USRE44564E1 - Method for transmitting control signal using efficient multiplexing - Google Patents

Method for transmitting control signal using efficient multiplexing Download PDF

Info

Publication number
USRE44564E1
USRE44564E1 US13/476,973 US200713476973A USRE44564E US RE44564 E1 USRE44564 E1 US RE44564E1 US 200713476973 A US200713476973 A US 200713476973A US RE44564 E USRE44564 E US RE44564E
Authority
US
United States
Prior art keywords
ack
nack
time
control signals
multiplexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/476,973
Inventor
Hak Seong Kim
Sung Duk Choi
Ki Jun Kim
Suk Hyon Yoon
Joon Kui Ahn
Bong Hoe Kim
Dong Youn Seo
Young Woo Yun
Jung Hoon Lee
Seong Hoon JEONG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Priority to US13/476,973 priority Critical patent/USRE44564E1/en
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JEONG, SEONG HOON, AHN, JOON KUI, CHOI, SUNG DUK, KIM, BONG HOE, KIM, HAK SEONG, KIM, KI JUN, LEE, JUNG HOON, SEO, DONG YOUN, YOON, SUK HYON, YUN, YOUNG WOO
Application granted granted Critical
Publication of USRE44564E1 publication Critical patent/USRE44564E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a method for transmitting a control signal in a multi-carrier mobile communication system, and more particularly, to a control signal transmitting method.
  • the present invention is suitable for a wide scope of applications, it is particularly suitable for transmitting a control signal reliably in uplink/downlink transmission by multiplexing a plurality of 1-bit control signals efficiently.
  • a base station performs downlink data packet transmission to user equipments (hereinafter abbreviated UEs) belonging to a cell or each of a plurality of cells. Meanwhile, a plurality of UEs may exist within a cell.
  • UEs user equipments
  • each of the UEs is unable to know how a data packet will be transmitted to itself using a prescribed format
  • the base station should transmit such necessary information as an ID of a UE that will receive the corresponding data packet, a time-frequency domain for carrying the data packet, a data transmission format including a coding rate, a modulation scheme and the like, HARQ relevant information, and the like in downlink for each downlink data packet transmission.
  • a base station in order to enable a UE to transmit a data packet in uplink, a base station should transmit such necessary information as an ID of a UE that will be approved for data packet transmission, an uplink time-frequency domain enabling the UE to transmit the data packet, a data transmission format including a coding rate, a modulation scheme and the like, HARQ relevant information, and the like in downlink for each uplink data packet transmission.
  • a base station In case of the uplink data packet transmission, a base station should transmit reception success acknowledgement/non-acknowledgement (ACK/NACK) information on each data having been transmitted by a UE to the corresponding UE in uplink.
  • ACK/NACK reception success acknowledgement/non-acknowledgement
  • each UE transmits information about reception success or failure for each data packet having been transmitted by a base station through ACK/NACK information in uplink.
  • a base station In order to maintain an uplink transmission/reception power of each UE at a proper level, a base station should transmit power control information to each UE in downlink.
  • an ACK/NACK signal, a power control signal or the like is mainly able to indicate the corresponding information using one bit and can be named ‘1-bit control signal’.
  • time division multiple access for multiplexing a plurality of signals by dividing them on a time domain
  • frequency division multiple access for multiplexing a plurality of signals by dividing them on a frequency domain
  • code division multiple access for multiplexing signals on a prescribed time-frequency domain using an orthogonal code or a pseudo-orthogonal code, or the like
  • a random cell multiplexes to transmit ACK/NACK signals for different UEs within a single TTI by TDMA or FDMA for example
  • a quantity of interference imposed on neighbor cells by the corresponding cell may differ considerably on a time domain or a frequency domain. And, this may have a bad influence on performing downlink data packet scheduling in a cellular environment or time-frequency-energy distributions efficiently.
  • the present invention is directed to a method for transmitting a control signal in a multi-carrier mobile communication system that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
  • An object of the present invention is to provide a method of transmitting a plurality of control signals efficiently, by which a control signal of a specific transmitting side can be reliably transmitted in a manner of performing multiplexing efficiently to minimize inter-cell interference in control signal transmission.
  • a method of transmitting a control signal includes multiplexing a plurality of 1-bit control signals within a prescribed time-frequency domain by code division multiple access (CDMA), repeating the multiplexed control signals in different frequency domains, and transmitting the repeated control signals.
  • CDMA code division multiple access
  • a method of transmitting a control signal includes multiplexing a plurality of 1-bit control signals within a prescribed time-frequency domain by code division multiple access (CDMA), and transmitting the multiplexed control signals, wherein a plurality of the 1-bit control signals include a plurality of the 1-bit control signals for a specific transmitting side.
  • CDMA code division multiple access
  • the prescribed time-frequency domain comprises a time-frequency domain within 1 OFDM symbol zone.
  • the repeating is carried out in a manner of repeating the multiplexed control signals into the different frequency domains within the single OFDM symbol zone.
  • the repeating is carried out in a manner of repeating the multiplexed control signals into the different frequency domains within the OFDM symbol zones differing from each other.
  • a plurality of the 1-bit control signals are discriminated by an orthogonal or pseudo-orthogonal code used for multiplexing of each of the 1-bit control signals.
  • a plurality of the 1-bit control signals are modulated by being discriminated by different orthogonal phase components, respectively and wherein in the multiplexing, a plurality of the 1-bit control signals are additionally discriminated by the different orthogonal phase components used for the modulation.
  • the prescribed time-frequency domain includes a plurality of time-frequency domains.
  • additional multiplexing is carried out by at least one selected from the group consisting of time division multiple access (TDMA) and frequency division multiple access (FDMA).
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • a plurality of the 1-bit control signals for the specific transmitting side are multiplexed by being spread in a plurality of the time-frequency domains.
  • the 1-bit control signals for different transmitting sides are multiplexed in a plurality of the time-frequency domains by the code division multiple access, respectively.
  • a plurality of the 1-bit control signals for the specific transmitting side are multiplexed by different orthogonal or pseudo-orthogonal codes.
  • the orthogonal or pseudo-orthogonal code includes a code sequence having a length corresponding to a size of a plurality of the time-frequency domains.
  • the 1-bit control signal can include either an ACK/NACK signal or a power control signal.
  • the 1-bit control signal can be transmitted in either uplink or downlink.
  • CDMA in multiplexing a plurality of 1-bit control signals, CDMA is mainly used. And, it is able to transmit a plurality of controls signals of a specific UE through different orthogonal or pseudo-orthogonal codes, respectively. Hence, it is able to enhance reliability on the corresponding control signal transmission.
  • the number of multiplexed signals in coherence bandwidth and/or coherence time can be increased by carrying out FDMA and/or TDMA on the 1-bit control signal transmission side by side and by distributing to transmit a plurality of control signals for a specific UE on each time-frequency domain.
  • FIG. 1 is a diagram for explaining a method of multiplexing to transmit ACK/NACK signals by CDMA according to one embodiment of the present invention
  • FIG. 2 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA and FDMA according to one embodiment of the present invention
  • FIG. 3 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA, TDMA and FDMA according to one embodiment of the present invention
  • FIG. 4 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA and FDMA according to one embodiment of the present invention, in which a plurality of ACK/NACK signals transmitted by a specific transmitting side among a plurality of ACK/NACK signals are transmitted through a plurality of frequency domains;
  • FIG. 5 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA, TDMA and FDMA according to one embodiment of the present invention, in which a plurality of ACK/NACK signals transmitted by a specific transmitting side among a plurality of ACK/NACK signals are transmitted through a plurality of time-frequency domains;
  • FIG. 6 is a diagram for explaining a method of transmitting ACK/NACK in case of using 1 OFDM symbol zone for ACK/NACK transmission according to one embodiment of the present invention
  • FIG. 7 is a diagram for explaining a method of transmitting ACK/NACK in case of using at least 2 OFDM symbol zones for ACK/NACK transmission according to one embodiment of the present invention
  • FIG. 8 is a diagram for explaining a method of transmitting ACK/NACK in case of using at least 2 OFDM symbol zones for ACK/NACK transmission according to one preferred embodiment of the present invention.
  • FIG. 9 is a diagram to explain a principle that power allocation flexibility is increased in case of transmitting ACK/NACK signals by the embodiment shown in FIG. 8 .
  • a base station transmits an ACK/NACK signal indicating a success or failure in receiving a data packet transmitted by each UE within a cell or a control signal playing a role similar to that of the ACK/NACK signal to the corresponding UE in downlink.
  • the base station since a plurality of UEs are able to transmit uplink data packets within a single TTI, the base station is able to transmit ACK/NACK signals to a plurality of the UEs within a single TTI as well.
  • a base station multiplexes a plurality of power control signals for controlling transmission powers of uplink data of a plurality of UEs for a single TTI within a cell and then transmits the multiplexed signal to each of the UEs.
  • a method of multiplexing to transmit a plurality of 1-bit control signals by CDMA within a partial time-frequency domain of a transmission band in a multi-carrier system is proposed. And, this will be explained with reference to a detailed example.
  • a 1-bit control signal is an ACK/NACK signal for example.
  • a 1-bit control signal needs not to be an ACK/NACK signal necessarily.
  • the present invention includes a random 1-bit control signal in a format that a plurality of signals are transmitted within 1 TTI.
  • FIG. 1 is a diagram for explaining a method of multiplexing to transmit ACK/NACK signals by CDMA according to one embodiment of the present invention.
  • a base station reserves a specific time-frequency domain within 1 TTI for ACK/NACK transmission to use. And, ACK/NACK signals for different UEs are discriminated from each other by an orthogonal or pseudo-orthogonal code multiplied on a time-frequency domain.
  • the ‘orthogonal code’ or the ‘pseudo-orthogonal code’ is a code used for signal multiplexing in CDMA and means a code that indicates that a correlation is 0 or a value smaller than a prescribed threshold.
  • a plurality of ACK/NACK signals can be additionally discriminated through the different orthogonal phase components.
  • a number of simultaneously transmittable orthogonal signals may vary in accordance with a type of a used orthogonal/pseudo-orthogonal code.
  • an ACK/NACK signal for a single UE can be transmitted via a single orthogonal signal among the orthogonal signals generated by the above-explained method.
  • one embodiment of the present invention proposes that an ACK/NACK signal for a single UE is set to be transmitted via a plurality of orthogonal signals if the single ACK/NACK signal carries information exceeding 1 bit or if a single UE transmits a plurality of data packets for a single TTI.
  • an advantage in multiplexing to transmit an ACK/NACK signal by CDMA in downlink lies in that a quantity of interference generated in downlink by an ACK/NACK signal on a time-frequency domain of a single TTI can be maintained relatively equal.
  • a random cell multiplexes to transmit ACK/NACK signals for different UEs by TDMA or FDMA within a single TTI, as mentioned in the foregoing description, if ACK/NACK signal transmission powers for the respective UEs considerably differ from each other, an interference quantity having influence on neighbor cells by the corresponding cell can vary on a time domain or a frequency domain considerably. And, this may have bad influence on performing downlink data packet scheduling or other time-frequency-energy distribution in a cellular environment.
  • an ACK/NACK signal is multiplexed by CDMA like one embodiment of the present invention, even if different ACK/NACK signal transmission powers are allocated to different UEs, ACK/NACK signals for the entire UEs are added together within a same time-frequency domain for a single TTI and then transmitted. Hence, fluctuation of transmission power on a time-frequency domain can be minimized.
  • ACK/NACK signals transmitted by a single UE or for data transmission of a single UE are transmitted via a plurality of orthogonal signals, it is able to enhance reliability of ACK/NACK signal transmission to the corresponding UE.
  • CDMA multiplexing of ACK/NACK signal is carried out within a time-frequency domain, in which a radio channel response is not considerably changed, i.e., within a coherent time and a coherent bandwidth.
  • a CDMA multiplexing scheme of ACK/NACK signal can be carried out side by side with a FDMA or TDMA multiplexing scheme to narrow a time-frequency domain for multiplexing ACK/NACK signal by CDMA within a coherent range in which a radio channel response characteristic is not considerably changed. This is explained as follows.
  • FIG. 2 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA and FDMA according to one embodiment of the present invention.
  • different ACK/NACK signals can be transmitted in time-frequency domains separated from each other on two frequency axes. And, different ACK/NACK signals can be multiplexed by CDMA in each of the time-frequency domains.
  • a width of each of the frequency domains is set to a 6-subcarrier zone narrower than a 12-subcarrier zone.
  • ACK/NACK signal can be additionally discriminated using two orthogonal phases, it is able to transmit different orthogonal signals amounting to two times of the 72 orthogonal signals.
  • FIG. 3 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA, TDMA and FDMA according to one embodiment of the present invention.
  • FIG. 3 shows an example that multiplexing is carried out on ACK/NACK signals side by side with CDMA, FDMA and TDMA.
  • different ACK/NACK signals can be transmitted on four time-frequency domains having less channel variations. And, different ACK/NACK signals can be multiplexed in each of the time-frequency domains by CDMA.
  • the scheme for transmitting the different ACK/NACK signals in each of the time-frequency domains is more advantageous than that of FIG. 1 in that each of the ACK/NACK signals can be transmitted within the time-frequency domain having not considerable fluctuation of the radio channel response characteristic. Yet, in case that a radio channel quality for a prescribed UE in the time-frequency domain for carrying the ACK/NACK signals is poor, ACK/NACK reception performance of the corresponding UE can be considerably degraded.
  • one embodiment of the present invention proposes that ACK/NACK signals for a specific UE within a single TTI are transmitted across time-frequency domains distant from a plurality of time-frequency axes. And, one embodiment of the present invention also proposes a scheme for obtaining a time-frequency diversity gain for ACK/NACK signal reception in a receiving end by multiplexing ACK/NACK signals for different UEs by CDMA in each time-frequency domain.
  • FIG. 4 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA and FDMA according to one embodiment of the present invention, in which a plurality of ACK/NACK signals transmitted by a specific transmitting side among a plurality of ACK/NACK signals are transmitted through a plurality of frequency domains.
  • a receiving side is able to obtain a frequency diversity gain in a manner that an ACK/NACK signal is transmitted across two different frequency domains.
  • an ACK/NACK signal is transmitted across two time-frequency domains and different ACK/NACK signals are multiplexed in each of the time-frequency domains.
  • each of the time-frequency domains includes six OFDM symbols and six subcarriers, there exist 36 (6 ⁇ 6) ACK/NACK signals that can be multiplexed by CDMA in each of the time-frequency domains. Since two orthogonal phases are usable for QPSK transmission, it is able to transmit a double of the different ACK/NACK signals.
  • ACK/NACK signals transmitted via different time-frequency domains for a specific UE can be multiplexed using the same orthogonal code among orthogonal codes used for each of the time-frequency domains.
  • one embodiment of the present invention proposes that ACK/NACK signals transmitted via different time-frequency domains for a specific UE are multiplexed using different orthogonal codes among orthogonal codes used for each of the time-frequency domains.
  • ACK/NACK signals for a specific UE are multiplexed using different orthogonal codes in each domain, it is able to prevent reception performance from being reduced by special orthogonality reduction influence with other ACK/NACK signals with which a specific ACK/NACK signal is CDMA multiplexed for a specific TTI. And, this scheme can be extended to enable ACK/NACK signal of a specific UE to be transmitted using different orthogonal codes in different time-frequency domains even if the ACK/NACK signal is transmitted via at least three time-frequency domains.
  • one preferred embodiment of the present invention proposes that more ACK/NACK signals can be simultaneously transmitted in a manner of specifying orthogonal codes in accordance with the size of the entire domains instead of specifying an orthogonal code in accordance with in the size of each the time-frequency domain and then transmitting a plurality of ACK/NACK signals correspondingly.
  • FIG. 5 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA, TDMA and FDMA according to one embodiment of the present invention, in which a plurality of ACK/NACK signals transmitted by a specific transmitting side among a plurality of ACK/NACK signals are transmitted through a plurality of time-frequency domains.
  • FIG. 5 shows an example that a time-frequency diversity gain is obtained in a manner that ACK/NACK signals for a specific UE are transmitted across two different time-frequency domains.
  • ACK/NACK signals for UEs 1 to N/4 are transmitted via a time-frequency domain placed in a left upper part of FIG. 5 and a time-frequency domain placed in a right lower part of FIG. 5
  • ACK/NACK signals for UEs N/4+1 to N/2 are transmitted via a time-frequency domain placed in a left lower part of FIG. 5 and a time-frequency domain placed in a right upper part of FIG. 5 .
  • ACK/NACK signals for a specific UE in the example shown in FIG. 5 are transmitted across two time-frequency domains. Different ACK/NACK signals are multiplexed by CDMA within each of the time-frequency domains and then transmitted.
  • orthogonal codes are specified with reference to in the size of the entire time-frequency domains instead of specifying orthogonal codes with reference to in the size of each time-frequency domain, it is able to transmit more ACK/NACK signals simultaneously.
  • orthogonal codes not for chip length constructed with three symbols and six subcarriers included in each of the time-frequency domains but for 72 chip length constructed with total six OFDM symbols and 12 subcarriers, it is able to transmit more ACK/NACK signals simultaneously.
  • a 1-bit control signal such as an ACK/NACK signal is transmitted by spreading in 3 or 6 OFDM symbol zones by CDMA for example.
  • an OFDM symbol zone usable for transmission of 1-bit control signal such as ACK/NACK signal can include at least one or more OFDM symbols.
  • the method of transmitting ACK/NACK signals repeatedly in a plurality of time-frequency domains to secure the transmission diversity gain can be diversified in accordance with a number of available OFDM symbol zones.
  • a method of transmitting ACK/NACK efficiently in accordance with a number of OFDM symbols used for the ACK/NACK signal transmission is described.
  • FIG. 6 is a diagram for explaining a method of transmitting ACK/NACK in case of using 1 OFDM symbol zone for ACK/NACK transmission according to one embodiment of the present invention.
  • FIG. 6 shows that four ACK/NACK signals are spread at a spreading factor (SF) 4 in 1 OFDM symbol zone, multiplexed by CDMA and then transmitted.
  • a single box indicates a single subcarrier zone.
  • a ij indicates an ACK/NACK signal multiplexed by CDMA.
  • ‘i’ is an index of a spread and multiplexed signal
  • ‘j’ is an index indicating a group of the multiplexed ACK/NACK signal.
  • An ACK/NACK group indicates a set of the multiplexed ACK/NACK signals.
  • a plurality of ACK/NACK groups can exist in accordance with necessity of each system and a resource situation. For clarity and convenience, FIG. 6 assumes that there exists a single ACK/NACK group only.
  • the present embodiment assumes a case that a single OFDM symbol is used for ACK/NACK transmission only, it is unable to obtain a diversity gain on a time axis for ACK/NACK signal transmission.
  • ACK/NACK signals multiplexed on the frequency axis by CDMA can be repeatedly transmitted in different frequency domains.
  • FIG. 6 shows an example that ACK/NACK signals multiplexed by CDMA are four times repeated in different frequency domains.
  • the four times repetition is just an example to obtain diversity.
  • a count of repetitions can vary in accordance with a channel status and a resource situation of system.
  • each of the four times repeated ACK/NACK signals has the same indices (i, j) for emphasizing the repetition of the signals.
  • each of the four times repeated ACK/NACK signals can be multiplexed by different orthogonal code or like, so in this case, these signals can be a different signal to each other. But, for convenience of explanation, this possibility of differentiation of each repeated signal will be ignored in the whole context.
  • FIG. 6 deals with a case that a single OFDM symbols is used for ACK/NACK transmission.
  • the case of using a single OFDM symbols is just an example for describing the present invention.
  • the present invention is applicable to a case of using a plurality of OFDM symbols as well.
  • repetition on a time axis is also applicable as well as a repetition on a frequency axis in order to obtain additional diversity as well as transmitting antenna diversity.
  • FIG. 7 is a diagram for explaining a method of transmitting ACK/NACK in case of using at least 2 OFDM symbol zones for ACK/NACK transmission according to one embodiment of the present invention.
  • FIG. 7 shows an ACK/NACK signal transmitting method when a number of OFDM symbols for ACK/NACK signal transmission is incremented into 2, in transmitting ACK/NACK signals having the same spreading factor as FIG. 6 .
  • FIG. 7 shows a case that a structure in using a single OFDM symbol for ACK/NACK transmission like FIG. 6 is intactly and repeatedly applied to a second OFDM symbol.
  • the number of transmittable ACK/NACK signals is equal to that of the case of using a single OFDM symbol. This is because more time-frequency resources are used for the transmission of the same number of ACK/NACK signals by substantially incrementing the time-frequency repetition count as more OFDM symbols are used for the ACK/NACK signals repeated on the frequency axis only in case of using a single OFDM symbol only.
  • FIG. 8 is a diagram for explaining a method of transmitting ACK/NACK in case of using at least 2 OFDM symbol zones for ACK/NACK transmission according to one preferred embodiment of the present invention.
  • FIG. 8 shows an example that resources are more efficiently utilized by decrementing a frequency axis repetition count of ACK/NACK signals multiplexed by CDMA in case that the number of OFDM symbols for ACK/NACK signal transmission are incremented into two.
  • ACK/NACK signals are repeated twice compared to four times in FIG. 6 , as the number of OFDM symbols used for the ACK/NACK signal transmission is incremented, the use of four time-frequency resource domains is the same as the case of using a single OFDM symbol.
  • FIG. 8 shows that ACK/NACK signal transmission is possible twice. Hence, resources can be more efficiently used.
  • FIG. 9 is a diagram to explain a principle that power allocation flexibility is increased in case of transmitting ACK/NACK signals by the embodiment shown in FIG. 8 .
  • a 1 , A 2 , A 3 and A 4 indicate ACK/NACK signal groups multiplexed by CDMA, respectively.
  • (a) of FIG. 9 shows a format that CDMA-multiplexed ACK/NACK signals are transmitted by being repeated in different frequency domains within a same symbol zone.
  • (b) of FIG. 9 shows a format that CDMA-multiplexed ACK/NACK signals of the present embodiment are transmitted by being repeated in different frequency domains within different OFDM symbol zones, respectively.
  • total powers allocated to the respective OFDM symbol zones should be allocated by being distributed to two ACK/NACK signals.
  • total powers allocated to the respective OFDM symbol zones can be allocated by being distributed to four ACK/NACK signals.
  • a spreading factor for multiplexing of a plurality of ACK/NACK signals, a repetition count in time-frequency domain, and the number of OFDM symbols for ACK/NACK signal transmission are just exemplary for the accurate explanation of the present invention but other spreading factors, other repetition counts and various numbers of OFDM symbols are applicable to the present invention.
  • ACK/NACK signals are identically applicable to the multiplexing and transmission scheme of a plurality of power control signals transmitted to different UEs in downlink.
  • a downlink ACK/NACK signal and a downlink power control signal can be transmitted by being multiplexed in the same time-frequency domain by CDMA.
  • ACK/NACK signal multiplexing and transmission schemes are identically applicable to uplink ACK/NACK signal transmission for data packets transmitted in downlink as well.
  • the number of OFDM symbols used for transmission of ACK/NACK signal can be variable in a specific system, it is preferable that the number of repetition of ACK/NACK signal is decreased in accordance with the increase of the OFDM symbols used.
  • a plurality of control signals of a specific UE in multiplexing a plurality of 1-bit control signals, can be transmitted via orthogonal or pseudo-orthogonal codes differing from each other using CDMA mainly.
  • the present invention enhances reliability on a corresponding control signal transmission.
  • frequency and/or time diversity can be obtained by carrying out FDMA and/or TDMA on the 1-bit control signal transmission side by side and by distributing to transmit a plurality of control signals for a specific UE on each time-frequency domain.
  • a control information transmitting method has a configuration suitable to be applied to 3GPP LTE system. Moreover, a control information transmitting method according to the present invention is applicable to random communication systems that require specifications for a control information transmission format in time-frequency domain as well as to the 3GPP LTE system.

Abstract

Methods of transmitting a control signal using efficient multiplexing are disclosed. One of the method includes the steps of multiplexing a plurality of 1-bit control signals within a prescribed time-frequency domain by code division multiple access (CDMA) and transmitting the multiplexed control signals, wherein a plurality of the 1-bit control signals include a plurality of the 1-bit control signals for a specific transmitting side. Accordingly, reliability on 1-bit control signal transmission can be enhanced.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a reissue of U.S. Pat. No. 7,953,061, which issued on May 31, 2011, from U.S. application Ser. No. 12/444,100, filed on Apr. 2, 2009, which is the National Stage filing under 35 U.S.C. 371 of International Application No. PCT/KR2007/004825, filed on Oct. 2, 2007, which claims the benefit of earlier filing date and right of priority to Korean Application Nos. 10-2007-0011533, filed on Feb. 5, 2007 and 10-2007-0099055, filed on Oct. 2, 2007, and also claims the benefit of U.S. Provisional Application Ser. Nos. 60/827,852, filed on Oct. 2, 2006, and 60/955,019, filed on Aug. 9, 2007.
TECHNICAL FIELD
The present invention relates to a method for transmitting a control signal in a multi-carrier mobile communication system, and more particularly, to a control signal transmitting method. Although the present invention is suitable for a wide scope of applications, it is particularly suitable for transmitting a control signal reliably in uplink/downlink transmission by multiplexing a plurality of 1-bit control signals efficiently.
BACKGROUND ART
Generally, in a multi-carrier mobile communication system, a base station performs downlink data packet transmission to user equipments (hereinafter abbreviated UEs) belonging to a cell or each of a plurality of cells. Meanwhile, a plurality of UEs may exist within a cell. Since each of the UEs is unable to know how a data packet will be transmitted to itself using a prescribed format, when a base station transmits a downlink data packet to a specific UE, the base station should transmit such necessary information as an ID of a UE that will receive the corresponding data packet, a time-frequency domain for carrying the data packet, a data transmission format including a coding rate, a modulation scheme and the like, HARQ relevant information, and the like in downlink for each downlink data packet transmission.
On the contrary, in order to enable a UE to transmit a data packet in uplink, a base station should transmit such necessary information as an ID of a UE that will be approved for data packet transmission, an uplink time-frequency domain enabling the UE to transmit the data packet, a data transmission format including a coding rate, a modulation scheme and the like, HARQ relevant information, and the like in downlink for each uplink data packet transmission.
In case of the uplink data packet transmission, a base station should transmit reception success acknowledgement/non-acknowledgement (ACK/NACK) information on each data having been transmitted by a UE to the corresponding UE in uplink. On the other hand, in case of downlink data packet transmission, each UE transmits information about reception success or failure for each data packet having been transmitted by a base station through ACK/NACK information in uplink.
In order to maintain an uplink transmission/reception power of each UE at a proper level, a base station should transmit power control information to each UE in downlink.
Among the above-explained control signals, an ACK/NACK signal, a power control signal or the like is mainly able to indicate the corresponding information using one bit and can be named ‘1-bit control signal’.
In order to operate and manage a system efficiently, it is necessary to multiplex an uplink/downlink control signal for carrying the above-explained control information, and more particularly, the 1-bit control signal with a data packet and other signals in a time-frequency resource efficiently.
As a multiplexing scheme normally used for a multi-carrier mobile communication system, time division multiple access (TDMA) for multiplexing a plurality of signals by dividing them on a time domain, frequency division multiple access (FDMA) for multiplexing a plurality of signals by dividing them on a frequency domain, code division multiple access (CDMA) for multiplexing signals on a prescribed time-frequency domain using an orthogonal code or a pseudo-orthogonal code, or the like can be used.
Yet, in case that the 1-bit control signal is multiplexed using TDMA and/or FDMA only, since a transmission power of each control signal considerably differs, an effect on a neighbor cell may differ on a time domain and/or a frequency domain.
In particular, when a random cell multiplexes to transmit ACK/NACK signals for different UEs within a single TTI by TDMA or FDMA for example, in case that an ACK/NACK signal transmission power for each of the UEs considerably differs, a quantity of interference imposed on neighbor cells by the corresponding cell may differ considerably on a time domain or a frequency domain. And, this may have a bad influence on performing downlink data packet scheduling in a cellular environment or time-frequency-energy distributions efficiently.
Moreover, in case that a control signal such as an ACK/NACK signal of a transmitting side is lost in the course of downlink/uplink channel transmission, there may be a problem of reliability on the corresponding signal transmission.
DISCLOSURE OF THE INVENTION Technical Problem Technical Solution
Accordingly, the present invention is directed to a method for transmitting a control signal in a multi-carrier mobile communication system that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
An object of the present invention is to provide a method of transmitting a plurality of control signals efficiently, by which a control signal of a specific transmitting side can be reliably transmitted in a manner of performing multiplexing efficiently to minimize inter-cell interference in control signal transmission.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims thereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a method of transmitting a control signal according to the present invention includes multiplexing a plurality of 1-bit control signals within a prescribed time-frequency domain by code division multiple access (CDMA), repeating the multiplexed control signals in different frequency domains, and transmitting the repeated control signals.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a method of transmitting a control signal according to the present invention includes multiplexing a plurality of 1-bit control signals within a prescribed time-frequency domain by code division multiple access (CDMA), and transmitting the multiplexed control signals, wherein a plurality of the 1-bit control signals include a plurality of the 1-bit control signals for a specific transmitting side.
Preferably, wherein the prescribed time-frequency domain comprises a time-frequency domain within 1 OFDM symbol zone.
Preferably, wherein in case that a time domain used for the control signal transmission comprises a single OFDM symbol zone, the repeating is carried out in a manner of repeating the multiplexed control signals into the different frequency domains within the single OFDM symbol zone.
Preferably, wherein in case that a time domain used for the control signal transmission comprises a plurality of OFDM symbol zones, the repeating is carried out in a manner of repeating the multiplexed control signals into the different frequency domains within the OFDM symbol zones differing from each other.
Preferably, in the multiplexing, a plurality of the 1-bit control signals are discriminated by an orthogonal or pseudo-orthogonal code used for multiplexing of each of the 1-bit control signals.
More preferably, a plurality of the 1-bit control signals are modulated by being discriminated by different orthogonal phase components, respectively and wherein in the multiplexing, a plurality of the 1-bit control signals are additionally discriminated by the different orthogonal phase components used for the modulation.
Preferably, the prescribed time-frequency domain includes a plurality of time-frequency domains. In the multiplexing, additional multiplexing is carried out by at least one selected from the group consisting of time division multiple access (TDMA) and frequency division multiple access (FDMA). And, a plurality of the 1-bit control signals for the specific transmitting side are multiplexed by being spread in a plurality of the time-frequency domains.
More preferably, the 1-bit control signals for different transmitting sides are multiplexed in a plurality of the time-frequency domains by the code division multiple access, respectively. In this case, a plurality of the 1-bit control signals for the specific transmitting side are multiplexed by different orthogonal or pseudo-orthogonal codes.
And, the orthogonal or pseudo-orthogonal code includes a code sequence having a length corresponding to a size of a plurality of the time-frequency domains.
Besides, the 1-bit control signal can include either an ACK/NACK signal or a power control signal. And, the 1-bit control signal can be transmitted in either uplink or downlink.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
ADVANTAGEOUS EFFECTS
According to one embodiment of the present invention, in multiplexing a plurality of 1-bit control signals, CDMA is mainly used. And, it is able to transmit a plurality of controls signals of a specific UE through different orthogonal or pseudo-orthogonal codes, respectively. Hence, it is able to enhance reliability on the corresponding control signal transmission.
And, the number of multiplexed signals in coherence bandwidth and/or coherence time can be increased by carrying out FDMA and/or TDMA on the 1-bit control signal transmission side by side and by distributing to transmit a plurality of control signals for a specific UE on each time-frequency domain.
Moreover, in case of transmitting the 1-bit control signal through a plurality of time-frequency domains, by specifying to use an orthogonal code used for transmission in accordance with the size the whole time-frequency domains instead of the size of each the time-frequency domain, it is able to increment a number of control signals that can be simultaneously transmitted.
Besides, in case that a plurality of OFDM symbols are used for 1-bit control signal transmission, by transmitting a CDMA modulated 1-bit control signal on a different OFDM symbol area through a different frequency domain, it is able to perform efficient transmission in aspects of resource efficiency and diversity gain. And, it is also able to make a power allocation more flexible within each OFDM symbol area.
DESCRIPTION OF DRAWINGS
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
In the drawings:
FIG. 1 is a diagram for explaining a method of multiplexing to transmit ACK/NACK signals by CDMA according to one embodiment of the present invention;
FIG. 2 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA and FDMA according to one embodiment of the present invention;
FIG. 3 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA, TDMA and FDMA according to one embodiment of the present invention;
FIG. 4 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA and FDMA according to one embodiment of the present invention, in which a plurality of ACK/NACK signals transmitted by a specific transmitting side among a plurality of ACK/NACK signals are transmitted through a plurality of frequency domains;
FIG. 5 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA, TDMA and FDMA according to one embodiment of the present invention, in which a plurality of ACK/NACK signals transmitted by a specific transmitting side among a plurality of ACK/NACK signals are transmitted through a plurality of time-frequency domains;
FIG. 6 is a diagram for explaining a method of transmitting ACK/NACK in case of using 1 OFDM symbol zone for ACK/NACK transmission according to one embodiment of the present invention;
FIG. 7 is a diagram for explaining a method of transmitting ACK/NACK in case of using at least 2 OFDM symbol zones for ACK/NACK transmission according to one embodiment of the present invention;
FIG. 8 is a diagram for explaining a method of transmitting ACK/NACK in case of using at least 2 OFDM symbol zones for ACK/NACK transmission according to one preferred embodiment of the present invention; and
FIG. 9 is a diagram to explain a principle that power allocation flexibility is increased in case of transmitting ACK/NACK signals by the embodiment shown in FIG. 8.
BEST MODE Mode for Invention
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
Generally, a base station transmits an ACK/NACK signal indicating a success or failure in receiving a data packet transmitted by each UE within a cell or a control signal playing a role similar to that of the ACK/NACK signal to the corresponding UE in downlink. In doing so, since a plurality of UEs are able to transmit uplink data packets within a single TTI, the base station is able to transmit ACK/NACK signals to a plurality of the UEs within a single TTI as well.
And, a base station multiplexes a plurality of power control signals for controlling transmission powers of uplink data of a plurality of UEs for a single TTI within a cell and then transmits the multiplexed signal to each of the UEs.
Hence, according to one embodiment of the present invention, in order to multiplex and transmit a plurality of 1-bit control signals efficiently, a method of multiplexing to transmit a plurality of 1-bit control signals by CDMA within a partial time-frequency domain of a transmission band in a multi-carrier system is proposed. And, this will be explained with reference to a detailed example.
Meanwhile, the description for one embodiment of the present invention relates to a case that a 1-bit control signal is an ACK/NACK signal for example. In a control signal transmitting method according to one embodiment of the present invention, a 1-bit control signal needs not to be an ACK/NACK signal necessarily. And, it is apparent to those skilled in the art that the present invention includes a random 1-bit control signal in a format that a plurality of signals are transmitted within 1 TTI.
FIG. 1 is a diagram for explaining a method of multiplexing to transmit ACK/NACK signals by CDMA according to one embodiment of the present invention.
Referring to FIG. 1, according to one embodiment of the present invention, a base station reserves a specific time-frequency domain within 1 TTI for ACK/NACK transmission to use. And, ACK/NACK signals for different UEs are discriminated from each other by an orthogonal or pseudo-orthogonal code multiplied on a time-frequency domain.
In this case, the ‘orthogonal code’ or the ‘pseudo-orthogonal code’ is a code used for signal multiplexing in CDMA and means a code that indicates that a correlation is 0 or a value smaller than a prescribed threshold.
According to one preferred embodiment of the present invention, in case of performing a transmission through modulation that uses components having phases orthogonal to each other like QPSK, a plurality of ACK/NACK signals can be additionally discriminated through the different orthogonal phase components.
In an example shown in FIG. 1, since an ACK/NACK signal is transmitted through a time-frequency domain including 12 subcarriers across six OFDM symbols within a single TTI, it is able to use an orthogonal code having a chip length 72 (=6×12) for the ACK/NACK transmission.
Hence, it is possible to simultaneously transmit 72 different orthogonal signals. Yet, a number of simultaneously transmittable orthogonal signals may vary in accordance with a type of a used orthogonal/pseudo-orthogonal code.
In case of using QPSK as a modulation scheme in the example shown in FIG. 1, it is able to use two orthogonal phases. Hence, it is able to transmit different orthogonal signals amounting to a double of the seventy-two orthogonal signals.
Meanwhile, an ACK/NACK signal for a single UE can be transmitted via a single orthogonal signal among the orthogonal signals generated by the above-explained method. Yet, one embodiment of the present invention proposes that an ACK/NACK signal for a single UE is set to be transmitted via a plurality of orthogonal signals if the single ACK/NACK signal carries information exceeding 1 bit or if a single UE transmits a plurality of data packets for a single TTI.
Like the above-explained one embodiment of the present invention, an advantage in multiplexing to transmit an ACK/NACK signal by CDMA in downlink lies in that a quantity of interference generated in downlink by an ACK/NACK signal on a time-frequency domain of a single TTI can be maintained relatively equal.
In particular, if a random cell multiplexes to transmit ACK/NACK signals for different UEs by TDMA or FDMA within a single TTI, as mentioned in the foregoing description, if ACK/NACK signal transmission powers for the respective UEs considerably differ from each other, an interference quantity having influence on neighbor cells by the corresponding cell can vary on a time domain or a frequency domain considerably. And, this may have bad influence on performing downlink data packet scheduling or other time-frequency-energy distribution in a cellular environment. Yet, in case that an ACK/NACK signal is multiplexed by CDMA like one embodiment of the present invention, even if different ACK/NACK signal transmission powers are allocated to different UEs, ACK/NACK signals for the entire UEs are added together within a same time-frequency domain for a single TTI and then transmitted. Hence, fluctuation of transmission power on a time-frequency domain can be minimized.
Like one embodiment of the present invention, in case that a plurality of ACK/NACK signals transmitted by a single UE or for data transmission of a single UE are transmitted via a plurality of orthogonal signals, it is able to enhance reliability of ACK/NACK signal transmission to the corresponding UE.
Moreover, the above-explained principle for the downlink transmission of the ACK/NACK signal is identically applicable to uplink transmission.
Meanwhile, in multiplexing ACK/NACK signal by CDMA, as mentioned in the foregoing description, orthogonality between the different ACK/NACK signals multiplexed by CDMA can be maintained only if a downlink radio channel response characteristic is not considerably changed on a time-frequency domain for carrying the ACK/NACK signal. Hence, it is able to obtain satisfactory reception performance without applying a special reception algorithm such as a channel equalizer in a receiving end. Preferably, CDMA multiplexing of ACK/NACK signal is carried out within a time-frequency domain, in which a radio channel response is not considerably changed, i.e., within a coherent time and a coherent bandwidth.
According to a detailed embodiment of the present invention, a CDMA multiplexing scheme of ACK/NACK signal can be carried out side by side with a FDMA or TDMA multiplexing scheme to narrow a time-frequency domain for multiplexing ACK/NACK signal by CDMA within a coherent range in which a radio channel response characteristic is not considerably changed. This is explained as follows.
FIG. 2 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA and FDMA according to one embodiment of the present invention.
Referring to FIG. 2, different ACK/NACK signals can be transmitted in time-frequency domains separated from each other on two frequency axes. And, different ACK/NACK signals can be multiplexed by CDMA in each of the time-frequency domains. In this case, according to one embodiment of the present invention, as ACK/NACK signals are transmitted through two frequency domains, it can be observed that a width of each of the frequency domains is set to a 6-subcarrier zone narrower than a 12-subcarrier zone.
In particular, in the example shown in FIG. 2, since each of the two time-frequency domains includes six OFDM symbols and twelve subcarriers, it is able to transmit 36 (=6×6) orthogonal signals by CDMA. Since two time-frequency domains are used within a single TTI, it is able to transmit 72 (=36×2) orthogonal signals.
In case that QPSK modulation is used, since ACK/NACK signal can be additionally discriminated using two orthogonal phases, it is able to transmit different orthogonal signals amounting to two times of the 72 orthogonal signals.
FIG. 3 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA, TDMA and FDMA according to one embodiment of the present invention.
In particular, FIG. 3 shows an example that multiplexing is carried out on ACK/NACK signals side by side with CDMA, FDMA and TDMA.
Referring to FIG. 3, different ACK/NACK signals can be transmitted on four time-frequency domains having less channel variations. And, different ACK/NACK signals can be multiplexed in each of the time-frequency domains by CDMA.
In particular, in the example shown in FIG. 3, since each of the time-frequency domains includes three OFDM symbols and six subcarriers, it is able to transmit 18 (=3×6) ACK/NACK signals in each domain by CDMA. Since four time-frequency domains are used within a single TTI, it is also able to transmit 72 (=18×4) ACK/NACK signals. Since two orthogonal phases are usable for QPSK transmission, it is able to transmit a double of the different ACK/NACK signals.
In the above-explained ACK/NACK signal multiplexing scheme shown in FIG. 2 or FIG. 3, the scheme for transmitting the different ACK/NACK signals in each of the time-frequency domains is more advantageous than that of FIG. 1 in that each of the ACK/NACK signals can be transmitted within the time-frequency domain having not considerable fluctuation of the radio channel response characteristic. Yet, in case that a radio channel quality for a prescribed UE in the time-frequency domain for carrying the ACK/NACK signals is poor, ACK/NACK reception performance of the corresponding UE can be considerably degraded.
Hence, one embodiment of the present invention proposes that ACK/NACK signals for a specific UE within a single TTI are transmitted across time-frequency domains distant from a plurality of time-frequency axes. And, one embodiment of the present invention also proposes a scheme for obtaining a time-frequency diversity gain for ACK/NACK signal reception in a receiving end by multiplexing ACK/NACK signals for different UEs by CDMA in each time-frequency domain.
FIG. 4 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA and FDMA according to one embodiment of the present invention, in which a plurality of ACK/NACK signals transmitted by a specific transmitting side among a plurality of ACK/NACK signals are transmitted through a plurality of frequency domains.
Referring to FIG. 4, a receiving side is able to obtain a frequency diversity gain in a manner that an ACK/NACK signal is transmitted across two different frequency domains. In the example shown in FIG. 4, an ACK/NACK signal is transmitted across two time-frequency domains and different ACK/NACK signals are multiplexed in each of the time-frequency domains.
In particular, since each of the time-frequency domains includes six OFDM symbols and six subcarriers, there exist 36 (6×6) ACK/NACK signals that can be multiplexed by CDMA in each of the time-frequency domains. Since two orthogonal phases are usable for QPSK transmission, it is able to transmit a double of the different ACK/NACK signals.
As mentioned in the foregoing description, in multiplexing different ACK/NACK signals within each of the time-frequency domains using an orthogonal code regulated in accordance with the size of each time-frequency domain, ACK/NACK signals transmitted via different time-frequency domains for a specific UE can be multiplexed using the same orthogonal code among orthogonal codes used for each of the time-frequency domains.
Yet, one embodiment of the present invention proposes that ACK/NACK signals transmitted via different time-frequency domains for a specific UE are multiplexed using different orthogonal codes among orthogonal codes used for each of the time-frequency domains.
Thus, in case that ACK/NACK signals for a specific UE are multiplexed using different orthogonal codes in each domain, it is able to prevent reception performance from being reduced by special orthogonality reduction influence with other ACK/NACK signals with which a specific ACK/NACK signal is CDMA multiplexed for a specific TTI. And, this scheme can be extended to enable ACK/NACK signal of a specific UE to be transmitted using different orthogonal codes in different time-frequency domains even if the ACK/NACK signal is transmitted via at least three time-frequency domains.
In case that ACK/NACK signals are transmitted via a plurality of time-frequency domains, as shown in FIG. 4, one preferred embodiment of the present invention proposes that more ACK/NACK signals can be simultaneously transmitted in a manner of specifying orthogonal codes in accordance with the size of the entire domains instead of specifying an orthogonal code in accordance with in the size of each the time-frequency domain and then transmitting a plurality of ACK/NACK signals correspondingly.
In particular, in the example shown in FIG. 4, by obtaining 72 orthogonal codes in accordance with 72 (=6×12) chip length according to six OFDM symbols and 12 subcarriers belonging to two time-frequency domains for carrying a plurality of ACK/NACK signals of a specific UE instead of 36 chip length according to six OFDM symbols and six subcarriers belonging to a single time-frequency domain, it is able to simultaneously transmit 144 ACK/NACK signals using different orthogonal phases in case of using QPSK transmission.
In this case, a problem generated from a fact that orthogonality between orthogonal codes is reduced due to a considerable difference between radio channel responses of different time-frequency domains can be overcome by allocating ACK/NACK transmission powers differing from each other in accordance with partial cross correlation characteristics between orthogonal codes.
In particular, if transmission powers of orthogonal codes within a corresponding group are matched by grouping codes decided as having low orthogonality among the above-specified orthogonal codes, the above orthogonality problem can be solved.
FIG. 5 is a diagram for explaining a method of transmitting ACK/NACK signals by carrying out multiplexing side by side with CDMA, TDMA and FDMA according to one embodiment of the present invention, in which a plurality of ACK/NACK signals transmitted by a specific transmitting side among a plurality of ACK/NACK signals are transmitted through a plurality of time-frequency domains.
FIG. 5 shows an example that a time-frequency diversity gain is obtained in a manner that ACK/NACK signals for a specific UE are transmitted across two different time-frequency domains.
In particular, ACK/NACK signals for UEs 1 to N/4 are transmitted via a time-frequency domain placed in a left upper part of FIG. 5 and a time-frequency domain placed in a right lower part of FIG. 5, while ACK/NACK signals for UEs N/4+1 to N/2 are transmitted via a time-frequency domain placed in a left lower part of FIG. 5 and a time-frequency domain placed in a right upper part of FIG. 5.
In particular, ACK/NACK signals for a specific UE in the example shown in FIG. 5 are transmitted across two time-frequency domains. Different ACK/NACK signals are multiplexed by CDMA within each of the time-frequency domains and then transmitted.
Moreover, eighteen ACK/NACK signals can be transmitted via orthogonal codes corresponding to 18 (=3×6) chip length across three OFDM symbols and six subcarriers within each of the time-frequency domains. Since two orthogonal phases are usable for QPSK transmission, it is able to transmit 36 different ACK/NACK signals amounting to a double of the former ACK/NACK signals.
In the example shown in FIG. 5, it is able to discriminate ACK/NACK signals transmitted via different time-frequency domains for a specific UE from other ACK/NACK signals using the same orthogonal code. Yet, a diversity gain can be obtained by multiplexing the ACK/NACK signals within each of the time-frequency domains using different orthogonal codes.
Moreover, in the example shown in FIG. 5, in case that orthogonal codes are specified with reference to in the size of the entire time-frequency domains instead of specifying orthogonal codes with reference to in the size of each time-frequency domain, it is able to transmit more ACK/NACK signals simultaneously.
In particular, by specifying orthogonal codes not for chip length constructed with three symbols and six subcarriers included in each of the time-frequency domains but for 72 chip length constructed with total six OFDM symbols and 12 subcarriers, it is able to transmit more ACK/NACK signals simultaneously.
In the above-explained embodiments shown in FIGS. 1 to 5, a 1-bit control signal such as an ACK/NACK signal is transmitted by spreading in 3 or 6 OFDM symbol zones by CDMA for example. Yet, an OFDM symbol zone usable for transmission of 1-bit control signal such as ACK/NACK signal can include at least one or more OFDM symbols.
Among the 1-bit control signal (ACK/NACK signal) transmitting methods according to the above-explained embodiments of the present invention, the method of transmitting ACK/NACK signals repeatedly in a plurality of time-frequency domains to secure the transmission diversity gain can be diversified in accordance with a number of available OFDM symbol zones. In the following description, a method of transmitting ACK/NACK efficiently in accordance with a number of OFDM symbols used for the ACK/NACK signal transmission is described.
FIG. 6 is a diagram for explaining a method of transmitting ACK/NACK in case of using 1 OFDM symbol zone for ACK/NACK transmission according to one embodiment of the present invention.
In detail, FIG. 6 shows that four ACK/NACK signals are spread at a spreading factor (SF) 4 in 1 OFDM symbol zone, multiplexed by CDMA and then transmitted. In FIG. 6, a single box indicates a single subcarrier zone. And, Aij indicates an ACK/NACK signal multiplexed by CDMA. In this case, ‘i’ is an index of a spread and multiplexed signal and ‘j’ is an index indicating a group of the multiplexed ACK/NACK signal. An ACK/NACK group indicates a set of the multiplexed ACK/NACK signals. And, a plurality of ACK/NACK groups can exist in accordance with necessity of each system and a resource situation. For clarity and convenience, FIG. 6 assumes that there exists a single ACK/NACK group only.
Since the present embodiment assumes a case that a single OFDM symbol is used for ACK/NACK transmission only, it is unable to obtain a diversity gain on a time axis for ACK/NACK signal transmission.
Yet, to obtain a diversity gain on a frequency axis, ACK/NACK signals multiplexed on the frequency axis by CDMA can be repeatedly transmitted in different frequency domains.
FIG. 6 shows an example that ACK/NACK signals multiplexed by CDMA are four times repeated in different frequency domains. In this case, the four times repetition is just an example to obtain diversity. A count of repetitions can vary in accordance with a channel status and a resource situation of system. In FIG. 6, each of the four times repeated ACK/NACK signals has the same indices (i, j) for emphasizing the repetition of the signals. But, each of the four times repeated ACK/NACK signals can be multiplexed by different orthogonal code or like, so in this case, these signals can be a different signal to each other. But, for convenience of explanation, this possibility of differentiation of each repeated signal will be ignored in the whole context.
FIG. 6 deals with a case that a single OFDM symbols is used for ACK/NACK transmission. The case of using a single OFDM symbols is just an example for describing the present invention. And, the present invention is applicable to a case of using a plurality of OFDM symbols as well.
In more particularly, in case that ACK/NACK is transmitted via several OFDM symbols, repetition on a time axis is also applicable as well as a repetition on a frequency axis in order to obtain additional diversity as well as transmitting antenna diversity.
In the following description, a case of using a plurality of OFDM symbols for ACK/NACK signal transmission is described.
In case that OFDM symbols for ACK/NACK transmission are incremented, it is able to use ACK/NACK signals in case of using a single OFDM symbol for ACK/NACK transmission can be repeatedly used for the incremented OFDM symbols intactly. In this case, since the OFDM symbols used for the ACK/NACK transmission are incremented, it is able to more power of a signal used for the ACK/NACK transmission. Hence, it is able to transmit the ACK/NACK signals to a wider area of a cell.
FIG. 7 is a diagram for explaining a method of transmitting ACK/NACK in case of using at least 2 OFDM symbol zones for ACK/NACK transmission according to one embodiment of the present invention.
FIG. 7 shows an ACK/NACK signal transmitting method when a number of OFDM symbols for ACK/NACK signal transmission is incremented into 2, in transmitting ACK/NACK signals having the same spreading factor as FIG. 6. In particular, FIG. 7 shows a case that a structure in using a single OFDM symbol for ACK/NACK transmission like FIG. 6 is intactly and repeatedly applied to a second OFDM symbol.
In case of the transmission with the above structure, even if a symbol number is incremented, the number of transmittable ACK/NACK signals is equal to that of the case of using a single OFDM symbol. This is because more time-frequency resources are used for the transmission of the same number of ACK/NACK signals by substantially incrementing the time-frequency repetition count as more OFDM symbols are used for the ACK/NACK signals repeated on the frequency axis only in case of using a single OFDM symbol only.
In case of performing the transmission by this method, more power can be allocated to the ACK/NACK transmission but waste or resource may take place. In case that more OFDM symbols are used for the ACK/NACK signal transmission to reduce the waste of resource, if a transmission is performed by decrementing the repetition count on the frequency axis per the OFDM symbol, the same time-frequency domain as the case of using a single OFDM symbol can be occupied. Hence, it is able to utilize resources more efficiently.
FIG. 8 is a diagram for explaining a method of transmitting ACK/NACK in case of using at least 2 OFDM symbol zones for ACK/NACK transmission according to one preferred embodiment of the present invention.
FIG. 8 shows an example that resources are more efficiently utilized by decrementing a frequency axis repetition count of ACK/NACK signals multiplexed by CDMA in case that the number of OFDM symbols for ACK/NACK signal transmission are incremented into two.
Although ACK/NACK signals are repeated twice compared to four times in FIG. 6, as the number of OFDM symbols used for the ACK/NACK signal transmission is incremented, the use of four time-frequency resource domains is the same as the case of using a single OFDM symbol.
Compared to FIG. 7 which shows the case of performing transmission by applying the same ACK/NACK signal structure to the entire OFDM symbols, assuming that the same time-frequency resource is used, FIG. 8 shows that ACK/NACK signal transmission is possible twice. Hence, resources can be more efficiently used.
Comparing to FIG. 7, since the number of, time-frequency resource domains used for the ACK/NACK signal transmission is decremented, a signal power for the ACK/NACK signal transmission may become less. Yet, since the overall ACK/NACK signals are transmitted across the time-frequency domain, more efficient transmission power allocation per symbol is possible rather than the case of transmitting the ACK/NACK signals using a single OFDM symbol only.
Referring to FIG. 8, when a plurality of OFDM symbol zones are used for ACK/NACK transmission, in case that the method of transmitting a specific ACK/NACK signal via a different frequency domain in each OFDM symbol zone according to the present embodiment is taken, it is more advantageous that power allocation to each ACK/NACK signal can be carried out more flexibly rather than the method of transmitting ACK/NACK via different frequency domains within each OFDM symbol zone. This is explained in detail with reference to FIG. 9 as follows.
FIG. 9 is a diagram to explain a principle that power allocation flexibility is increased in case of transmitting ACK/NACK signals by the embodiment shown in FIG. 8.
In (a) and (b) of FIG. 9, A1, A2, A3 and A4 indicate ACK/NACK signal groups multiplexed by CDMA, respectively. In particular, (a) of FIG. 9 shows a format that CDMA-multiplexed ACK/NACK signals are transmitted by being repeated in different frequency domains within a same symbol zone. And, (b) of FIG. 9 shows a format that CDMA-multiplexed ACK/NACK signals of the present embodiment are transmitted by being repeated in different frequency domains within different OFDM symbol zones, respectively.
In case that ACK/NACK signals are transmitted in a same manner shown in (a) of FIG. 9, total powers allocated to the respective OFDM symbol zones should be allocated by being distributed to two ACK/NACK signals. On the contrary, in case that ACK/NACK signals are transmitted in a same manner shown in (b) of FIG. 9, total powers allocated to the respective OFDM symbol zones can be allocated by being distributed to four ACK/NACK signals. Hence, flexibility of power allocation can be enhanced more than that of the case shown in (a) of FIG. 9.
In other words, when the number of OFDM symbol zones available for ACK/NACK transmission is plural like the present embodiment, in case that ACK/NACK signals are transmitted via different frequency domains in different OFDM symbols, flexibility in power allocation is enhanced to diversify power allocation for ACK/NACK signals per a user.
In the above-explained embodiment of the present invention, a spreading factor for multiplexing of a plurality of ACK/NACK signals, a repetition count in time-frequency domain, and the number of OFDM symbols for ACK/NACK signal transmission are just exemplary for the accurate explanation of the present invention but other spreading factors, other repetition counts and various numbers of OFDM symbols are applicable to the present invention.
In the above-described example for explaining the present invention in accordance with the time-frequency resource, a case of using a single transmitting antenna that does not use transmitting antenna diversity is represented only. Alternatively, the present invention is also applicable to the case of using a two transmitting antennas diversity scheme or a four transmitting antennas diversity scheme.
It is apparent to those skilled in the art that the above-explained scheme for obtaining the time-frequency diversity gain from the ACK/NACK signal transmission can be used side by side with the scheme of using FDMA or TDMA as well as the case of using CDMA for the multiplexing of different ACK/NACK signals according to one embodiment of the present invention.
The above-explained multiplexing and transmission schemes of ACK/NACK signals are identically applicable to the multiplexing and transmission scheme of a plurality of power control signals transmitted to different UEs in downlink. Particularly, a downlink ACK/NACK signal and a downlink power control signal can be transmitted by being multiplexed in the same time-frequency domain by CDMA.
Moreover, the above-explained ACK/NACK signal multiplexing and transmission schemes are identically applicable to uplink ACK/NACK signal transmission for data packets transmitted in downlink as well.
Moreover, if the number of OFDM symbols used for transmission of ACK/NACK signal can be variable in a specific system, it is preferable that the number of repetition of ACK/NACK signal is decreased in accordance with the increase of the OFDM symbols used.
INDUSTRIAL APPLICABILITY
According to one embodiment of the present invention, in multiplexing a plurality of 1-bit control signals, a plurality of control signals of a specific UE can be transmitted via orthogonal or pseudo-orthogonal codes differing from each other using CDMA mainly. Hence, the present invention enhances reliability on a corresponding control signal transmission.
And, frequency and/or time diversity can be obtained by carrying out FDMA and/or TDMA on the 1-bit control signal transmission side by side and by distributing to transmit a plurality of control signals for a specific UE on each time-frequency domain.
Moreover, in case of transmitting the 1-bit control signal through a plurality of time-frequency domains, by specifying to use an orthogonal code used for transmission in accordance with the size of the whole time-frequency domains instead of in the size of each time-frequency domain, it is able to increment a number of control signals that can be simultaneously transmitted.
Besides, in case that a plurality of OFDM symbols are used for 1-bit control signal transmission, by transmitting a CDMA modulated 1-bit control signal on a different OFDM symbol area through a different frequency domain, it is able to perform efficient transmission in aspects of resource efficiency and diversity gain. And, it is also able to make a power allocation more flexible within each OFDM symbol area.
Accordingly, a control information transmitting method according to the present invention has a configuration suitable to be applied to 3GPP LTE system. Moreover, a control information transmitting method according to the present invention is applicable to random communication systems that require specifications for a control information transmission format in time-frequency domain as well as to the 3GPP LTE system.
While the present invention has been described and illustrated herein with reference to the preferred embodiments thereof, it will be apparent to those skilled in the art that various modifications and variations can be made therein without departing from the spirit and scope of the invention. Thus, it is intended that the present invention covers the modifications and variations of this invention that come within the scope of the appended claims and their equivalents.

Claims (10)

What is claimed is:
1. A method of transmitting a control signal, the method comprising:
multiplexing a plurality of 1-bit control signals within a single prescribed time-frequency domain by a code division multiple access (CDMA) scheme, wherein the plurality of 1-bit control signals multiplexed within the single prescribed time-frequency domain are distinguished by orthogonal or pseudo-orthogonal codes used for multiplexing each of the plurality of 1-bit control signals;
repeating multiplexing of the plurality of multiplexed control signals in different frequency domains; and
transmitting the repeatedly multiplexed control signals.
2. The method of claim 1, wherein when a time domain used for the control signal transmission comprises a single OFDM symbol zone, the repeating comprises repeatedly multiplexing the multiplexed control signals in the different frequency domains within the single OFDM symbol zone.
3. The method of claim 1, wherein when a time domain used for the control signal transmission comprises a plurality of OFDM symbol zones, the repeating comprises repeatedly multiplexing the multiplexed control signals in the different frequency domains within the plurality of OFDM symbol zones that are different from each other.
4. The method of claim 1, wherein in the multiplexing, the plurality of 1-bit control signals are further distinguished by different orthogonal phase components.
5. A method of transmitting a control signal, the method comprising:
multiplexing a plurality of 1-bit control signals within a single prescribed time-frequency domain by a code division multiple access (CDMA) scheme;
multiplexing the multiplexed plurality of 1-bit control signals by at least a time division multiple access (TDMA) scheme or a frequency division multiple access (FDMA) scheme such that the multiplexing of the plurality of 1-bit control signals is repeated within an additional time-frequency domain other than the single prescribed time-frequency domain; and
transmitting the multiplexed control signals.
6. The method of claim 5, wherein the plurality of 1-bit control signals for different transmitting sides are multiplexed within the single prescribed time-frequency domain and the additional time-frequency domain by the CDMA scheme, respectively.
7. The method of claim 5, wherein a 1-bit control signal for a specific transmitting side is multiplexed with other 1-bit control signals using orthogonal or pseudo-orthogonal codes that are different from each other, the method further comprising:
repeating the multiplexing of the 1-bit control signal for the specific transmitting side within the additional time-frequency domain other than the single prescribed time-frequency domain; and
transmitting the repeatedly multiplexed 1-bit control signal for the specific transmitting side.
8. The method of claim 7, wherein the orthogonal or pseudo-orthogonal codes comprise a code sequence having a length corresponding to a size of the single prescribed time-frequency domain.
9. The method of claim 1, wherein the plurality of 1-bit control signals comprise ACK/NACK signals.
10. The method of claim 5, wherein the plurality of 1-bit control signals comprise ACK/NACK signals.
US13/476,973 2006-10-02 2007-10-02 Method for transmitting control signal using efficient multiplexing Active 2027-10-24 USRE44564E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/476,973 USRE44564E1 (en) 2006-10-02 2007-10-02 Method for transmitting control signal using efficient multiplexing

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US82785206P 2006-10-02 2006-10-02
KR10-2007-0011533 2007-02-05
KR20070011533 2007-02-05
US95501907P 2007-08-09 2007-08-09
KR1020070099055A KR100925436B1 (en) 2006-10-02 2007-10-02 Method For Transmitting Control Signal Using Efficient Multiplexing
KR10-2007-0099055 2007-10-02
PCT/KR2007/004825 WO2008041820A2 (en) 2006-10-02 2007-10-02 Methods for transmitting control signal using efficient multiplexing
US13/476,973 USRE44564E1 (en) 2006-10-02 2007-10-02 Method for transmitting control signal using efficient multiplexing
US12/444,100 US7953061B2 (en) 2006-10-02 2007-10-02 Method for transmitting control signal using efficient multiplexing

Publications (1)

Publication Number Publication Date
USRE44564E1 true USRE44564E1 (en) 2013-10-29

Family

ID=39268894

Family Applications (7)

Application Number Title Priority Date Filing Date
US13/476,973 Active 2027-10-24 USRE44564E1 (en) 2006-10-02 2007-10-02 Method for transmitting control signal using efficient multiplexing
US12/444,100 Ceased US7953061B2 (en) 2006-10-02 2007-10-02 Method for transmitting control signal using efficient multiplexing
US12/608,213 Active US7995553B2 (en) 2006-10-02 2009-10-29 Method for transmitting control signal using efficient multiplexing
US13/014,665 Active US9106379B2 (en) 2006-10-02 2011-01-26 Method for transmitting control signal using efficient multiplexing
US14/754,026 Active US9451613B2 (en) 2006-10-02 2015-06-29 Method for transmitting control signal using efficient multiplexing
US15/234,654 Active US9729282B2 (en) 2006-10-02 2016-08-11 Method for transmitting control signal using efficient multiplexing
US15/650,579 Active US9967064B2 (en) 2006-10-02 2017-07-14 Method for transmitting control signal using efficient multiplexing

Family Applications After (6)

Application Number Title Priority Date Filing Date
US12/444,100 Ceased US7953061B2 (en) 2006-10-02 2007-10-02 Method for transmitting control signal using efficient multiplexing
US12/608,213 Active US7995553B2 (en) 2006-10-02 2009-10-29 Method for transmitting control signal using efficient multiplexing
US13/014,665 Active US9106379B2 (en) 2006-10-02 2011-01-26 Method for transmitting control signal using efficient multiplexing
US14/754,026 Active US9451613B2 (en) 2006-10-02 2015-06-29 Method for transmitting control signal using efficient multiplexing
US15/234,654 Active US9729282B2 (en) 2006-10-02 2016-08-11 Method for transmitting control signal using efficient multiplexing
US15/650,579 Active US9967064B2 (en) 2006-10-02 2017-07-14 Method for transmitting control signal using efficient multiplexing

Country Status (7)

Country Link
US (7) USRE44564E1 (en)
EP (1) EP2080302A4 (en)
JP (1) JP4976498B2 (en)
KR (1) KR100925436B1 (en)
CN (1) CN101627567B (en)
MX (1) MX2009003609A (en)
WO (1) WO2008041820A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200083B2 (en) 2007-06-15 2019-02-05 Optis Wireless Technology, Llc Base station apparatus and radio communication method
US10652920B2 (en) 2007-03-23 2020-05-12 Optis Wireless Technology, Llc Base station apparatus, mobile station apparatus, method for mapping a response signal, and method for determining a response signal resource

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627567B (en) * 2006-10-02 2014-07-02 Lg电子株式会社 Method for transmitting control signal using efficient multiplexing
US9800391B2 (en) 2007-04-27 2017-10-24 Huawei Technologies Co., Ltd. Method and apparatus for allocating and transmitting time and frequency resource for resource request indicator
CN102932122B (en) 2007-04-27 2015-12-16 华为技术有限公司 The time-frequency resource allocating device of resource request indication information
KR101410120B1 (en) 2007-08-21 2014-06-25 삼성전자주식회사 Apparatus and method for transmitting/receiving the hybrid- arq ack/nack signal in mobile communication system
US8488567B2 (en) * 2007-10-02 2013-07-16 Samsung Electronics Co., Ltd Repeating transmissions of signals in communication systems
US8238304B2 (en) * 2008-03-31 2012-08-07 Qualcomm Incorporated Apparatus and method for channel resource description
JP5127588B2 (en) 2008-06-23 2013-01-23 株式会社エヌ・ティ・ティ・ドコモ User apparatus, base station apparatus and communication method in mobile communication system
KR20100004040A (en) * 2008-07-02 2010-01-12 엘지전자 주식회사 A method of transmitting a control signal in a wireless communication system
CN101651525B (en) * 2008-08-15 2012-08-22 富士通株式会社 Transmission resource allocation method, feedback method and processing method for response signals
JP5398212B2 (en) * 2008-09-24 2014-01-29 株式会社日立国際電気 Wireless communication system
KR101555836B1 (en) * 2009-11-06 2015-09-25 삼성전자주식회사 System for transmitting data in multi-cell
EP2853053B1 (en) 2012-05-21 2023-02-01 BlackBerry Limited System and method for handling of an uplink transmission collision with an ack/nack signal
US9629099B2 (en) * 2013-01-24 2017-04-18 Panasonic Intellectual Property Management Co., Ltd. Radio communication apparatus and transmission power control method
JP2015041941A (en) * 2013-08-23 2015-03-02 株式会社Nttドコモ Wireless base station, relay station and wireless communication method
US10193671B2 (en) 2014-11-06 2019-01-29 Huawei Technologies Co., Ltd. System and method for transmission symbol arrangement for reducing mutual interference
US10243702B2 (en) * 2014-12-05 2019-03-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and BS for scheduling UE and method and UE for transmitting HARQ
WO2017050996A1 (en) * 2015-09-25 2017-03-30 Sony Corporation Telecommunications apparatuses and methods
US11177925B2 (en) * 2016-02-18 2021-11-16 Lg Electronics Inc. Method for setting frame structure in wireless communication system and device therefor
CN111757479B (en) * 2019-03-29 2022-10-11 华为技术有限公司 Communication method and device

Citations (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474026A (en) 1990-07-16 1992-03-09 Nippon Telegr & Teleph Corp <Ntt> Connection control method in mobile communication
US5870391A (en) 1996-03-25 1999-02-09 Canon Kabushiki Kaisha Wireless communication system using frequency hopping, and method of controlling the system
KR19990013366A (en) 1997-07-29 1999-02-25 모리시타요우이치 Wireless Transceiver and Wireless Transceiver with Code Division Multiplexing
RU2142672C1 (en) 1995-06-02 1999-12-10 Аирспан Коммьюникейшенс Корпорейшн, Корпорейшн Траст Компани Device and method for regulation of power and transmission rate in wireless communication networks
JP2001044900A (en) 1999-05-28 2001-02-16 Texas Instr Inc <Ti> Radio system provided with plural transmission antennas for connecting open loop and closed loop transmission diversities
US20010005681A1 (en) 1999-12-13 2001-06-28 Kyou-Woong Kim Method for controlling paging alert tone of a mobile station in a mobile communication system
US20010034236A1 (en) 2000-01-18 2001-10-25 Wen Tong Multi-beam antenna system for high speed data
KR20020009079A (en) 2000-07-24 2002-02-01 박종섭 Apparatus for controlling transmit diversity
EP1185001A2 (en) 2000-09-01 2002-03-06 Nortel Networks Limited Adaptive time deversity and spatial diversity for OFDM
US6452936B1 (en) 1997-11-17 2002-09-17 Oki Electric Industry Co., Ltd. Spread-spectrum communication apparatus with adaptive frame configuration
EP1248485A1 (en) 2001-04-03 2002-10-09 Samsung Electronics Co., Ltd. Method of transmitting control data in CDMA mobile communication system
KR20020088085A (en) 2001-01-19 2002-11-25 마츠시타 덴끼 산교 가부시키가이샤 Base station device and radio transmission method
US20030039227A1 (en) 2001-08-24 2003-02-27 Kwak Joseph A. Method for physical layer automatic repeat request for a base station
WO2003043245A1 (en) 2001-11-10 2003-05-22 Samsung Electronics Co., Ltd. Stfbc coding/decoding apparatus and method in an ofdm mobile communication system
US20030133426A1 (en) 2000-09-29 2003-07-17 Brett Schein Selecting random access channels
TW545074B (en) 2001-05-16 2003-08-01 Qualcomm Inc Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
WO2003077579A1 (en) 2002-03-12 2003-09-18 Ascom Ag Radio resource allocation in a radio communication network
WO2003085858A1 (en) 2002-04-01 2003-10-16 Qualcomm Incorporated Method and apparatus for transmit power modulation in a wireless communication system
KR20030081464A (en) 2001-12-26 2003-10-17 마츠시타 덴끼 산교 가부시키가이샤 Base station apparatus, communication terminal apparatus, and radio communication method
RU2221335C2 (en) 2001-11-01 2004-01-10 Общество с ограниченной ответственностью "Алгоритм" Method for data transmission in wireless local-area network
US20040009780A1 (en) 2002-02-19 2004-01-15 Interdigital Technology Corporation Method and apparatus for providing a highly reliable ACK/NACK for time division duplex (TDD) and frequency division duplex (FDD)
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
WO2004049591A1 (en) 2002-11-26 2004-06-10 Qualcomm Incorporated Method and apparatus for determining a set of acceptable transport format combinations
WO2004038991A3 (en) 2002-10-24 2004-09-16 Qualcomm Inc Reverse link automatic repeat request
US20040190640A1 (en) 2003-02-28 2004-09-30 Nortel Networks Limited Sub-carrier allocation for OFDM
JP2004312291A (en) 2003-04-04 2004-11-04 Matsushita Electric Ind Co Ltd Base station device and communication method
JP2004364321A (en) 2001-06-01 2004-12-24 Sony Corp Inverse spread apparatus, propagation line estimate apparatus, receiver and interference suppressing apparatus, inverse spread, propagation line estimate, reception and interference suppressing method, program for them, and recording medium with the program recorded thereon
US6842487B1 (en) 2000-09-22 2005-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Cyclic delay diversity for mitigating intersymbol interference in OFDM systems
WO2005006250A1 (en) 2003-06-25 2005-01-20 Variance Dynamical, Inc. Apparatus and method for detecting and analyzing spectral components
KR20050021965A (en) 2003-08-29 2005-03-07 삼성전자주식회사 Apparatus and method for controlling operational states of medium access control layer in broadband wireless access communication system
US20050083977A1 (en) 2002-02-08 2005-04-21 Moulsley Timothy J. Radio communication system
KR20050043302A (en) 2003-11-05 2005-05-11 삼성전자주식회사 Hybrid automatic repeat request method for supporting quality of service in wireless communication systems
US20050117536A1 (en) 2003-10-23 2005-06-02 Samsung Electronics Co., Ltd. System and method for transmitting and receiving resource allocation information in a wireless communication system
WO2005050875A1 (en) 2003-11-19 2005-06-02 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving common control information in a wireless communication system
WO2005060132A1 (en) 2003-12-18 2005-06-30 Electronics And Telecommunications Research Institute Method and apparatus for requesting and reporting channel quality information in mobile communication system
KR20050073256A (en) 2004-01-09 2005-07-13 엘지전자 주식회사 Decision method for downlink ack/nack feedback signal at a terminal in soft-handover
WO2005065062A2 (en) 2004-01-09 2005-07-21 Lg Electronics Inc. Packet transmission method
US20050165949A1 (en) 2004-01-28 2005-07-28 Teague Edward H. Method and apparatus of using a single channel to provide acknowledgement and assignment messages
US6934318B2 (en) 2000-12-22 2005-08-23 Qualcomm, Incorporated Method and system for energy based frame rate determination
JP2005244960A (en) 2004-01-27 2005-09-08 Ntt Docomo Inc Radio communications system, radio transmitter, radio receiver and radio communication method
JP2005253073A (en) 2004-02-27 2005-09-15 Toshiba Corp System, method, and device for communication
WO2005088869A1 (en) 2004-03-12 2005-09-22 Samsung Electronics Co., Ltd. Data transmission system in broadband wireless access system using band amc and method thereof
US20050220000A1 (en) 2004-04-02 2005-10-06 Lg Electronics Inc. Transmission method for downlink control signal in MIMO system
US20050233754A1 (en) 2003-08-20 2005-10-20 Beale Martin W Obtaining channel quality information in a wireless communication network
WO2005099123A1 (en) 2004-04-07 2005-10-20 Lg Electronics Inc. Transmission method of downlink control signal for mimo system
JP2005288300A (en) 2004-03-31 2005-10-20 Kurita Water Ind Ltd Ultrapure water production apparatus
WO2005119959A1 (en) 2004-06-02 2005-12-15 Nokia Corporation Acknowledgement signaling for automatic repeat request mechanisms in wireless networkds
KR20050120244A (en) 2004-06-18 2005-12-22 삼성전자주식회사 Apparatus and method for encoding/decoding space frequency block code for orthogonal frequency division multiplexing system
RU2267225C2 (en) 2002-04-24 2005-12-27 Самсунг Электроникс Ко., Лтд Device and method for supporting automatic repeat request in high- speed wireless system for transferring data packets
US20050286402A1 (en) 2004-05-31 2005-12-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink acknowledgement information in an OFDMA communication system
KR20060016600A (en) 2004-08-18 2006-02-22 삼성전자주식회사 Discretely indicating method of resource allocation information and load reducing method in indication of resource allocation information
WO2006023192A2 (en) 2004-07-20 2006-03-02 Qualcomm Incorporated Mitigating ack/nack errors in mimo/sic/harq
US20060045001A1 (en) 2004-08-25 2006-03-02 Ahmad Jalali Transmission of signaling in an OFDM-based system
JP2006166382A (en) 2004-12-10 2006-06-22 Samsung Yokohama Research Institute Co Ltd Wireless receiver, wireless communication system, channel estimation method and computer program
US7069050B2 (en) 2002-05-21 2006-06-27 Nec Corporation Antenna transmission and reception system
WO2006069299A1 (en) 2004-12-22 2006-06-29 Qualcomm Incorporated Mc-cdma multiplexing in an orthogonal uplink
WO2006071050A1 (en) 2004-12-27 2006-07-06 Lg Electronics Inc. Communicating non-coherent detectable signal in broadband wireless access system
KR20060081352A (en) 2005-01-07 2006-07-12 삼성전자주식회사 Apparatus and method for encoding space-time frequency block code in wireless communication system
WO2006073284A1 (en) 2005-01-07 2006-07-13 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving multiuser packet in a mobile communication system
KR20060092055A (en) 2005-02-17 2006-08-22 삼성전자주식회사 Radio transmission apparatus, radio reception apparatus, radio transmission method, radio reception method, transmitting and receiving method and recording medium
KR20060095576A (en) 2003-12-01 2006-08-31 콸콤 인코포레이티드 Method and apparatus for providing an efficient control channel structure in a wireless communication system
CN1829373A (en) 2005-03-01 2006-09-06 阿尔卡特公司 A method for OFDM data transmission, a base transceiver station, a base station controller, a mobile terminal and a mobile network therefor
US20060209814A1 (en) 2004-02-17 2006-09-21 Samsung Electronics Co., Ltd. Radio transmission apparatus and method, radio reception apparatus and method, transmitting and receiving method, and recording medium
US20060250941A1 (en) 2002-04-22 2006-11-09 Onggosanusi Eko N MIMO PGRC system and method
US20060264218A1 (en) 2005-05-19 2006-11-23 Nortel Networks Limited Method and system for allocating media access control layer resources in a wireless communication environment
US20060274842A1 (en) 2005-06-06 2006-12-07 Interdigital Technology Corporation Frequency domain joint detection for wireless communication systems
US20060280256A1 (en) 2005-05-04 2006-12-14 Samsung Electronic Co.,Ltd. Method, apparatus, and system for transmitting and receiving information of an uncoded channel in an orthogonal frequency division multiplexing system
WO2006102771A8 (en) 2005-03-30 2007-01-04 Nortel Networks Ltd Methods and systems for ofdm using code division multiplexing
WO2007007380A1 (en) 2005-07-08 2007-01-18 Fujitsu Limited Radio resource assigning method and communication apparatus
EP1746855A2 (en) 2005-07-20 2007-01-24 Samsung Electronics Co., Ltd. System and method for transmitting resource allocation information in a communication system
EP1746810A2 (en) 2005-07-21 2007-01-24 LG Electronics Inc. Mobile communication terminal and method for providing call-forwarding information
US20070064669A1 (en) 2005-03-30 2007-03-22 Motorola, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
US20070097981A1 (en) 2005-11-02 2007-05-03 Aris Papasakellariou Methods for Determining the Location of Control Channels in the Uplink of Communication Systems
WO2007049208A1 (en) 2005-10-28 2007-05-03 Koninklijke Philips Electronics N.V. Multiple antenna transmission with variable diversity gain
US20070097915A1 (en) 2005-11-02 2007-05-03 Aris Papasakellariou Methods for Dimensioning the Control Channel for Transmission Efficiency in Communication Systems
WO2007052941A1 (en) 2005-10-31 2007-05-10 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a multi-antenna communication system
US20070110104A1 (en) 2005-08-24 2007-05-17 Sartori Philippe J Resource allocation in cellular communication systems
JP2007124682A (en) 2003-12-19 2007-05-17 Matsushita Electric Ind Co Ltd Data packet transmission method, mobile station, radio network controller and radio communication system
US20070149137A1 (en) 2005-12-22 2007-06-28 Tom Richardson Methods and apparatus for communicating control information
WO2007078146A1 (en) 2006-01-06 2007-07-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving uplink signaling information in a single carrier fdma system
US20070183533A1 (en) 2006-02-08 2007-08-09 Schmidl Timothy M MIMO system with spatial diversity
US20070184849A1 (en) 2006-01-20 2007-08-09 Act Technologies, Llc Systems and Methods for Satellite Forward Link Transmit Diversity Using Orthagonal Space Coding
JP2007221755A (en) 2006-01-18 2007-08-30 Ntt Docomo Inc Base station, communication terminal, transmission method and reception method
US20070206559A1 (en) 2006-02-11 2007-09-06 Samsung Electronics Co., Ltd. Method and apparatus for allocating transmission resources and signaling the allocated transmission resources for frequency diversity
US20070208986A1 (en) 2006-02-06 2007-09-06 Qualcomm Incorporated Message remapping and encoding
US20070211667A1 (en) 2005-10-27 2007-09-13 Avneesh Agrawal Assignment acknowledgement for a wireless communication system
US20070254662A1 (en) 2006-04-28 2007-11-01 Samsung Electronics Co., Ltd. Apparatus and method for scheduling hybrid ARQ acknowledgment messages in a wireless network
KR20070107614A (en) 2006-05-02 2007-11-07 한국전자통신연구원 Method for transmitting and receiving downlink scheduling information in ofdma system
US20070258540A1 (en) 2006-05-08 2007-11-08 Motorola, Inc. Method and apparatus for providing downlink acknowledgments and transmit indicators in an orthogonal frequency division multiplexing communication system
US20070258373A1 (en) 2006-05-08 2007-11-08 Frank Frederiksen Optimized signalling of scheduling decisions
US7315577B2 (en) 2003-09-15 2008-01-01 Intel Corporation Multiple antenna systems and method using high-throughput space-frequency block codes
US20080025247A1 (en) 2006-07-28 2008-01-31 Motorola, Inc. Indicating special transmissions in wireless communication systems
US20080025337A1 (en) 2006-07-28 2008-01-31 Smith Jack A Apparatus and Method For Handling Control Channel Reception/Decoding Failure In A Wireless VoIP Communication System
US7336633B2 (en) 2001-05-29 2008-02-26 Agere Systems Inc. Media access controller for high bandwidth communication media and method of operation thereof
JP2008053858A (en) 2006-08-22 2008-03-06 Ntt Docomo Inc Transmitter
KR20080023664A (en) 2006-09-11 2008-03-14 삼성전자주식회사 Apparatus and method for transmitting forward/reverse ack/nack in mobile communication system
KR20080030905A (en) 2006-10-02 2008-04-07 엘지전자 주식회사 Method for controlling group in the mobile communication system
US20080090528A1 (en) 2006-07-07 2008-04-17 Malladi Durga P Method and apparatus for sending data and control information in a wireless communication system
JP2008092051A (en) 2006-09-29 2008-04-17 Nec Corp Method for multiplexing control signal and reference signal in mobile communication system, resource assigning method, and base station
JP2008092377A (en) 2006-10-03 2008-04-17 Ntt Docomo Inc Base station apparatus and method
US20080095106A1 (en) 2006-07-24 2008-04-24 Malladi Durga P Variable control channel for a wireless communication system
KR20080039772A (en) 2006-11-01 2008-05-07 엘지전자 주식회사 Method for allocating resource, and method for transmitting resource allocating information
US7386076B2 (en) 2001-03-29 2008-06-10 Texas Instruments Incorporated Space time encoded wireless communication system with multipath resolution receivers
KR20080065853A (en) 2007-01-10 2008-07-15 삼성전자주식회사 Method and apparatus for transmitting/receiving of ack/nack
US20080225784A1 (en) 2007-03-14 2008-09-18 Li-Chih Tseng Method and Apparatus for Configuring a Transport Block Size in a Wireless Communications System
US20080225791A1 (en) 2007-03-13 2008-09-18 Zhouyue Pi Methods for transmitting multiple acknowledgments in single carrier fdma systems
US20080227398A1 (en) 2007-03-15 2008-09-18 Interdigital Technology Corporation Method and apparatus for feedback overhead reduction in wireless communications
US20080232307A1 (en) 2007-03-23 2008-09-25 Zhouyue Pi Method and apparatus to allocate resources for acknowledgments in communication systems
JP2008236018A (en) 2007-03-16 2008-10-02 Nec Corp Resource assignment control method and controller in mobile wireless system
KR20080096088A (en) 2007-04-26 2008-10-30 삼성전자주식회사 Method and apparatus for allocating response channel resource in wireless telecommunication system
WO2008133439A1 (en) 2007-04-26 2008-11-06 Samsung Electronics Co., Ltd. Transmit diversity in a wireless communication system
US20080304593A1 (en) 2007-06-06 2008-12-11 Farooq Khan Transmission symbols mapping for antenna diversity
WO2008153331A2 (en) 2007-06-13 2008-12-18 Lg Electronics Inc. Transmitting spread signal in communication system
US20080310483A1 (en) 2007-06-13 2008-12-18 Lg Electronics Inc. Transmitting spread signal in mobile communication system
US20090046793A1 (en) 2007-08-16 2009-02-19 Motorola, Inc. Method and system for selective use of control channel element based implicit pointing
US20090060081A1 (en) 2005-03-30 2009-03-05 Hang Zhang Systems and methods for ofdm channelization
US20090059884A1 (en) 2007-08-03 2009-03-05 Jianzhong Zhang Transmission methods for downlink ACK/NACK channels
KR100894142B1 (en) 2006-02-15 2009-04-22 삼성전자주식회사 Method and apparatus for resource allocation in a ofdm system
US20090154580A1 (en) 2007-06-21 2009-06-18 Lg Electronics Inc. Method for receiving control information in orthogonal frequency division multiplexing system of mobile communication system
KR20090082843A (en) 2008-01-28 2009-07-31 엘지전자 주식회사 Method for transmitting ACK/NACK signal in wireless communication system
US20090196279A1 (en) 2006-10-18 2009-08-06 Electronics And Telecommunications Research Institute Tdm based cell search method for ofdm system
US20090274037A1 (en) 2008-02-19 2009-11-05 Lg Electronics Inc. Method for mapping physical hybrid automatic repeat request indicator channel
US20090285163A1 (en) 2005-12-08 2009-11-19 Hang Zhang Resource Assignment Systems and Methods
US20090310719A1 (en) 2006-08-28 2009-12-17 Sony Deutschland Gmbh Equalizing structure and equalizing method
US20100034163A1 (en) 2008-08-11 2010-02-11 Qualcomm Incorporated Anchor carrier in a multiple carrier wireless communication system
JP2010506505A (en) 2006-10-04 2010-02-25 クゥアルコム・インコーポレイテッド Uplink ACK transmission for SDMA in a wireless communication system
US20100098005A1 (en) 2007-03-19 2010-04-22 Lg Electronics Inc. Method for receiving ack/nack signal in mobile communication system
US20100098019A1 (en) 2006-10-02 2010-04-22 Hak Seong Kim Method for transmitting control signal using efficient multiplexing
US20100260164A1 (en) 2007-12-20 2010-10-14 Seong Ho Moon Method for transmitting data in wireless communication system
US20110002309A1 (en) 2008-02-29 2011-01-06 Hyung Ho Park Method of transmitting ack/nack signal in wireless communication system
US7995661B2 (en) 2007-08-13 2011-08-09 Sharp Laboratories Of America, Inc. Systems and methods for conserving the power supply of a communications device
JP2011193521A (en) 2006-06-20 2011-09-29 Nec Corp Communication system
US20120106478A1 (en) 2010-11-02 2012-05-03 Lg Electronics Inc. Method and apparatus for transmitting control information in radio communication system
US20120113945A1 (en) 2009-10-20 2012-05-10 Lg Electronics Inc. Method and apparatus for transmitting acknowledgement in wireless communication system

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474026U (en) 1990-11-06 1992-06-29
EP0983646B1 (en) 1998-02-14 2003-06-04 Samsung Electronics Co., Ltd. Data communication device and method for mobile communication system with dedicated control channel
KR100837351B1 (en) 2002-04-06 2008-06-12 엘지전자 주식회사 Update method for radio link parameter of mobile communication system
JP4532272B2 (en) 2002-08-19 2010-08-25 クゥアルコム・インコーポレイテッド Deboosting in the communication environment
JP4378967B2 (en) 2003-02-10 2009-12-09 日本電気株式会社 Mobile communication system, radio network control apparatus, and resource allocation control method used therefor
WO2004095851A2 (en) * 2003-04-23 2004-11-04 Flarion Technologies, Inc. Methods and apparatus of enhancing performance in wireless communication systems
US7359365B2 (en) * 2003-06-19 2008-04-15 Via Telecom Co., Ltd. Hybrid CDM/TDM signaling for packet acknowledgment method and apparatus
KR20050000709A (en) 2003-06-24 2005-01-06 삼성전자주식회사 Apparatus and method for transmitting/receiving data according to channel states in communication systems using multiple access scheme
CN100539482C (en) 2003-07-08 2009-09-09 上海贝尔阿尔卡特股份有限公司 The merging method and the receiver that mix automatic repeat requests in the ofdm system
KR100566274B1 (en) 2003-11-20 2006-03-30 삼성전자주식회사 Apparatus and method for sub-carrier allocation in ofdm system
US8089855B2 (en) * 2004-06-04 2012-01-03 Qualcomm Incorporated Transmission of overhead information for broadcast and multicast services in a wireless communication system
KR20060003764A (en) * 2004-07-07 2006-01-11 삼성전자주식회사 Method for synchronous automatic repeat request in a mobile communication system
JP5180065B2 (en) 2005-05-13 2013-04-10 クゥアルコム・インコーポレイテッド On-demand reverse link pilot transmission
US8565194B2 (en) * 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
AU2006258372A1 (en) 2005-06-17 2006-12-21 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving broadcast data in a mobile communication system
US7660229B2 (en) * 2005-06-20 2010-02-09 Texas Instruments Incorporated Pilot design and channel estimation
US8320359B2 (en) * 2005-10-11 2012-11-27 Telefonaktiebolaget L M Ericsson (Publ) Synchronization channel scheme for super 3G
US9225416B2 (en) * 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
CN100433924C (en) 2005-10-27 2008-11-12 华为技术有限公司 Implement method of uplink/downlink control channel
CN101005326B (en) 2006-01-18 2014-05-07 华为技术有限公司 Up resource distributing method and radio communication system
US8116267B2 (en) 2006-02-09 2012-02-14 Samsung Electronics Co., Ltd. Method and system for scheduling users based on user-determined ranks in a MIMO system
TW200742332A (en) * 2006-03-21 2007-11-01 Interdigital Tech Corp Method and system for implementing hybrid automatic repeat request
TWI346473B (en) 2006-03-21 2011-08-01 Lg Electronics Inc Method of transmitting/receiving lte system information in a wireless communication system
EP1855424B1 (en) 2006-05-12 2013-07-10 Panasonic Corporation Reservation of radio resources for users in a mobile communications system
US7916775B2 (en) 2006-06-16 2011-03-29 Lg Electronics Inc. Encoding uplink acknowledgments to downlink transmissions
DK2800435T3 (en) 2006-08-21 2017-05-08 Interdigital Tech Corp Dynamic resource allocation, scheduling and signaling for LTE variable data rates
US8457221B2 (en) * 2006-09-08 2013-06-04 Qualcomm Incorporated Signaling transmission with localized spreading for wireless communication
US8571120B2 (en) * 2006-09-22 2013-10-29 Texas Instruments Incorporated Transmission of acknowledge/not acknowledge (ACK/NACK) bits and their embedding in the reference signal
MX2009003608A (en) 2006-10-02 2009-04-22 Lg Electronics Inc Method for transmitting downlink control signal.
CN101809929B (en) 2007-01-04 2016-11-23 诺基亚技术有限公司 Distribution to the temporal frequency resource controlling channel
US8169956B2 (en) 2007-01-26 2012-05-01 Qualcomm Incorporated Mapping uplink acknowledgement transmission based on downlink virtual resource blocks
US7990920B2 (en) * 2007-04-26 2011-08-02 Samsung Electronics Co., Ltd. Transmit diversity for acknowledgement and category 0 bits in a wireless communication system
US8254492B2 (en) 2007-04-26 2012-08-28 Samsung Electronics Co., Ltd. Transmit diversity in a wireless communication system
US7885176B2 (en) 2007-06-01 2011-02-08 Samsung Electronics Co., Ltd. Methods and apparatus for mapping modulation symbols to resources in OFDM systems
KR100911304B1 (en) 2007-06-18 2009-08-11 엘지전자 주식회사 Method for transmitting data of radio bearer having priority in wirelss communication system
MX2009013860A (en) 2007-06-19 2010-03-01 Nokia Siemens Networks Oy Adaptive transport format uplink signaling for data-non-associated feedback control signals.
WO2009041785A2 (en) 2007-09-28 2009-04-02 Lg Electronics Inc. Method for detecting control information in wireless communication system
US20130294282A1 (en) 2011-01-23 2013-11-07 Lg Electronics Inc. Method and apparatus for transmitting an uplink signal by a relay in a wireless communcation system

Patent Citations (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474026A (en) 1990-07-16 1992-03-09 Nippon Telegr & Teleph Corp <Ntt> Connection control method in mobile communication
RU2142672C1 (en) 1995-06-02 1999-12-10 Аирспан Коммьюникейшенс Корпорейшн, Корпорейшн Траст Компани Device and method for regulation of power and transmission rate in wireless communication networks
US5870391A (en) 1996-03-25 1999-02-09 Canon Kabushiki Kaisha Wireless communication system using frequency hopping, and method of controlling the system
KR19990013366A (en) 1997-07-29 1999-02-25 모리시타요우이치 Wireless Transceiver and Wireless Transceiver with Code Division Multiplexing
US6452936B1 (en) 1997-11-17 2002-09-17 Oki Electric Industry Co., Ltd. Spread-spectrum communication apparatus with adaptive frame configuration
JP2001044900A (en) 1999-05-28 2001-02-16 Texas Instr Inc <Ti> Radio system provided with plural transmission antennas for connecting open loop and closed loop transmission diversities
US20010005681A1 (en) 1999-12-13 2001-06-28 Kyou-Woong Kim Method for controlling paging alert tone of a mobile station in a mobile communication system
US20010034236A1 (en) 2000-01-18 2001-10-25 Wen Tong Multi-beam antenna system for high speed data
KR20020009079A (en) 2000-07-24 2002-02-01 박종섭 Apparatus for controlling transmit diversity
EP1185001A2 (en) 2000-09-01 2002-03-06 Nortel Networks Limited Adaptive time deversity and spatial diversity for OFDM
US6842487B1 (en) 2000-09-22 2005-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Cyclic delay diversity for mitigating intersymbol interference in OFDM systems
US20030133426A1 (en) 2000-09-29 2003-07-17 Brett Schein Selecting random access channels
US6934318B2 (en) 2000-12-22 2005-08-23 Qualcomm, Incorporated Method and system for energy based frame rate determination
KR20020088085A (en) 2001-01-19 2002-11-25 마츠시타 덴끼 산교 가부시키가이샤 Base station device and radio transmission method
US7386076B2 (en) 2001-03-29 2008-06-10 Texas Instruments Incorporated Space time encoded wireless communication system with multipath resolution receivers
EP1248485A1 (en) 2001-04-03 2002-10-09 Samsung Electronics Co., Ltd. Method of transmitting control data in CDMA mobile communication system
JP2002369258A (en) 2001-04-03 2002-12-20 Samsung Electronics Co Ltd Control data transmission method in code division multiplex connection mobile communication system
TW545074B (en) 2001-05-16 2003-08-01 Qualcomm Inc Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US7336633B2 (en) 2001-05-29 2008-02-26 Agere Systems Inc. Media access controller for high bandwidth communication media and method of operation thereof
JP2004364321A (en) 2001-06-01 2004-12-24 Sony Corp Inverse spread apparatus, propagation line estimate apparatus, receiver and interference suppressing apparatus, inverse spread, propagation line estimate, reception and interference suppressing method, program for them, and recording medium with the program recorded thereon
US20030039227A1 (en) 2001-08-24 2003-02-27 Kwak Joseph A. Method for physical layer automatic repeat request for a base station
RU2221335C2 (en) 2001-11-01 2004-01-10 Общество с ограниченной ответственностью "Алгоритм" Method for data transmission in wireless local-area network
WO2003043245A1 (en) 2001-11-10 2003-05-22 Samsung Electronics Co., Ltd. Stfbc coding/decoding apparatus and method in an ofdm mobile communication system
KR20030081464A (en) 2001-12-26 2003-10-17 마츠시타 덴끼 산교 가부시키가이샤 Base station apparatus, communication terminal apparatus, and radio communication method
US20050083977A1 (en) 2002-02-08 2005-04-21 Moulsley Timothy J. Radio communication system
US20040009780A1 (en) 2002-02-19 2004-01-15 Interdigital Technology Corporation Method and apparatus for providing a highly reliable ACK/NACK for time division duplex (TDD) and frequency division duplex (FDD)
WO2003077579A1 (en) 2002-03-12 2003-09-18 Ascom Ag Radio resource allocation in a radio communication network
WO2003085858A1 (en) 2002-04-01 2003-10-16 Qualcomm Incorporated Method and apparatus for transmit power modulation in a wireless communication system
US20060250941A1 (en) 2002-04-22 2006-11-09 Onggosanusi Eko N MIMO PGRC system and method
RU2267225C2 (en) 2002-04-24 2005-12-27 Самсунг Электроникс Ко., Лтд Device and method for supporting automatic repeat request in high- speed wireless system for transferring data packets
US7069050B2 (en) 2002-05-21 2006-06-27 Nec Corporation Antenna transmission and reception system
WO2004038991A3 (en) 2002-10-24 2004-09-16 Qualcomm Inc Reverse link automatic repeat request
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
WO2004049591A1 (en) 2002-11-26 2004-06-10 Qualcomm Incorporated Method and apparatus for determining a set of acceptable transport format combinations
US20040190640A1 (en) 2003-02-28 2004-09-30 Nortel Networks Limited Sub-carrier allocation for OFDM
JP2004312291A (en) 2003-04-04 2004-11-04 Matsushita Electric Ind Co Ltd Base station device and communication method
WO2005006250A1 (en) 2003-06-25 2005-01-20 Variance Dynamical, Inc. Apparatus and method for detecting and analyzing spectral components
US20050233754A1 (en) 2003-08-20 2005-10-20 Beale Martin W Obtaining channel quality information in a wireless communication network
KR20050021965A (en) 2003-08-29 2005-03-07 삼성전자주식회사 Apparatus and method for controlling operational states of medium access control layer in broadband wireless access communication system
US7315577B2 (en) 2003-09-15 2008-01-01 Intel Corporation Multiple antenna systems and method using high-throughput space-frequency block codes
US20050117536A1 (en) 2003-10-23 2005-06-02 Samsung Electronics Co., Ltd. System and method for transmitting and receiving resource allocation information in a wireless communication system
KR20050043302A (en) 2003-11-05 2005-05-11 삼성전자주식회사 Hybrid automatic repeat request method for supporting quality of service in wireless communication systems
US20050122898A1 (en) 2003-11-05 2005-06-09 Samsung Electronics Co., Ltd. HARQ method for guaranteeing QoS in a wireless communication system
JP2007511975A (en) 2003-11-19 2007-05-10 サムスン エレクトロニクス カンパニー リミテッド Apparatus and method for transmitting / receiving common control information in a wireless communication system
WO2005050875A1 (en) 2003-11-19 2005-06-02 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving common control information in a wireless communication system
KR20060095576A (en) 2003-12-01 2006-08-31 콸콤 인코포레이티드 Method and apparatus for providing an efficient control channel structure in a wireless communication system
WO2005060132A1 (en) 2003-12-18 2005-06-30 Electronics And Telecommunications Research Institute Method and apparatus for requesting and reporting channel quality information in mobile communication system
JP2007124682A (en) 2003-12-19 2007-05-17 Matsushita Electric Ind Co Ltd Data packet transmission method, mobile station, radio network controller and radio communication system
WO2005065062A2 (en) 2004-01-09 2005-07-21 Lg Electronics Inc. Packet transmission method
KR20050073256A (en) 2004-01-09 2005-07-13 엘지전자 주식회사 Decision method for downlink ack/nack feedback signal at a terminal in soft-handover
JP2005244960A (en) 2004-01-27 2005-09-08 Ntt Docomo Inc Radio communications system, radio transmitter, radio receiver and radio communication method
US20050165949A1 (en) 2004-01-28 2005-07-28 Teague Edward H. Method and apparatus of using a single channel to provide acknowledgement and assignment messages
WO2005074184A3 (en) 2004-01-28 2005-12-08 Qualcomm Inc A method and apparatus of using a single channel to provide acknowledgement and assignment messages
WO2005074184A2 (en) 2004-01-28 2005-08-11 Qualcomm Incorporated A method and apparatus of using a single channel to provide acknowledgement and assignment messages
US20060209814A1 (en) 2004-02-17 2006-09-21 Samsung Electronics Co., Ltd. Radio transmission apparatus and method, radio reception apparatus and method, transmitting and receiving method, and recording medium
JP2005253073A (en) 2004-02-27 2005-09-15 Toshiba Corp System, method, and device for communication
US20050232181A1 (en) 2004-03-12 2005-10-20 Samsung Electronics Co., Ltd. Data transmission system in broadband wireless access system using band AMC and method thereof
WO2005088869A1 (en) 2004-03-12 2005-09-22 Samsung Electronics Co., Ltd. Data transmission system in broadband wireless access system using band amc and method thereof
JP2005288300A (en) 2004-03-31 2005-10-20 Kurita Water Ind Ltd Ultrapure water production apparatus
US20050220000A1 (en) 2004-04-02 2005-10-06 Lg Electronics Inc. Transmission method for downlink control signal in MIMO system
WO2005099123A1 (en) 2004-04-07 2005-10-20 Lg Electronics Inc. Transmission method of downlink control signal for mimo system
US20050286402A1 (en) 2004-05-31 2005-12-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink acknowledgement information in an OFDMA communication system
WO2005119959A1 (en) 2004-06-02 2005-12-15 Nokia Corporation Acknowledgement signaling for automatic repeat request mechanisms in wireless networkds
WO2005125140A1 (en) 2004-06-18 2005-12-29 Samsung Electronics Co., Ltd Apparatus and method for space-frequency block coding/decoding in a communication system
KR20050120244A (en) 2004-06-18 2005-12-22 삼성전자주식회사 Apparatus and method for encoding/decoding space frequency block code for orthogonal frequency division multiplexing system
WO2006023192A2 (en) 2004-07-20 2006-03-02 Qualcomm Incorporated Mitigating ack/nack errors in mimo/sic/harq
WO2006023192A3 (en) 2004-07-20 2006-04-20 Qualcomm Inc Mitigating ack/nack errors in mimo/sic/harq
KR20060016600A (en) 2004-08-18 2006-02-22 삼성전자주식회사 Discretely indicating method of resource allocation information and load reducing method in indication of resource allocation information
US20060045001A1 (en) 2004-08-25 2006-03-02 Ahmad Jalali Transmission of signaling in an OFDM-based system
JP2006166382A (en) 2004-12-10 2006-06-22 Samsung Yokohama Research Institute Co Ltd Wireless receiver, wireless communication system, channel estimation method and computer program
WO2006069299A1 (en) 2004-12-22 2006-06-29 Qualcomm Incorporated Mc-cdma multiplexing in an orthogonal uplink
US20090323615A1 (en) 2004-12-27 2009-12-31 Bin Chul Ihm Communicating non-coherent detectable signal in broadband wireless access system
WO2006071050A1 (en) 2004-12-27 2006-07-06 Lg Electronics Inc. Communicating non-coherent detectable signal in broadband wireless access system
WO2006073284A1 (en) 2005-01-07 2006-07-13 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving multiuser packet in a mobile communication system
KR20060081352A (en) 2005-01-07 2006-07-12 삼성전자주식회사 Apparatus and method for encoding space-time frequency block code in wireless communication system
KR20060092055A (en) 2005-02-17 2006-08-22 삼성전자주식회사 Radio transmission apparatus, radio reception apparatus, radio transmission method, radio reception method, transmitting and receiving method and recording medium
US20060198294A1 (en) 2005-03-01 2006-09-07 Alcatel Method for OFDM data transmission in a single-frequency multi-cell mobile network with channel estimation by means of pilots subgrid, a base transceiver station, a base station controller, a mobile terminal and a mobile network therefor
CN1829373A (en) 2005-03-01 2006-09-06 阿尔卡特公司 A method for OFDM data transmission, a base transceiver station, a base station controller, a mobile terminal and a mobile network therefor
WO2006102771A8 (en) 2005-03-30 2007-01-04 Nortel Networks Ltd Methods and systems for ofdm using code division multiplexing
US20090060081A1 (en) 2005-03-30 2009-03-05 Hang Zhang Systems and methods for ofdm channelization
US20080253469A1 (en) 2005-03-30 2008-10-16 Jianglei Ma Methods and Systems for Ofdm Using Code Division Multiplexing
US20070064669A1 (en) 2005-03-30 2007-03-22 Motorola, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
US20060280256A1 (en) 2005-05-04 2006-12-14 Samsung Electronic Co.,Ltd. Method, apparatus, and system for transmitting and receiving information of an uncoded channel in an orthogonal frequency division multiplexing system
US20060264218A1 (en) 2005-05-19 2006-11-23 Nortel Networks Limited Method and system for allocating media access control layer resources in a wireless communication environment
US20060274842A1 (en) 2005-06-06 2006-12-07 Interdigital Technology Corporation Frequency domain joint detection for wireless communication systems
WO2007007380A1 (en) 2005-07-08 2007-01-18 Fujitsu Limited Radio resource assigning method and communication apparatus
EP1746855A2 (en) 2005-07-20 2007-01-24 Samsung Electronics Co., Ltd. System and method for transmitting resource allocation information in a communication system
EP1746810A2 (en) 2005-07-21 2007-01-24 LG Electronics Inc. Mobile communication terminal and method for providing call-forwarding information
US20070110104A1 (en) 2005-08-24 2007-05-17 Sartori Philippe J Resource allocation in cellular communication systems
US20070211667A1 (en) 2005-10-27 2007-09-13 Avneesh Agrawal Assignment acknowledgement for a wireless communication system
WO2007049208A1 (en) 2005-10-28 2007-05-03 Koninklijke Philips Electronics N.V. Multiple antenna transmission with variable diversity gain
WO2007052941A1 (en) 2005-10-31 2007-05-10 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a multi-antenna communication system
US20070097915A1 (en) 2005-11-02 2007-05-03 Aris Papasakellariou Methods for Dimensioning the Control Channel for Transmission Efficiency in Communication Systems
US20070097981A1 (en) 2005-11-02 2007-05-03 Aris Papasakellariou Methods for Determining the Location of Control Channels in the Uplink of Communication Systems
US20090285163A1 (en) 2005-12-08 2009-11-19 Hang Zhang Resource Assignment Systems and Methods
US20070149137A1 (en) 2005-12-22 2007-06-28 Tom Richardson Methods and apparatus for communicating control information
WO2007078146A1 (en) 2006-01-06 2007-07-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving uplink signaling information in a single carrier fdma system
JP2007221755A (en) 2006-01-18 2007-08-30 Ntt Docomo Inc Base station, communication terminal, transmission method and reception method
US20070184849A1 (en) 2006-01-20 2007-08-09 Act Technologies, Llc Systems and Methods for Satellite Forward Link Transmit Diversity Using Orthagonal Space Coding
US20070208986A1 (en) 2006-02-06 2007-09-06 Qualcomm Incorporated Message remapping and encoding
US20070183533A1 (en) 2006-02-08 2007-08-09 Schmidl Timothy M MIMO system with spatial diversity
US20070206559A1 (en) 2006-02-11 2007-09-06 Samsung Electronics Co., Ltd. Method and apparatus for allocating transmission resources and signaling the allocated transmission resources for frequency diversity
KR100894142B1 (en) 2006-02-15 2009-04-22 삼성전자주식회사 Method and apparatus for resource allocation in a ofdm system
US20070254662A1 (en) 2006-04-28 2007-11-01 Samsung Electronics Co., Ltd. Apparatus and method for scheduling hybrid ARQ acknowledgment messages in a wireless network
KR20070107614A (en) 2006-05-02 2007-11-07 한국전자통신연구원 Method for transmitting and receiving downlink scheduling information in ofdma system
US20070258373A1 (en) 2006-05-08 2007-11-08 Frank Frederiksen Optimized signalling of scheduling decisions
US20070258540A1 (en) 2006-05-08 2007-11-08 Motorola, Inc. Method and apparatus for providing downlink acknowledgments and transmit indicators in an orthogonal frequency division multiplexing communication system
JP2011193521A (en) 2006-06-20 2011-09-29 Nec Corp Communication system
US20080090528A1 (en) 2006-07-07 2008-04-17 Malladi Durga P Method and apparatus for sending data and control information in a wireless communication system
US20080095106A1 (en) 2006-07-24 2008-04-24 Malladi Durga P Variable control channel for a wireless communication system
US20080025337A1 (en) 2006-07-28 2008-01-31 Smith Jack A Apparatus and Method For Handling Control Channel Reception/Decoding Failure In A Wireless VoIP Communication System
US20080025247A1 (en) 2006-07-28 2008-01-31 Motorola, Inc. Indicating special transmissions in wireless communication systems
JP2008053858A (en) 2006-08-22 2008-03-06 Ntt Docomo Inc Transmitter
US20090310719A1 (en) 2006-08-28 2009-12-17 Sony Deutschland Gmbh Equalizing structure and equalizing method
KR20080023664A (en) 2006-09-11 2008-03-14 삼성전자주식회사 Apparatus and method for transmitting forward/reverse ack/nack in mobile communication system
JP2008092051A (en) 2006-09-29 2008-04-17 Nec Corp Method for multiplexing control signal and reference signal in mobile communication system, resource assigning method, and base station
US20100111031A1 (en) 2006-10-02 2010-05-06 Hak Seong Kim Method for transmitting control signal using efficient multiplexing
US20100098019A1 (en) 2006-10-02 2010-04-22 Hak Seong Kim Method for transmitting control signal using efficient multiplexing
KR20080030905A (en) 2006-10-02 2008-04-07 엘지전자 주식회사 Method for controlling group in the mobile communication system
JP2008092377A (en) 2006-10-03 2008-04-17 Ntt Docomo Inc Base station apparatus and method
JP2010506505A (en) 2006-10-04 2010-02-25 クゥアルコム・インコーポレイテッド Uplink ACK transmission for SDMA in a wireless communication system
US20090196279A1 (en) 2006-10-18 2009-08-06 Electronics And Telecommunications Research Institute Tdm based cell search method for ofdm system
KR20080039772A (en) 2006-11-01 2008-05-07 엘지전자 주식회사 Method for allocating resource, and method for transmitting resource allocating information
KR20080065853A (en) 2007-01-10 2008-07-15 삼성전자주식회사 Method and apparatus for transmitting/receiving of ack/nack
US20080225791A1 (en) 2007-03-13 2008-09-18 Zhouyue Pi Methods for transmitting multiple acknowledgments in single carrier fdma systems
US20080225784A1 (en) 2007-03-14 2008-09-18 Li-Chih Tseng Method and Apparatus for Configuring a Transport Block Size in a Wireless Communications System
US20080227398A1 (en) 2007-03-15 2008-09-18 Interdigital Technology Corporation Method and apparatus for feedback overhead reduction in wireless communications
JP2008236018A (en) 2007-03-16 2008-10-02 Nec Corp Resource assignment control method and controller in mobile wireless system
US20100098005A1 (en) 2007-03-19 2010-04-22 Lg Electronics Inc. Method for receiving ack/nack signal in mobile communication system
US20080232307A1 (en) 2007-03-23 2008-09-25 Zhouyue Pi Method and apparatus to allocate resources for acknowledgments in communication systems
KR20080096088A (en) 2007-04-26 2008-10-30 삼성전자주식회사 Method and apparatus for allocating response channel resource in wireless telecommunication system
WO2008133439A1 (en) 2007-04-26 2008-11-06 Samsung Electronics Co., Ltd. Transmit diversity in a wireless communication system
US20080304593A1 (en) 2007-06-06 2008-12-11 Farooq Khan Transmission symbols mapping for antenna diversity
WO2008153331A2 (en) 2007-06-13 2008-12-18 Lg Electronics Inc. Transmitting spread signal in communication system
US20080310483A1 (en) 2007-06-13 2008-12-18 Lg Electronics Inc. Transmitting spread signal in mobile communication system
US20090154580A1 (en) 2007-06-21 2009-06-18 Lg Electronics Inc. Method for receiving control information in orthogonal frequency division multiplexing system of mobile communication system
US20090059884A1 (en) 2007-08-03 2009-03-05 Jianzhong Zhang Transmission methods for downlink ACK/NACK channels
US7995661B2 (en) 2007-08-13 2011-08-09 Sharp Laboratories Of America, Inc. Systems and methods for conserving the power supply of a communications device
US20090046793A1 (en) 2007-08-16 2009-02-19 Motorola, Inc. Method and system for selective use of control channel element based implicit pointing
US20100260164A1 (en) 2007-12-20 2010-10-14 Seong Ho Moon Method for transmitting data in wireless communication system
KR20090082843A (en) 2008-01-28 2009-07-31 엘지전자 주식회사 Method for transmitting ACK/NACK signal in wireless communication system
US20090274037A1 (en) 2008-02-19 2009-11-05 Lg Electronics Inc. Method for mapping physical hybrid automatic repeat request indicator channel
US20110002309A1 (en) 2008-02-29 2011-01-06 Hyung Ho Park Method of transmitting ack/nack signal in wireless communication system
US20100034163A1 (en) 2008-08-11 2010-02-11 Qualcomm Incorporated Anchor carrier in a multiple carrier wireless communication system
US20120113945A1 (en) 2009-10-20 2012-05-10 Lg Electronics Inc. Method and apparatus for transmitting acknowledgement in wireless communication system
US20120106478A1 (en) 2010-11-02 2012-05-03 Lg Electronics Inc. Method and apparatus for transmitting control information in radio communication system

Non-Patent Citations (46)

* Cited by examiner, † Cited by third party
Title
3rd Generation Partnership Project (3GPP), "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; LTE Physical Layer-General Description (Release 8)" 3GPP TS 36.201 V1.2.0, XP-050380347, Jun. 2007.
Ericsson et al., "Way Forward on Downlink Control Signaling," R1-071223, 3GPP TSG RAN WG1 Meeting #48, Feb. 2007.
ETRI: "Downlink L1/L2 control signaling", R1-070079, 3GPP TSG RAN WG1 Meeting #47bis, Jan. 2007, XP050104134.
Huawei, "E-UTRA Downlink L1/L2 Control Channel Structure," R1-071689, 3GPP TSG-RAN-WG1 Meeting #48bis, Mar. 2007.
Intel Corporation: "Text Proposal for downlink OFDMA resource allocation and mapping rules for distributed mode users in E-UTRA, with discussion on control information", R1-061149, 3GPP TSG RAN WG1 #45, May 2006, XP002486595.
Kaiser, "Space Frequency Block Coding in the Uplink of Broadband MC-CDMA Mobile Radio Systems with Pre-Equalization", Institute of Electrical and Electronics Engineers, Vehicular Technology Conference, Fall 2003, XP10701084.
Kim, I.G., et al., "Transmit Diversity and Multiplexing Methods for 3G-LTE Downlink Control Channels," 64th IEEE Vehicular Technology Conference, Sep. 2006, XP-031051218.
LG Electronics, "DL ACK/NACK structure", R1-072878, 3GPP TSG RAN WG1 #49bis, Jun. 2007.
LG Electronics, "Downlink ACK/NACK Index Mapping", R1-071552, 3GPP RAN WG1 #48-BIS, Mar. 2007, XP-002660818.
LG Electronics, "Downlink Cat0 signaling for scheduling assignments", 3GPP TSG RAN WG1 #47bis, R1-070247, Jan. 2007.
LG Electronics, "Downlink control signaling", R1-063177, 3GPP TSG RAN WG1 #47, Nov. 2006.
LG Electronics, "Downlink resource allocation for localized and distributed transmission," R1-071549, 3GPP TSG RAN WG1 #48bis, Mar. 2007, XP-050105480.
LG Electronics, "Uplink ACK/NACK Index Mapping", R1-071547, 3GPP RAN WG1 #48-BIS, Mar. 2007, XP-002660822.
Morimoto et al., "Transmit Diversity Schemes Suitable for Common Control Channel in Evolved UTRA Downlink", RCS2007-50, IEICE Technical Report, pp. 125-130, Jul. 2007.
NEC Group, "Efficient Downlink ACK/NACK signalling for E-UTRA," R1-071508, TSG-RAN WG1#48Bis, Mar. 2007.
Nortel, "Discussion on linkage of PHICH to uplink transmissions", R1-080771, 3GPP TSG-RAN WG1 Meeting #52, Feb. 2007.
Nortel, "SCH Search Performance with Transmit Diversity", R1-061843, 3GPP TSG-RAN Working Group 1 Meeting on LTE, Jun. 2006.
NTT DoCoMo et al., "Coding Scheme of L1/L2 Control Channel for E-UTRA Downlink", R1-061672, 3GPP TSG RAN WG1 LTE Ad Hoc, Jun. 2006.
NTT Docomo et al., "Comparison between RB-level and Sub-carrier-level Distributed Transmission for Shared Data Channel in E-UTRA Downlink", R1-062089, 3GPP TSG RAN WG1 Meeting #46, Sep. 2006.
NTT DoCoMo et al., "Downlink L1/L2 Control Signaling Channel Structure Mapping," R1-070104, 3GPP TSG RAN WG Meeting #47bis, Jan. 2007.
NTT DoCoMo et al., "RB-level Distributed Transmission Method for Shared Data Channel in E-UTRA Downlink", R1-062285, 3GPP TSG-RAN WG1#46, Aug.-Sep. 2006.
Panasonic, "Assignment of Downlink ACK/NACK channel", R1-072794, 3GPP TSG-RAN WG1 Meeting #49bis, Jun. 2007, XP-002660823.
Panasonic, "Mapping Positions of Control Channel for Uplink SC-FDMA", TSG-RAN WG1 #43, Doc. No. R1-051395, XP-002450961, Nov. 7, 2005.
Qualcomm Europe, "Considerations on Multiplexing of Control and User Data for xFDMA based E-UTRA Uplink Evaluation", R1-051102, 3GPP TSG-RAN WG1 #42bis, Oct. 2005, XP-002446638.
Qualcomm Europe, "Mapping of UL ACK Transmission based on DL VRB", R1-070660, 3GPP TSG RAN1 #48, Feb. 2007.
Ryu, H.G., "System Design and Analysis of MIMO SFBC CI-OFDM System against the Nonlinear Distortion and Narrowband Interference," IEEE Transactions on Consumer Electronics, vol. 54, No. 2, pp. 368-375, May 2008.
Ryu, H.G., et al., "Design and Performance Evaluation of the MIMO SFBC CI-OFDM Communication System," The Fourth International Conference on Wireless and Mobile Communications, pp. 60-64, Jul. 2008.
Samsung, "Downlink ACK/NACK Transmission Structure", R1-072247, 3GPP TSG RAN WG1 Meeting #49, May 2007.
Samsung, "Performance of 4-Tx Antenna diversity with realistic channel estimation", R1-072239, 3GPP TSG RAN WG1 Meeting #49, May 2007.
Samsung, "Transmit Diversity for 4-Tx Antenna", 3GPP TSG RAN WG1 Meeting #49, R1-072238, May 7, 2007, XP-002578959.
Sharp, "UE Identity in L1/L2 Downlink Control Signalling", R1-061136, 3GPP TSG-RAN WG1#45, May 2006.
Su, W., et al., "Obtaining full-diversity space-frequency codes from space-time codes via mapping," IEEE Transactions on Signal Processing, vol. 51, No. 11, pp. 2903-2916, Nov. 1, 2003; XP-011102805.
Taiwan Intellecutal Property Office Application Serial No. 096136988, Office Action dated May 17, 2013, 6 pages.
Texas Instruments, "Shared Control Channel Structure and Coding for E-UTRA Downlink", 3GPP TSG RAN WG1 LTE Ad Hoc, R1-061740, Jun. 2006.
Texas Instruments, "Shared Control Channel Structure and Coding for E-UTRA Downlink", R1-061433, 3GPP TSG-RAN WG1#45, May 2006.
United States Patent and Trademark Office Application U.S. Appl. No. 13/014,665, Office Action dated Nov. 29, 2012, 24 pages.
United States Patent and Trademark Office Application U.S. Appl. No. 13/165,711, Office Action dated Mar. 13, 2013 10 pages.
United States Patent and Trademark Office Application U.S. Appl. No. 13/217,204, Notice of Allowance dated Apr. 8, 2013, 8 pages.
United States Patent and Trademark Office Application U.S. Appl. No. 13/295,884, Office Action dated Mar. 14, 2013 8 pages.
United States Patent and Trademark Office Application U.S. Appl. No. 13/295,974 Office Action dated Jan. 29, 2013, 8 pages.
United States Patent and Trademark Office Application U.S. Appl. No. 13/295,987 Office Action dated Feb. 6, 2013, 8 pages.
United States Patent and Trademark Office U.S. Appl. No. 13/014,665, Final Office Action dated May 22, 2013, 25 pages.
United States Patent and Trademark Office U.S. Appl. No. 13/165,711, Final Office Action dated Aug. 9, 2013, 9 pages.
Zhang, M., et al., "Space-Frequency Block Code with Matched Rotation MIMO-OFDM System with Limited Feedback", EURASIP Journal on Advances in Signal Processing, Jun. 24, 2009.
Zhang, W., et al., "Space-Time/Frequency Coding for MIMO-OFDM in Next Generation Broadband Wireless Systems," Next-Generation CDMA vs. OFDMA for 4G Wireless Applications, IEEE Wireless Communications, vol. 14, No. 3, pp. 32-43, Jun. 2007, XP-011189164.
Zhang, W., et al., "Universal Space-Frequency Block Coding for MIMO-OFDM Systems", IEEE Asia-Pacific Conference on Communications, pp. 227-231, Oct. 5, 2005.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10652920B2 (en) 2007-03-23 2020-05-12 Optis Wireless Technology, Llc Base station apparatus, mobile station apparatus, method for mapping a response signal, and method for determining a response signal resource
US11096204B2 (en) 2007-03-23 2021-08-17 Optis Wireless Technology, Llc Base station apparatus, mobile station apparatus, method for mapping a response signal, and method for determining a response signal resource
US10200083B2 (en) 2007-06-15 2019-02-05 Optis Wireless Technology, Llc Base station apparatus and radio communication method
US10958303B2 (en) 2007-06-15 2021-03-23 Optis Wireless Technology, Llc Spreading a response signal using a first set of orthogonal sequences and a reference signal using a second set of shorter orthogonal sequences

Also Published As

Publication number Publication date
US7995553B2 (en) 2011-08-09
EP2080302A4 (en) 2014-04-02
MX2009003609A (en) 2009-04-22
CN101627567A (en) 2010-01-13
US9967064B2 (en) 2018-05-08
CN101627567B (en) 2014-07-02
US20110149901A1 (en) 2011-06-23
WO2008041820A3 (en) 2009-09-17
WO2008041820A2 (en) 2008-04-10
US20150305032A1 (en) 2015-10-22
JP4976498B2 (en) 2012-07-18
US9451613B2 (en) 2016-09-20
KR100925436B1 (en) 2009-11-06
US7953061B2 (en) 2011-05-31
US9106379B2 (en) 2015-08-11
KR20080031124A (en) 2008-04-08
US20100111031A1 (en) 2010-05-06
US20160352475A1 (en) 2016-12-01
EP2080302A2 (en) 2009-07-22
US9729282B2 (en) 2017-08-08
JP2010504716A (en) 2010-02-12
US20170317797A1 (en) 2017-11-02
US20100098019A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
US9967064B2 (en) Method for transmitting control signal using efficient multiplexing
US9831997B2 (en) Method for allocating physical hybrid automatic repeat request indicator channel
US9332542B2 (en) Apparatus and method for allocating resources in a single carrier-frequency division multiple access system
US8325593B2 (en) Mobile communication system, base station, user device, and method
US8599954B2 (en) Transmission methods for downlink ACK/NACK channels
US8279824B2 (en) Method of transmitting control signal in wireless communication system
US8331292B2 (en) Method for mapping control channels
KR20090016375A (en) Method and apparatus for transmitting/receiving uplink control channels in cellular communication systems
KR20080027497A (en) Mobile station, base station and method
EP2070218A2 (en) Apparatus, method and computer program product providing sequence modulation for uplink control signaling
JP2010525723A (en) ACKCH resource allocation method and apparatus in wireless communication system
CN103155471B (en) Mobile terminal apparatus and wireless communications method
TWI444018B (en) Method for transmitting control signal using efficient multiplexing
RU2430476C2 (en) Method of transmitting control signal using efficient multiplexing

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, HAK SEONG;CHOI, SUNG DUK;KIM, KI JUN;AND OTHERS;SIGNING DATES FROM 20090401 TO 20090402;REEL/FRAME:028251/0244

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12