 Tracbeam Llc Services and applications for a communications network
US10849089B2 (en) 2010-08-23 2020-11-24 Finetrak, Llc Resource allocation according to geolocation of mobile communication units

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236009A (en) * 1984-05-09 1985-11-22 Canon Inc Device for detecting three-dimensional coordinate
JPS623318A (en) * 1985-06-28 1987-01-09 Canon Inc Coordinate detector
JPH01296779A (en) * 1988-05-24 1989-11-30 Seiko Epson Corp Automatic tracking device for video camera

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236009A (en) * 1984-05-09 1985-11-22 Canon Inc Device for detecting three-dimensional coordinate
JPS623318A (en) * 1985-06-28 1987-01-09 Canon Inc Coordinate detector
JPH01296779A (en) * 1988-05-24 1989-11-30 Seiko Epson Corp Automatic tracking device for video camera

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICROFILM OF THE SPECIFICATION AND DRAWINGS ANNEXED TO THE WRITTEN APPLICATION OF JAPANESE UTILITY MODEL, Application No. 67263/1971 (Laid-Open No. 25633/1973) (TOKO K.K.), 27 March 1973, pages 1-2. *
MICROFILM OF THE SPECIFICATION AND DRAWINGS ANNEXED TO THE WRITTEN APPLICATION OF JAPANESE UTILITY MODEL, Application No. 91241/1981 (Laid-Open No. 201979/1982) (YANMAR AGRICULTURAL EQUIPMENT CO., LTD.) 22 December 1982, pages 4-5. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994591B2 (en) 1996-09-09 2015-03-31 Tracbeam Llc Locating a mobile station and applications therefor
US9060341B2 (en) 1996-09-09 2015-06-16 Tracbeam, Llc System and method for hybriding wireless location techniques
US9134398B2 (en) 1996-09-09 2015-09-15 Tracbeam Llc Wireless location using network centric location estimators
US10641861B2 (en) 2000-06-02 2020-05-05 Dennis J. Dupray Services and applications for a communications network
US10684350B2 (en) 2000-06-02 2020-06-16 Tracbeam Llc Services and applications for a communications network
US9875492B2 (en) 2001-05-22 2018-01-23 Dennis J. Dupray Real estate transaction system
US11610241B2 (en) 2001-05-22 2023-03-21 Mobile Maven Llc Real estate transaction system
CN100375906C (en) * 2004-06-08 2008-03-19 清华大学 Ultrasonic positioning and ranging microacoustic system based on silicon microprocessing technology
US10849089B2 (en) 2010-08-23 2020-11-24 Finetrak, Llc Resource allocation according to geolocation of mobile communication units

Also Published As

Publication number Publication date
TW250542B (en) 1995-07-01

Similar Documents

Publication Publication Date Title
CN1835648B (en) Position detecting system, speaker system, and user terminal apparatus
US9739609B1 (en) Time-of-flight sensor with configurable phase delay
AU2007221976B2 (en) Ultrasonic camera tracking system and associated methods
US8411165B2 (en) Microphone apparatus, reproducing apparatus, and image taking apparatus
EP2953348B1 (en) Determination, display, and adjustment of best sound source placement region relative to microphone
CN107113527A (en) The method for determining loudspeaker position change
US8988662B1 (en) Time-of-flight calculations using a shared light source
US9127942B1 (en) Surface distance determination using time-of-flight of light
CN107920263A (en) Volume adjusting method and device
EP2438770A1 (en) Estimation of loudspeaker positions
JP6097327B2 (en) Portable terminal, acoustic distance measuring system, and acoustic distance measuring method
WO1995018354A1 (en) Method and device for measuring position
CN105208287A (en) Photographing method and device
US9109886B1 (en) Time-of-flight of light calibration
KR20120011057A (en) Digital transcription system utilizing small aperture acoustical sensors
CN110290576A (en) Control method of electronic device and device
JPH08114666A (en) Method and apparatus for measuring position
US8884171B2 (en) Pen transcription system with improved noise rejection
JP4112726B2 (en) Surveying equipment
EP2425317B1 (en) Digital transcription system utilizing accoustical detectors having apertures with a vertical orientation relative to the work surface
JPH08116475A (en) Presentation device
US9915528B1 (en) Object concealment by inverse time of flight
US7672809B2 (en) Object tracker
CN110324523B (en) Microphone switching method based on distance detection, storage medium and camera
JPS62243480A (en) Automatic zooming tracking camera and range

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA