USRE41562E1 - System and method for electronic tracking of units associated with a batch - Google Patents

System and method for electronic tracking of units associated with a batch Download PDF

Info

Publication number
USRE41562E1
USRE41562E1 US11/102,887 US10288705A USRE41562E US RE41562 E1 USRE41562 E1 US RE41562E1 US 10288705 A US10288705 A US 10288705A US RE41562 E USRE41562 E US RE41562E
Authority
US
United States
Prior art keywords
units
transponder
meat
physically
batch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/102,887
Inventor
Ross S. Dando
Mark E. Tuttle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Round Rock Research LLC
Original Assignee
Round Rock Research LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23360333&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE41562(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Round Rock Research LLC filed Critical Round Rock Research LLC
Priority to US11/102,887 priority Critical patent/USRE41562E1/en
Assigned to KEYSTONE TECHNOLOGY SOLUTIONS, LLC reassignment KEYSTONE TECHNOLOGY SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Priority to US11/872,382 priority patent/USRE41815E1/en
Priority to US11/872,374 priority patent/USRE42821E1/en
Priority to US11/872,390 priority patent/USRE42736E1/en
Assigned to ROUND ROCK RESEARCH, LLC reassignment ROUND ROCK RESEARCH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KEYSTONE TECHNOLOGY SOLUTIONS, LLC
Publication of USRE41562E1 publication Critical patent/USRE41562E1/en
Application granted granted Critical
Priority to US13/269,853 priority patent/USRE44409E1/en
Priority to US13/959,598 priority patent/US20140035730A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22BSLAUGHTERING
    • A22B5/00Accessories for use during or after slaughtering
    • A22B5/0064Accessories for use during or after slaughtering for classifying or grading carcasses; for measuring back fat
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22BSLAUGHTERING
    • A22B7/00Slaughterhouse arrangements
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22BSLAUGHTERING
    • A22B7/00Slaughterhouse arrangements
    • A22B7/001Conveying arrangements
    • A22B7/007Means containing information relative to the carcass that can be attached to or are embedded in the conveying means
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C17/00Other devices for processing meat or bones
    • A22C17/10Marking meat or sausages
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • G06K17/0022Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2428Tag details
    • G08B13/2434Tag housing and attachment details
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2451Specific applications combined with EAS
    • G08B13/2462Asset location systems combined with EAS

Definitions

  • More than one reissue application has been filed for the reissue of U.S. Pat. No. 6 , 545 , 604 .
  • the reissue applications are the initial reissue application Ser. No. 11 / 102 , 887 filed May 8 , 2005 , a continuation reissue application Ser. No. 11 / 872 , 374 filed Oct. 15 , 2007 , a continuation reissue application Ser. No. 11 / 872 , 382 filed Oct. 15 , 2007 , a continuation application Ser. No. 11 / 872 , 390 filed Oct. 15 , 2007 and a continuation reissue application Ser. No. 11 / 872 , 397 filed Oct. 15 , 2007 .
  • the invention pertains to methods of electronic tracking of units originating from a common source, such as, for example, methods for electronic identification of mean units originating from a common animal carcass.
  • the invention further pertains to particular transponder assemblies, such as transponders attached to meat spikes.
  • Radio frequency identification device are commonly utilized for electronically identifying objects.
  • a transponder is attached to an object which is to be identified.
  • the transponder can be incorporated into a passive, read-only RFID system which comprises an interrogated used in conjunction with the transponder.
  • the interrogator provides a carrier signal which powers (stimulates) the transponder and causes a signal to be transmitted from the transponder.
  • the signal comprises data which identifies the object associated with the transponder.
  • the signal is received by the interrogator, which is in data communication with a processing system configured to decode and interpret the data.
  • the interrogator commonly uses a coil antenna to stimulate the transponder.
  • the transponder will frequently comprise a parallel resonant LC circuit, with such circuit being resonant at a carrier frequency of the interrogator.
  • An exemplary application of a passive, read-only RFID system is for identification of individual animals in a meat-processing plant.
  • a reason for identifying individual animals in a meat-processing plant is to improve meat quality and/or farming processes. For instance, in modern farming practices it is desirable to track an animal throughout its entire lifetime up to, and including, slaughter to aid in understanding the factors that influence meat quality.
  • an RFID transponder tag can be placed in an animal's ear at time of birth, and utilized to document events occurring within the animal's life. For instance, the RFID transponder can be utilized with interrogators to catalog the feed ingested by the animal, vaccinations provided to the animal, and any growth hormones administered to the animal.
  • the transponder can further be utilized in combination with an interrogator at time of slaughter to catalogue the meat quality of the animal.
  • Transponders can be utilized to track many (of even all) of the individual animals of a population, and information accumulated by the transponders can be studied to relate the effect, if any, of particular farming practices on meat quality.
  • transponders are provided on individual animal bodies within the plant to enable tracking of the bodies during processing to enable, for example, meat products from a particular body to be pulled in the event the body is found to be contaminated or diseased.
  • FIG. 1 illustrates a carcass-transporting device (conveyor) 20 , and an interrogator 32 (shown as a computer).
  • Carcass-transporting device 20 includes a trolley 22 having a hook 24 connected thereto.
  • a track 28 is provided along with trolley 22 can be moved from processing station to processing station within the meat-processing plant.
  • An animal body (carcass) 26 is shown connected with hook 24 .
  • An RFID device is shown generally at 30 as being mounted directly on trolley 22 .
  • Device 30 includes a transponder which enables wireless communication to be conducted between device 30 and interrogator 32 .
  • interrogator 32 can include suitable transmit and receive circuitry to both transmit signals to device 30 , and receive signals transmitted from device 30 .
  • the wireless communication between interrogator 32 and device 30 can take place through, for example, RF transmissions.
  • a suitable device for conducting RF communication between an interrogator and a transponder is disclosed in pending U.S. patent application Ser. No. 08/705,043, the disclosure of which is expressly incorporated herein by reference. Of course, other transponders and interrogators can be used.
  • the stage of meat processing shown in FIG. 1 can be a relatively early step in a meat processing sequence.
  • carcass 26 corresponds to an animal body which has been skinned and gutted, and in the case of large animal (such as a cow) may correspond to a half of the resulting carcass (with such carcass having been split longitudinally to form the half).
  • large animal such as a cow
  • carcass 26 corresponds to half of a beef body.
  • Such other half of the beef body can have a separate transponder (analogous to transponder unit 30 ) associated therewith, and the code signal from the transponders associated with each half of the beef body can be correlated together in a database such that it is recognized that both halves came from the same beef body. Accordingly, if a defect (or disease) is evidenced by either half of the animal body from which carcass 26 originated, the other half of such animal body can be readily tracked within the slaughterhouse and identified.
  • An identifier of the live animal from which carcass 26 was obtained can also be provided on the database, and the coded signals on the transponders can be electrically associated with such identifier to link the coded signals of the transponders with the identifier in a program such as, for example, a spreadsheet program. Accordingly, information learned about conformation or meat quality during processing of the animal body can be related with other information obtained during the reacting of the live animal and displayed utilizing the program.
  • a typical slaughterhouse scenario for carcass 26 is as follows.
  • the carcass is passed across a scale to determine a “hot weight” of the carcass.
  • hot weight is determined after the full carcass has been halved into slabs.
  • the carcass is placed in a first cellular, where it stays for 24 hours.
  • the carcass is then transferred to a second chiller, where it stays for another 24 hours.
  • the meat is passed through two chillers sequentially because such is a convenient way of processing and tracking large quantities of meat.
  • the meat may stay in a single chiller for the entire cooling period.
  • the carcass After the carcass has been chilled for a total of 48 hours (24 hours in the first chiller followed by 24 hours in the second chiller), the carcass is weighted to determine a so-called “cold weight” of the carcass and the meat of the carcass is graded by a meat inspector. A comparison of the cold weight to the hot weight can indicate an amount of meat shrinkage, and can be useful in determining a quality of the meat.
  • a plurality of carcasses are graded, they are divided by grade and sent to fabrication. At fabrication, the carcasses are subdivided into smaller units and packaged for distribution.
  • FIG. 2 illustrates an initial step of a fabrication process.
  • carcass 26 (which is, for purposes of the following discussion, a slab corresponding to half of an animal body) is split to form two units corresponding to a front quarter 36 (also referred to as a shank) and a hind quarter 38 .
  • a meat spike 40 has been inserted into slab 26 and has a tag 42 extending there from.
  • Such spike can be inserted by inspectors and other persons associated with meat processing to attach information such as, for example, identification or USDA information to slab 26 .
  • a separate spike can be inserted into unit 36 to provide additional identifying information associated with unit 36 .
  • Units 36 and 38 are conveyed to areas of the slaughterhouse wherein such units are subdivided into portions suitable for distribution, and then packaged.
  • a common package will be a box containing particular cuts of meat, such as, for example, steaks or roasts.
  • a single box will generally contain cuts of meat from several animal carcasses.
  • a difficulty of present meat processing methodologies is in tracking the meat through a slaughterhouse. Specifically, it can be desirable to track meat entirely from the time an animal enters a slaughterhouse until the animal is packaged, and to thereby have a record of exactly which packages the meat from the animal was distributed in. Then, if a problem is discovered with any of the meat from the animal, it can be a simple matter to recall all of the packages that contain other meat from the animal. For instance, if bacterial contamination of a meat product is discovered, it is desirable recall all meat originating from the same carcass as the contaminated meat product.
  • the invention encompasses a method for electronic tracking of units originating from a common source.
  • the common source comprises a plurality of units physically joined with one another.
  • a first transponder is physically associated with the common source, and the source is split to separate it into three or more of the units.
  • a second transponder is physically associated with one of the three or more units, and the second transponder sends a code.
  • the code of the second transponder is electrically associated with an identifier of the common source.
  • the invention encompasses a method for electronic identification of meat units originating from a common animal carcass.
  • An animal carcass is provided on a conveyor and conveyed through a meat processing plant.
  • the animal carcass initially has a first transponder physically associated therewith, and the first transponder sends a code which is electrically associated with an identifier of the animal carcass.
  • the animal carcass is split into at least two first units, and one or more of the first units is physically separated from the first transponder after such splitting.
  • One or more second transponders are physically associated with at least one of the first units that were physically separated from the first transponder by the first splitting.
  • the second transponders second codes.
  • the codes of the second transponders are electrically associated with the identifier of the animal carcass.
  • the invention encompasses an assembly comprising a transponder to a meat spike.
  • a method and a system to implement the method, are provided to receive a batch comprising a plurality of separated units that have been physically joined together by packaging for shipment, wherein a first passive radio frequency identification ( RFID ) tag is physically associated with the batch and is configured to transmit a first code.
  • the first code is associated with the batch in a database.
  • the plurality of units are physically separated and redistributed, wherein each of the plurality of separated units is physically associated with each of a plurality of passive RFID tags, respectively, and each of the plurality of RFID tags is configured to transmit one of a plurality of codes, respectively.
  • the plurality of codes are associated with the batch in a database.
  • FIG. 1 shows a prior art carcass-tranpsorting device, and shows a carcass at preliminary stage of prior art meat processing.
  • FIG. 2 shows the carcass of FIG. 1 at a prior art meat-processing stage subsequent to that of FIG. 1 .
  • FIG. 3 is a perspective view of a meat spike assembly configured in accordance with an aspect of the present invention.
  • FIG. 4 is a view of a carcass shown data processing step similar to that of FIG. 2 , wherein the processing step is conducted in accordance with a method of the present invention.
  • FIG. 5 is a perspective view of a second embodiment meat spike assembly configured in accordance with an aspect of the present invention.
  • FIG. 6 is a perspective view of a third embodiment meat spike assembly configured in accordance with an aspect of the present invention.
  • FIG. 7 is a perspective view of a fragmentary portion of a meat spike assembly configured in accordance with yet another aspect of the present invention.
  • FIG. 8 shows a view of a common source and associated units in accordance with one aspect of the present invention.
  • the invention is a recognition that a problem which occurs during the above-discussed processing of FIG. 2 is that after the animal carcass 26 is split into two parts, one of the two parts (specifically, unit 36 ) is no longer associated with transponder 30 , and accordingly, is no longer electronically tracked. Accordingly, the invention encompasses methodologies for maintaining the electronic tracking of meat unit after such units are split from a carcass.
  • One method of tracking meat units after they are split from a carcass is to physically associate one or more transponder units with such units during meat processing.
  • Such method can be accomplished utilizing a meat spike and transponder assembly, such as the assembly 100 shown in FIG. 3 .
  • Assembly 100 comprises a meat spike 102 and a transponder device 104 joined to such meat spike.
  • Transponder device 104 comprises circuitry (not shown) attached to a substrate.
  • the substrate can comprise, for example, metal or plastic.
  • the substrate is provided in a circular shape and has an orifice 106 extending through about a center of the circular shape.
  • the transponder circuitry of device 104 preferably defines a transponder comprising a radio frequency identification device, and more preferably defines a transponder comprising a passive, read-only RFID.
  • Meat spike 102 comprises a rod having a pair of opposing ends 110 and 112 .
  • End 110 is pointed, and end 112 comprises a holder in the shape of a loop.
  • the substrate of transponder device 104 is slid over spike 102 and retained from sliding over end 112 by the loop of end 112 .
  • the loop of meat spike 102 can enable prior art tags (such as, for example, tag 42 of FIG. 2 ) to be utilized with assembly 100 .
  • prior art tags such as, for example, tag 42 of FIG. 2
  • the invention contemplates other embodiments of assembly 100 wherein spike 102 comprises other configurations configured to retain transponder device 104 .
  • Such other configurations can include, for example, configurations lacking the loop of end 112 and instead having transponder device 104 glued, welded or otherwise adhesive to spike 102 .
  • the invention encompasses embodiments wherein transponder device 104 is retained in a manner similar to that by which prior art tags (such as tag 42 ) are retained by the looped end of a metal spike.
  • device 104 can be retained by a wire or string wrapped within the loop of end 112 .
  • FIG. 4 shows a slab 26 at a processing step comparable to that described above with reference to prior art FIG. 2 , and in referring to FIG. 4 similar numbering will be utilized as was utilized above in describing FIG. 2 .
  • the slab 26 of FIG. 4 has been split into tow units ( 36 and 38 ) and unit 26 is physically separated from hanger 24 such that it is no longer tracked by transponder 30 .
  • a second transponder 120 is physically associated with unit 36 utilizing a meat spike assembly 130 of the type described with reference to FIG. 3 .
  • meat spike assembly 130 comprises a meat spike 122 similar to the meat spike 102 of FIG. 3 , and a transponder device 120 similar to device 104 of FIG. 3 .
  • Transponder device 120 sends a code to interrogator 32 .
  • interrogator 32 is in electrical communication with a database, and preferably the code from transponder 120 is electrically associated with both the code from transponder 30 and an identifier of slab 26 in the database.
  • a plurality of transponder assemblies 130 can be provided at a location in a meat processing plant wherein slabs are split into hind quarters and front quarters. A person could then retrieve one of the assemblies 130 from the plurality an interrogate the transponder device 120 with a interrogator device to register a code of the transponder device 120 within the interrogator.
  • the interrogator device would also be configured to ascertain a code from the transponder 30 previously associated with slab 26 and to link the transponder codes with one another in a database.
  • transponder codes are linked with one another in the database
  • a user can input a code from either transponder device 30 or transponder device 120 and ascertain the codes of other transponder devices which had been utilized to mark a portion of the animal body corresponding to slab 26 .
  • an identifier of the live animal from which slab 26 was obtained will also be in the database, and the user will thus be able to utilize the code of either transponder device 30 or 120 to ascertain an identification of the animal from which slab 26 was obtained.
  • FIG . 4 shows that both of transponder devices 30 and 120 are simultaneously sending a signal to interrogator 32 . In practice, such would generally not be the case. Rather, transponder device 30 and transponder device 120 would be sequentially interrogated by device 32 .
  • Transponder assembly 130 can be inserted into unit 36 either before, during, or after the splitting of unit 36 from slab 26 . It is noted, however, that second transponder assembly 130 will generally be added after slab 26 has been hanging from hook 24 , and therefore after slab 26 is physically associated with transponder unit 30 . Accordingly, first transponder device 30 will be associated with slab 26 for a period of time during which second transponder assembly 130 is not physically associated with slab 26 .
  • first transponder assembly 30 is shown associated with a trolley from which slab 26 is hung, it is to be understood that the invention encompasses other embodiments (not shown) wherein first transponder device 30 is physically associated with slab 26 through other methodologies.
  • first transponder device 30 could be associated with a meat hook in an assembly analogous to that of assembly 130 and associated with slab 26 by inserting the meat hook into slab 26 .
  • the first transponder device assembly could be inserted into either the hind quarter portion of slab 26 or the front quarter portion of slab 26 (the portion which becomes unit 36 ).
  • slab 26 is divided into two portions, it is to be understood that slab 26 could be divided into more than two portions.
  • transponder devices are provided to be physically associated with each of the portions, and all of the transponder devices have codes which are electrically associated with one another on a database.
  • Each of the units 36 and 38 of FIG. 4 can be subjected to further processing wherein the units are split into smaller units, and ultimately formed into meat products which are packaged and distributed.
  • Each of the smaller units preferably has a transponder assembly provided to be physically associated therewith, and each of codes from the transponder assemblies are preferably electrically associated with one another on a database.
  • transponder devices physically associated with individual meat units formed from carcasses. Ultimately, such units will typically be packaged for subsequent commercial distribution. Preferably, the transponder devices are removed from the meat units prior to packaging the units.
  • the transponder devices corresponding to meat units in a single package will be read with an interrogator, and the codes electrically linked with one another in a database, as well as being linked with an identification of the package. Accordingly, it will be possible for a user to access the database and determine which packages contained meat units of a particular carcass. Then, if a problem is discovered with any particular meat unit, all meat units obtained from the same carcass as the problem meat unit can be specifically tracked, even after the meat units have been packaged and distributed.
  • a method of reading the transponders associated with meat units in a particular package is to place all of the transponder devices removed from the meat units during packaging in a large tray and to interrogate the transponders utilizing so-called anti-collision methodology.
  • the meat spike assembly of FIG. 3 is but one embodiment of a meat spike assembly encompassed by the present invention.
  • Another embodiment meat spike encompassed by the present invention is shown as an identification assembly 140 in FIG. 5 .
  • Assembly 140 comprises a housing 142 having a spike 144 extending therefrom.
  • Housing 142 is configured to house a transponder device (not shown) therein and comprises a pair of planar surfaces 146 and 150 (only the edge of which is visible in the view of FIG. 5 ) joined by a sidewall 148 .
  • surfaces 146 and 150 comprise a circular outer periphery, and sidewall 148 extends around such outer periphery.
  • Sidewall 148 can extend entirely around the outer periphery, or only partially around the periphery.
  • Spike 44 extends from surface 150 .
  • spike 44 and housing 142 both comprise plastic.
  • Plastic is preferred over, for example, metal, in that plastic will not substantially interfere with radio frequency signals passed from a transponder in housing 142 to an interrogator outside of housing 142 .
  • housing 142 and spike 144 can consist essentially of plastic.
  • housing 142 and spike 144 can be comprised by a single piece of plastic.
  • Spike 144 preferably extends to form about 1 inch to about 2 inches from housing 142 , and can extend to, for example, about 1.5 inches from housing 142 .
  • Spike 144 terminates in a bulbous end 152 .
  • Such bulbous end can assist in retaining assembly 140 within a piece of meat.
  • bulbous end 152 can increase a force required to remove assembly 140 relative to, for example, the force required to remove a spike that terminated in a tapered end (shown in FIG. 7 ).
  • end 152 can be constructed, such as, for example, a barbed end.
  • a barbed end is generally not preferred, as the barbs may damage meat upon removal of the barbed spike from the meat.
  • FIG. 6 illustrates a spike assembly 100 a comprising a housing 102 a and a spike 104 a extending from the housing.
  • Housing 102 a can be constructed similarly to the housing 142 of FIG. 5
  • spike 104 a can be constructed similarly to the spike 144 of FIG. 5.
  • a difference between the assembly 100 a of FIG. 6 and the assembly 140 of FIG. 5 is that the spike 104 a of assembly 100 a extends from a sidewall of housing 102 a, rather than from a planar surface.
  • the invention encompasses other embodiments (not shown) wherein multiple spikes extend from a single housing unit. It is further noted that the spike assemblies of FIGS. 5 and 6 can be utilized for identification of other materials and components besides meat.
  • FIGS. 5 and 6 terminate in bulbous ends
  • the invention encompasses other embodiments wherein spikes terminate in other shapes of ends.
  • An exemplary non-bulbous end of a spike is shown in FIG. 7 (wherein a similar numbering is utilized as is utilized in describing the embodiments of FIGS. 5 and 6 , with the suffix “b” utilized to indicate the structure shown in FIG. 7 ).
  • FIG. 7 illustrates an assembly 100 b comprising a spike 104 b having a tapered end.
  • the invention can have application to other processes wherein it is desirable to track units originating from a common source. For instance, in some applications units are distributed as batches. Frequently, the batches will arrive in a large container (the common source) and will subsequently be sub-divided into smaller units which are separately redistributed (for instance, electronic devices, such as, for example, stereos and televisions, can be distributed in crates comprising a plurality of separate devices). If a problem is found in a redistributed unit, it may be desirable to locate all of the units which originated from the same batch to specifically recall such units.
  • a first transponder can be physically associated with the common source 200 , and additional transponder devices 211 a-b associated with units 210 a-b as they are split from the common source as shown in FIG. 8 .
  • the codes of the transponder assemblies corresponding to units split from the common source will preferably be associated with the code of the first transponder unit in a database 220 .
  • the transponders may or may not be removed from the units. If the transponders are removed from the units, preferably the transponder codes are electrically associated with an identification of the individual units prior to distribution.
  • each of the units split from the common source will preferably have a transponder code associated therewith and a user will preferably be able to utilize the database to track all of the units split from the common source once the user identifies either a package into which any of the units from the common source was provided for distribution, or a transponder code associated with any of the units split from the common source.
  • a common source can be a plurality of separated units in a single container or an animal carcass, and in either event considered as comprising a plurality of units physically joined together (the meat carcass can be considered a union of individual meat units).

Abstract

In one aspect, the invention encompasses a method for electronic tracking of units originating from a common source which comprises a plurality of units physically joined with one another. A first transponder is physically associated with the common source, and the source is split to separate it into three or more of the units. A second transponder is physically associated with one of the three or more units, and the second transponder sends a code. The code of the second transponder is electrically associated with an identifier of the common source. In a particular aspect, the common source is an animal carcass.A batch comprises separate units of objects that are physically joined together. RFID tags are attached to each of the units and to the batch. The codes stored in the RFID tags are electrically associated with one another in a database.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,545,604. The reissue applications are the initial reissue application Ser. No. 11/102,887 filed May 8, 2005, a continuation reissue application Ser. No. 11/872,374 filed Oct. 15, 2007, a continuation reissue application Ser. No. 11/872,382 filed Oct. 15, 2007, a continuation application Ser. No. 11/872,390 filed Oct. 15, 2007 and a continuation reissue application Ser. No. 11/872,397 filed Oct. 15, 2007.
TECHNICAL FIELD
The invention pertains to methods of electronic tracking of units originating from a common source, such as, for example, methods for electronic identification of mean units originating from a common animal carcass. The invention further pertains to particular transponder assemblies, such as transponders attached to meat spikes.
BACKGROUND OF THE INVENTION
Radio frequency identification device (RFID's) are commonly utilized for electronically identifying objects. In an exemplary application, a transponder is attached to an object which is to be identified. The transponder can be incorporated into a passive, read-only RFID system which comprises an interrogated used in conjunction with the transponder. The interrogator provides a carrier signal which powers (stimulates) the transponder and causes a signal to be transmitted from the transponder. The signal comprises data which identifies the object associated with the transponder. The signal is received by the interrogator, which is in data communication with a processing system configured to decode and interpret the data.
The interrogator commonly uses a coil antenna to stimulate the transponder. The transponder will frequently comprise a parallel resonant LC circuit, with such circuit being resonant at a carrier frequency of the interrogator.
An exemplary application of a passive, read-only RFID system is for identification of individual animals in a meat-processing plant. A reason for identifying individual animals in a meat-processing plant is to improve meat quality and/or farming processes. For instance, in modern farming practices it is desirable to track an animal throughout its entire lifetime up to, and including, slaughter to aid in understanding the factors that influence meat quality. To accomplish such tracking, an RFID transponder tag can be placed in an animal's ear at time of birth, and utilized to document events occurring within the animal's life. For instance, the RFID transponder can be utilized with interrogators to catalog the feed ingested by the animal, vaccinations provided to the animal, and any growth hormones administered to the animal. The transponder can further be utilized in combination with an interrogator at time of slaughter to catalogue the meat quality of the animal. Transponders can be utilized to track many (of even all) of the individual animals of a population, and information accumulated by the transponders can be studied to relate the effect, if any, of particular farming practices on meat quality.
In an exemplary use of a RFID in a meat-processing plant, transponders are provided on individual animal bodies within the plant to enable tracking of the bodies during processing to enable, for example, meat products from a particular body to be pulled in the event the body is found to be contaminated or diseased.
An exemplary system for utilizing passive, read-only RFID for identification and tracking of individual animals in a meat-processing plant is described with reference to FIG. 1, which illustrates a carcass-transporting device (conveyor) 20, and an interrogator 32 (shown as a computer).
Carcass-transporting device 20 includes a trolley 22 having a hook 24 connected thereto. A track 28 is provided along with trolley 22 can be moved from processing station to processing station within the meat-processing plant. An animal body (carcass) 26 is shown connected with hook 24.
An RFID device is shown generally at 30 as being mounted directly on trolley 22. Device 30 includes a transponder which enables wireless communication to be conducted between device 30 and interrogator 32. Specifically, interrogator 32 can include suitable transmit and receive circuitry to both transmit signals to device 30, and receive signals transmitted from device 30. The wireless communication between interrogator 32 and device 30 can take place through, for example, RF transmissions. A suitable device for conducting RF communication between an interrogator and a transponder is disclosed in pending U.S. patent application Ser. No. 08/705,043, the disclosure of which is expressly incorporated herein by reference. Of course, other transponders and interrogators can be used.
The stage of meat processing shown in FIG. 1 can be a relatively early step in a meat processing sequence. Specifically, carcass 26 corresponds to an animal body which has been skinned and gutted, and in the case of large animal (such as a cow) may correspond to a half of the resulting carcass (with such carcass having been split longitudinally to form the half). For purposes of the remaining discussion, it will be assumed that carcass 26 corresponds to half of a beef body. Of course, in such instances there is another half of the beef body at some other location of the slaughterhouse. Such other half of the beef body can have a separate transponder (analogous to transponder unit 30) associated therewith, and the code signal from the transponders associated with each half of the beef body can be correlated together in a database such that it is recognized that both halves came from the same beef body. Accordingly, if a defect (or disease) is evidenced by either half of the animal body from which carcass 26 originated, the other half of such animal body can be readily tracked within the slaughterhouse and identified.
An identifier of the live animal from which carcass 26 was obtained can also be provided on the database, and the coded signals on the transponders can be electrically associated with such identifier to link the coded signals of the transponders with the identifier in a program such as, for example, a spreadsheet program. Accordingly, information learned about conformation or meat quality during processing of the animal body can be related with other information obtained during the reacting of the live animal and displayed utilizing the program.
A typical slaughterhouse scenario for carcass 26 is as follows. The carcass is passed across a scale to determine a “hot weight” of the carcass. For cattle, such hot weight is determined after the full carcass has been halved into slabs. After the hot weight is determined, the carcass is placed in a first cellular, where it stays for 24 hours. The carcass is then transferred to a second chiller, where it stays for another 24 hours. The meat is passed through two chillers sequentially because such is a convenient way of processing and tracking large quantities of meat. In slaughterhouses wherein a small quantity of meat is processed, the meat may stay in a single chiller for the entire cooling period.
After the carcass has been chilled for a total of 48 hours (24 hours in the first chiller followed by 24 hours in the second chiller), the carcass is weighted to determine a so-called “cold weight” of the carcass and the meat of the carcass is graded by a meat inspector. A comparison of the cold weight to the hot weight can indicate an amount of meat shrinkage, and can be useful in determining a quality of the meat. After a plurality of carcasses are graded, they are divided by grade and sent to fabrication. At fabrication, the carcasses are subdivided into smaller units and packaged for distribution.
FIG. 2 illustrates an initial step of a fabrication process. Specifically, carcass 26 (which is, for purposes of the following discussion, a slab corresponding to half of an animal body) is split to form two units corresponding to a front quarter 36 (also referred to as a shank) and a hind quarter 38. It is noted in referring to FIG. 2 that a meat spike 40 has been inserted into slab 26 and has a tag 42 extending there from. Such spike can be inserted by inspectors and other persons associated with meat processing to attach information such as, for example, identification or USDA information to slab 26.
After slab 26 is split into units 36 and 38, a separate spike can be inserted into unit 36 to provide additional identifying information associated with unit 36.
Units 36 and 38 are conveyed to areas of the slaughterhouse wherein such units are subdivided into portions suitable for distribution, and then packaged. A common package will be a box containing particular cuts of meat, such as, for example, steaks or roasts. A single box will generally contain cuts of meat from several animal carcasses.
A difficulty of present meat processing methodologies is in tracking the meat through a slaughterhouse. Specifically, it can be desirable to track meat entirely from the time an animal enters a slaughterhouse until the animal is packaged, and to thereby have a record of exactly which packages the meat from the animal was distributed in. Then, if a problem is discovered with any of the meat from the animal, it can be a simple matter to recall all of the packages that contain other meat from the animal. For instance, if bacterial contamination of a meat product is discovered, it is desirable recall all meat originating from the same carcass as the contaminated meat product.
As another example of the desirability of tracking an animal carcass from the time it enters a slaughterhouse until the time it is packaged for distribution is a scenario wherein a meat product is found to have exceptional qualities. In such circumstances, it can be desirable to track the meat product back to the originating animal and the farming practices which developed such particular high quality product.
SUMMARY OF THE INVENTION
In one aspect, the invention encompasses a method for electronic tracking of units originating from a common source. The common source comprises a plurality of units physically joined with one another. A first transponder is physically associated with the common source, and the source is split to separate it into three or more of the units. A second transponder is physically associated with one of the three or more units, and the second transponder sends a code. The code of the second transponder is electrically associated with an identifier of the common source.
In another aspect, the invention encompasses a method for electronic identification of meat units originating from a common animal carcass. An animal carcass is provided on a conveyor and conveyed through a meat processing plant. The animal carcass initially has a first transponder physically associated therewith, and the first transponder sends a code which is electrically associated with an identifier of the animal carcass. The animal carcass is split into at least two first units, and one or more of the first units is physically separated from the first transponder after such splitting. One or more second transponders are physically associated with at least one of the first units that were physically separated from the first transponder by the first splitting. The second transponders second codes. The codes of the second transponders are electrically associated with the identifier of the animal carcass.
In yet another aspect, the invention encompasses an assembly comprising a transponder to a meat spike. In one embodiment, a method and a system, to implement the method, are provided to receive a batch comprising a plurality of separated units that have been physically joined together by packaging for shipment, wherein a first passive radio frequency identification (RFID) tag is physically associated with the batch and is configured to transmit a first code. The first code is associated with the batch in a database. The plurality of units are physically separated and redistributed, wherein each of the plurality of separated units is physically associated with each of a plurality of passive RFID tags, respectively, and each of the plurality of RFID tags is configured to transmit one of a plurality of codes, respectively. The plurality of codes are associated with the batch in a database.
BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
FIG. 1 shows a prior art carcass-tranpsorting device, and shows a carcass at preliminary stage of prior art meat processing.
FIG. 2 shows the carcass of FIG. 1 at a prior art meat-processing stage subsequent to that of FIG. 1.
FIG. 3 is a perspective view of a meat spike assembly configured in accordance with an aspect of the present invention.
FIG. 4 is a view of a carcass shown data processing step similar to that of FIG. 2, wherein the processing step is conducted in accordance with a method of the present invention.
FIG. 5 is a perspective view of a second embodiment meat spike assembly configured in accordance with an aspect of the present invention.
FIG. 6 is a perspective view of a third embodiment meat spike assembly configured in accordance with an aspect of the present invention.
FIG. 7 is a perspective view of a fragmentary portion of a meat spike assembly configured in accordance with yet another aspect of the present invention.
FIG. 8 shows a view of a common source and associated units in accordance with one aspect of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
In one aspect, the invention is a recognition that a problem which occurs during the above-discussed processing of FIG. 2 is that after the animal carcass 26 is split into two parts, one of the two parts (specifically, unit 36) is no longer associated with transponder 30, and accordingly, is no longer electronically tracked. Accordingly, the invention encompasses methodologies for maintaining the electronic tracking of meat unit after such units are split from a carcass.
One method of tracking meat units after they are split from a carcass is to physically associate one or more transponder units with such units during meat processing. Such method can be accomplished utilizing a meat spike and transponder assembly, such as the assembly 100 shown in FIG. 3. Assembly 100 comprises a meat spike 102 and a transponder device 104 joined to such meat spike. Transponder device 104 comprises circuitry (not shown) attached to a substrate. The substrate can comprise, for example, metal or plastic. In the shown embodiment, the substrate is provided in a circular shape and has an orifice 106 extending through about a center of the circular shape. The transponder circuitry of device 104 preferably defines a transponder comprising a radio frequency identification device, and more preferably defines a transponder comprising a passive, read-only RFID.
Meat spike 102 comprises a rod having a pair of opposing ends 110 and 112. End 110 is pointed, and end 112 comprises a holder in the shape of a loop. The substrate of transponder device 104 is slid over spike 102 and retained from sliding over end 112 by the loop of end 112.
The loop of meat spike 102 can enable prior art tags (such as, for example, tag 42 of FIG. 2) to be utilized with assembly 100. The invention, of course, contemplates other embodiments of assembly 100 wherein spike 102 comprises other configurations configured to retain transponder device 104. Such other configurations can include, for example, configurations lacking the loop of end 112 and instead having transponder device 104 glued, welded or otherwise adhesive to spike 102. Further, the invention encompasses embodiments wherein transponder device 104 is retained in a manner similar to that by which prior art tags (such as tag 42) are retained by the looped end of a metal spike. Specifically, device 104 can be retained by a wire or string wrapped within the loop of end 112.
A method of the present invention is described with reference to FIG. 4. FIG. 4 shows a slab 26 at a processing step comparable to that described above with reference to prior art FIG. 2, and in referring to FIG. 4 similar numbering will be utilized as was utilized above in describing FIG. 2. The slab 26 of FIG. 4 has been split into tow units (36 and 38) and unit 26 is physically separated from hanger 24 such that it is no longer tracked by transponder 30. However, a second transponder 120 is physically associated with unit 36 utilizing a meat spike assembly 130 of the type described with reference to FIG. 3. Specifically, meat spike assembly 130 comprises a meat spike 122 similar to the meat spike 102 of FIG. 3, and a transponder device 120 similar to device 104 of FIG. 3.
Transponder device 120 sends a code to interrogator 32. Preferably, interrogator 32 is in electrical communication with a database, and preferably the code from transponder 120 is electrically associated with both the code from transponder 30 and an identifier of slab 26 in the database. In a particular embodiment of the invention, a plurality of transponder assemblies 130 can be provided at a location in a meat processing plant wherein slabs are split into hind quarters and front quarters. A person could then retrieve one of the assemblies 130 from the plurality an interrogate the transponder device 120 with a interrogator device to register a code of the transponder device 120 within the interrogator. Preferably, the interrogator device would also be configured to ascertain a code from the transponder 30 previously associated with slab 26 and to link the transponder codes with one another in a database.
After the transponder codes are linked with one another in the database, a user can input a code from either transponder device 30 or transponder device 120 and ascertain the codes of other transponder devices which had been utilized to mark a portion of the animal body corresponding to slab 26. In preferred embodiments, an identifier of the live animal from which slab 26 was obtained will also be in the database, and the user will thus be able to utilize the code of either transponder device 30 or 120 to ascertain an identification of the animal from which slab 26 was obtained.
FIG .4 shows that both of transponder devices 30 and 120 are simultaneously sending a signal to interrogator 32. In practice, such would generally not be the case. Rather, transponder device 30 and transponder device 120 would be sequentially interrogated by device 32.
Transponder assembly 130 can be inserted into unit 36 either before, during, or after the splitting of unit 36 from slab 26. It is noted, however, that second transponder assembly 130 will generally be added after slab 26 has been hanging from hook 24, and therefore after slab 26 is physically associated with transponder unit 30. Accordingly, first transponder device 30 will be associated with slab 26 for a period of time during which second transponder assembly 130 is not physically associated with slab 26.
Although in the shown embodiment first transponder assembly 30 is shown associated with a trolley from which slab 26 is hung, it is to be understood that the invention encompasses other embodiments (not shown) wherein first transponder device 30 is physically associated with slab 26 through other methodologies. For instance, first transponder device 30 could be associated with a meat hook in an assembly analogous to that of assembly 130 and associated with slab 26 by inserting the meat hook into slab 26. In such embodiments, the first transponder device assembly could be inserted into either the hind quarter portion of slab 26 or the front quarter portion of slab 26 (the portion which becomes unit 36).
Although in the shown embodiment slab 26 is divided into two portions, it is to be understood that slab 26 could be divided into more than two portions. Preferably, regardless of the number of portions that slab 26 is divided into, transponder devices are provided to be physically associated with each of the portions, and all of the transponder devices have codes which are electrically associated with one another on a database.
Each of the units 36 and 38 of FIG. 4 can be subjected to further processing wherein the units are split into smaller units, and ultimately formed into meat products which are packaged and distributed. Each of the smaller units preferably has a transponder assembly provided to be physically associated therewith, and each of codes from the transponder assemblies are preferably electrically associated with one another on a database.
The above-described methodology provides transponder devices physically associated with individual meat units formed from carcasses. Ultimately, such units will typically be packaged for subsequent commercial distribution. Preferably, the transponder devices are removed from the meat units prior to packaging the units. In particular embodiments of the invention, the transponder devices corresponding to meat units in a single package will be read with an interrogator, and the codes electrically linked with one another in a database, as well as being linked with an identification of the package. Accordingly, it will be possible for a user to access the database and determine which packages contained meat units of a particular carcass. Then, if a problem is discovered with any particular meat unit, all meat units obtained from the same carcass as the problem meat unit can be specifically tracked, even after the meat units have been packaged and distributed.
A method of reading the transponders associated with meat units in a particular package is to place all of the transponder devices removed from the meat units during packaging in a large tray and to interrogate the transponders utilizing so-called anti-collision methodology.
The meat spike assembly of FIG. 3 is but one embodiment of a meat spike assembly encompassed by the present invention. Another embodiment meat spike encompassed by the present invention is shown as an identification assembly 140 in FIG. 5. Assembly 140 comprises a housing 142 having a spike 144 extending therefrom. Housing 142 is configured to house a transponder device (not shown) therein and comprises a pair of planar surfaces 146 and 150 (only the edge of which is visible in the view of FIG. 5) joined by a sidewall 148. In the shown embodiment, surfaces 146 and 150 comprise a circular outer periphery, and sidewall 148 extends around such outer periphery. Sidewall 148 can extend entirely around the outer periphery, or only partially around the periphery.
Spike 44 extends from surface 150. In a preferred embodiment, spike 44 and housing 142 both comprise plastic. Plastic is preferred over, for example, metal, in that plastic will not substantially interfere with radio frequency signals passed from a transponder in housing 142 to an interrogator outside of housing 142. In particular embodiments, housing 142 and spike 144 can consist essentially of plastic. Further, housing 142 and spike 144 can be comprised by a single piece of plastic. Spike 144 preferably extends to form about 1 inch to about 2 inches from housing 142, and can extend to, for example, about 1.5 inches from housing 142.
Spike 144 terminates in a bulbous end 152. Such bulbous end can assist in retaining assembly 140 within a piece of meat. Specifically, once spike 144 is inserted into the meat, bulbous end 152 can increase a force required to remove assembly 140 relative to, for example, the force required to remove a spike that terminated in a tapered end (shown in FIG. 7). It is noted that other configurations of end 152 can be constructed, such as, for example, a barbed end. However, a barbed end is generally not preferred, as the barbs may damage meat upon removal of the barbed spike from the meat.
Another configuration of a meat spike assembly is shown in FIG. 6. In referred to FIG. 6, similar numbering will be used as was utilized above in describing the embodiment of FIG. 5, with the suffix “a” utilized to indicate structures shown in FIG. 6. FIG. 6 illustrates a spike assembly 100a comprising a housing 102a and a spike 104a extending from the housing. Housing 102a can be constructed similarly to the housing 142 of FIG. 5, and spike 104a can be constructed similarly to the spike 144 of FIG. 5. A difference between the assembly 100a of FIG. 6 and the assembly 140 of FIG. 5 is that the spike 104a of assembly 100a extends from a sidewall of housing 102a, rather than from a planar surface.
It is noted that although only one spike is shown extending from transponder housings in the shown embodiments of FIGS. 5 and 6, the invention encompasses other embodiments (not shown) wherein multiple spikes extend from a single housing unit. It is further noted that the spike assemblies of FIGS. 5 and 6 can be utilized for identification of other materials and components besides meat.
Although the spikes shown in FIGS. 5 and 6 terminate in bulbous ends, the invention encompasses other embodiments wherein spikes terminate in other shapes of ends. An exemplary non-bulbous end of a spike is shown in FIG. 7 (wherein a similar numbering is utilized as is utilized in describing the embodiments of FIGS. 5 and 6, with the suffix “b” utilized to indicate the structure shown in FIG. 7). FIG. 7 illustrates an assembly 100b comprising a spike 104b having a tapered end.
It is noted although the invention is described herein with reference to methodologies of forming meat, the invention can have application to other processes wherein it is desirable to track units originating from a common source. For instance, in some applications units are distributed as batches. Frequently, the batches will arrive in a large container (the common source) and will subsequently be sub-divided into smaller units which are separately redistributed (for instance, electronic devices, such as, for example, stereos and televisions, can be distributed in crates comprising a plurality of separate devices). If a problem is found in a redistributed unit, it may be desirable to locate all of the units which originated from the same batch to specifically recall such units.
In methodology of the present invention, a first transponder can be physically associated with the common source 200, and additional transponder devices 211 a-b associated with units 210 a-b as they are split from the common source as shown in FIG. 8. The codes of the transponder assemblies corresponding to units split from the common source will preferably be associated with the code of the first transponder unit in a database 220. When the units are redistributed, the transponders may or may not be removed from the units. If the transponders are removed from the units, preferably the transponder codes are electrically associated with an identification of the individual units prior to distribution. In any event, each of the units split from the common source will preferably have a transponder code associated therewith and a user will preferably be able to utilize the database to track all of the units split from the common source once the user identifies either a package into which any of the units from the common source was provided for distribution, or a transponder code associated with any of the units split from the common source.
As is apparent from the discussion above, for purposes of the present invention a common source can be a plurality of separated units in a single container or an animal carcass, and in either event considered as comprising a plurality of units physically joined together (the meat carcass can be considered a union of individual meat units).
In compliance with the same, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.

Claims (82)

1. A method for electronic tracking of units originating from a common source, comprising:
physically associating a first transponder with a common source, the source comprising a plurality of units physically joined with one another, the first transponder sending a code which is electrically associated with common source;
splitting the common source to separate the source into two or more of the units;
physically associating a second transponder with one of the two or more units, the second transponder sending a code; and
electrically associating the code of the second transponder with an identifier of the common source in a database.
2. The method of claim 1 wherein the first transponder is associated with the common source for a period of time during which the second transponder is not physically associated with the common source.
3. The method of claim 2 wherein the second transponder is not associated with any portion of the common source until after the splitting of the common source into two or more units.
4. The method of claim 1 wherein the first and second transponders comprise radio frequency identification devices, and wherein the sending a code comprises stimulating the radio frequency identification devices with an interrogator and transmitting data from the stimulated devices to the interrogator.
5. The method of claim 1 wherein the physically associating the second transponder occurs after the splitting of the source into two or more units.
6. The method of claim 1 wherein the common source comprises at least a portion of an animal body, wherein the units are different cuts of meat comprised by the animal body, and wherein the splitting comprises cutting the animal body into said units.
7. A method for electronic identification of meat units originating from a common animal carcass, comprising:
physically associating a first transponder with an animal carcass, the first transponder sending a code which is electrically associated with an identifier of the animal carcass;
splitting the animal carcass into two or more units and physically associating a second transponder with one of the two or more units, the second transponder being joined to a meat spike, the physically associating the second transponder with said one of the units comprising inserting the meat spike into said one of the units, the second transponder sending a code; and
electrically associating the code of the second transponder with the identifier of the animal carcass.
8. The method of claim 7 wherein the first transponder is joined to a meat spike, and wherein the physically associating the first transponder with said carcass comprises inserting the meat spike into said carcass.
9. The method of claim 7 wherein the carcass is hung from a hanger on a trolley, and wherein the physically associating the first transponder with said carcass comprises joining the first transponder to the hanger.
10. A method for electronic identification of meat units originating from a common animal carcass, comprising:
providing an animal carcass on a conveyor and conveying the carcass through a meat processing plant, the animal carcass being no more than half of an animal body and initially having a first transponder physically associated therewith, the first transponder sending a code which is electrically associated with an identifier of the animal carcass;
first splitting the animal carcass into at least two first units, one or more of the first units being physically separated from the first transponder after the first splitting;
physically associating one or more second transponders with at least one of the first units which are physically separated from the first transponder after the first splitting, the second transponders sending codes; and
electrically associating the codes of the second transponders with the identifier of the animal carcass.
11. The method of claim 10, wherein the first and second transponders comprise radio frequency indentification devices, and wherein the sending a code comprises stimulating the radio frequency indentification devices within an interrogator and transmitting data from the stimulated devices of the interrogator.
12. The method of claim 10 wherein the first transponder is joined to a meat spike, and wherein the physically associating the first transponder with said carcass comprises inserting the meat spike into said carcass.
13. The method of claim 10 wherein the second transponders are joined to meat spikes, and wherein the physically associating the second transponders with said at least one of the first units comprises inserting the meat spikes into said at least one of the first units.
14. The method of claim 10 wherein the carcass is hung from a hanger on a trolley, and wherein the physically associating the first transponder with said carcass comprises joining the first transponder to the hanger.
15. The method of claim 10 further comprising:
second splitting at least one of the first units at least two second units, one or more of the second units being physically separated from both the first and second transponders after the second splitting;
physically associating one or more third transponders with at least one of the second units which are physically separated from the first and second transponders after the second splitting, the third transponders sending codes; and
electrically associating the codes of the third transponders with the identifier of the animal carcass.
16. The method of claim 15 further comprising:
packaging a collection of units comprising one or more packaged units selected from the group consisting of first units, second units and mixtures thereof;
removing transponders from the units of the collection before the packaging;
providing a package identifier associated with the package in a database; and
associating an identifier of the packaged units with the identifier of the animal carcass in the database, the identifier of the animal carcass being ascertained by interrogating the transponders physically associated with the units of the collection before the packaging.
17. A method for electronic identification of an originating animal carcass for packaged meat units, comprising:
providing a first animal carcass on a conveyor and conveying the first animal carcass through a meat processing plant, the first animal carcass initially having a first transponder physically associated therewith, the first transponder sending a code which is electrically associated with an identifier of the first animal carcass;
first splitting the first animal carcass into at least two first units, one or more of the first units being physically separated from the first transponder after the first splitting;
physically associating one or more second transponders with at least one of the first units which are physically separated from the first transponder after the first splitting, the second transponder sending codes;
electrically associating the codes of the second transponders with the identifier of the first animal carcass;
providing a second animal carcass on a conveyor and conveying the second animal carcass through the meat processing plant, the second animal carcass initially having a third transponder physically associated therewith, the third transponder sending a code which is electrically associated with an identifier of the second animal carcass;
second splitting the second animal carcass into at least two second units, one or more of the second units being physically separated from the third transponder after the second splitting;
physically associating one or more fourth transponders with at least one of the second units which are physically separated from the third transponder after the second splitting, the fourth transponders sending codes;
electrically associating the codes of the fourth transponders with the identifier of the second animal carcass;
packaging a collection of units comprising one or more packaged units selected from the group consisting of first units, second units and mixtures thereof;
removing transponders from the units of the collection before the packaging;
providing a package identifier associated with the package in a database; and
electrically associating an identifier of the packaged units with the identifiers of the first and second animal carcasses in the database, the identifiers of the first and animal carcasses being ascertained by interrogating the transponders physically associated with the units of the collection before the packaging.
18. The method of claim 17 wherein the first, second, third and fourth transponders comprise radio frequency identification devices, and wherein the sending of codes from the first, second third and fourth transponders comprises stimulating the radio frequency identification devices with one or more interrogators and transmitting data from the stimulated devices to the interrogators.
19. The method of claim 17 wherein the first, second, third and fourth transponders comprise radio frequency identification devices, and wherein the ascertaining of the interrogating the transponders stimulating the transponders removed from the units of the collection before the packaging with an interrogator and transmitting data from the simulated transponders to the interrogator.
20. The method of claim 17 wherein the second and fourth transponders are joined to meat spikes, and wherein the physically associating the second fourth transponders with said first and second units comprises inserting the meat spikes into the first and second units.
21. An identification assembly comprising:
a housing having an outer periphery;
a transponder entirely contained within the housing; and
at least one spike removably secured to the housing.
22. The assembly of claim 21 wherein the housing and spike comprise plastic.
23. The assembly of claim 21 wherein the housing has only one spike extending therefrom.
24. The assembly of claim 21 wherein the housing and spike consist essentially of plastic.
25. The assembly of claim 21 wherein the housing comprises a pair of planar surfaces joined by a sidewall, and wherein the at least one spike extends from one of the surfaces.
26. The assembly of claim 25 wherein the planar surfaces comprise circular outer peripheries, and wherein the sidewall extends around the circular outer peripheries.
27. The assembly of claim 21 wherein the housing comprises a pair of planar surfaces joined by a sidewall, and wherein the at least one spike is spaced from the sidewall.
28. The assembly of claim 27 wherein the planar surfaces comprise circular outer peripheries, and wherein the sidewall extends around the circular outer peripheries.
29. A metal identification assembly comprising a transponder removably attached to a meat spike.
30. The assembly of claim 29 wherein:
the meat spike comprises:
a rod having a pair of opposing ends;
a point at one of the opposing ends of the rod; and
a holder at an other of the opening ends of the rod; and
the transponder is attached to a substrate configured to slide over the rod and be retained by the holder.
31. The assembly of claim 29 wherein:
the meat spike comprises:
a rod having a pair of opposing ends;
a point at one of the opposing ends of the rod; and
a loop at an other of the opposing ends of the rod; and
the transponder is attached to a substrate configured to be retained in the rod by the loop.
32. A meat identification assembly comprising a radio frequency identification device (RFID) attached to a meat spike, and wherein:
the meat spike comprises:
a rod having a pair of opposing ends;
a point at one of the opposing ends of the rod; and
a holder at an other of the opposing ends of the rod; and
the RFID is attached to a substrate configured to slide over the rod and be retained by the holder.
33. The assembly of claim 32 wherein the RFID is configured as a passive device.
34. The assembly of claim 32 wherein:
the holder comprises a loop at the other of the opposing ends of the rod; and
the substrate is configured to be retained to the rod by the loop.
35. The method of claim 1 wherein the physically associating comprises physically associating the first transponder with a monolithic common source.
36. An identification assembly comprising a transponder housed in an assembly having at least one spike extending therefrom, and wherein the housing comprises a pair of planar surfaces joined by a sidewall, and wherein the at least one spike extends from the sidewall, and wherein the at least one spike is configured for insertion into an object while maintaining substantially the same shape after insertion as before insertion, and wherein the at least one spike alone secures the identification assembly to the object; and
wherein the planar surfaces comprise circular outer peripheries, and wherein the sidewall extends around the circular outer peripheries.
37. The assembly of claim 36 wherein the at least one spike is rigid.
38. A meat identification assembly comprising a transponder attached to a meat spike, the meat spike comprising:
a rod having a pair of opposing ends;
a point at one of the opposing ends of the rod; and
a holder at an other of the opposing ends of the rod; and
the transponder is attached to a substrate configured to slide over the rod and be retained by the holder.
39. A meat identification assembly comprising a transponder attached to a meat spike, the meat spike comprising:
a rod having a pair of opposing ends;
a point at one of the opposing ends of the rod; and
a loop at an other of the opposing end of the rod; and
the transponder is attached to a substrate configured to be retained to the rod by the loop.
40. A meat identification assembly comprising a radio frequency identification device (RFID) attached to a meat spike, the meat spike comprising:
a rod having a pair of opposing ends;
a point at one of the opposing ends of the rod; and
a holder at an other of the opposing ends of the rod; and
the RFID is attached to a substrate configured to slide over the rod and be retained by the holder.
41. A meat identification assembly comprising a radio frequency identification device (RFID) attached to a meat spike, the meat spike comprising:
a rod having a pair of opposing ends;
a point at one of the opposing ends of the rod; and
a loop at an other of the opposing ends of the rod; and
the RFID is attached to a substrate configured to be retained to the rod by the loop.
42. An identification assembly comprising a transponder housed in an assembly having at least one spike extending therefrom, and wherein the housing comprises a pair of planar surfaces joined by a sidewall, and wherein the at least one spike extends from the sidewall, and wherein the at least one spike is configured for insertion into an object while maintaining substantially the same shape after insertion as before insertion; and
wherein the planar surfaces comprise circular outer peripheries, and wherein the sidewall extends around the circular outer peripheries.
43. A meat identification assembly comprising a transponder attached to a meat spike, the meat spike comprising:
a rod having a pair of opposing ends;
a point at one of the opposing ends of the rod; and
a holder at an other of the opposing ends of the rod; and
the transponder is attached to a substrate configured to slide over the rod and be retained by the holder.
44. A meat identification assembly comprising a transponder attached to a meat spike, the meat spike comprising:
a rod having a pair of opposing ends;
a point at one of the opposing ends of the rod; and
a loop at an other of the opposing ends of the rod; and
the transponder is attached to a substrate configured to be retained to the rod by the loop.
45. A meat identification assembly comprising a radio frequency identification device (RFID) attached to a meat spike, and wherein:
the meat spike comprises:
a rod having a pair of opposing ends;
a point at one of the opposing ends of the rod; and
a loop at an other of the opposing ends of the rod; and
the RFID is attached to a substrate configured to be retained to the rod by the loop.
46. A method for tracking items, comprising:
receiving a batch comprising a plurality of separated units that have been physically joined together by packaging for shipment, wherein a first passive radio frequency identification (RFID) tag is physically associated with the batch and is configured to transmit a first code;
associating the first code with the batch in a database;
physically separating the plurality of separated units and redistributing the plurality of separated units, wherein each of the plurality of separated units is physically associated with each of a plurality of passive RFID tags, respectively, and each of the plurality of RFID tags is configured to transmit one of a plurality of codes, respectively; and
associating the plurality of codes with the batch in a database.
47. The method of claim 46, wherein the step of associating the first code with the batch comprises reading the first code from the first RFID tag using an interrogator that is in communication with the database, and associating the plurality of codes with the batch comprises reading the plurality of codes from the plurality of RFID tags using an interrogator that is in communication with the database.
48. A system, comprising:
a batch comprising a plurality of separated units that have been physically joined together by packaging for shipment;
a first passive radio frequency identification (RFID) tag physically attached to and associated with the batch and configured to transmit a first code;
a plurality of passive RFID tags, each of the plurality of RFID tags physically attached to and associated with each of the plurality of separated units, respectively, each of the plurality of RFID tags configured to transmit one of a plurality of codes, respectively;
a database that associates both the first code and the plurality of codes with the batch; and
an interrogator configured to read the first code from the first RFID tag and to provide information related to the first code to the database.
49. The system of claim 48, wherein the interrogator is further configured to read the plurality of codes from the plurality of RFID tags and to provide information related to the plurality of codes to the database.
50. The system of claim 48, wherein the first RFID tag comprises an adhesive backing, and each of the plurality of RFID tags comprises an adhesive backing, respectively.
51. A method, comprising:
receiving a batch comprising a plurality of separate units that have been physically joined together by packaging for shipment, wherein a first radio frequency identification (RFID) tag is physically associated with the batch and is configured to transmit a first code;
reading the first code from the first RFID tag;
providing access to a database in which the first code is associated with the batch;
physically separating the plurality of separate units and redistributing the plurality of separate units, wherein each of the plurality of separate units is physically associated with each of a plurality of RFID tags, respectively, and each of the plurality of RFID tags is configured to transmit one of a plurality of codes, respectively;
reading the plurality of codes from the plurality of RFID tags; and
providing access to a database in which the plurality of codes are associated with the batch.
52. The method of claim 51, wherein the step of providing access to a database in which the first code is associated with the batch comprises coupling an interrogator to the database.
53. The method of claim 52, wherein the step of providing access to a database in which the plurality of codes are associated with the batch comprises coupling an interrogator to the database.
54. A method, comprising:
receiving a plurality of separate units physically bound together by packaging material to form a batch, wherein a batch radio frequency identification (RFID) tag is physically associated with the batch and stores a batch code that is electrically associated with the batch;
reading the batch RFID tag to determine the batch code;
physically separating the plurality of separate units from the packaging material, wherein each respective separate unit of the batch has affixed thereto a respective unit RFID tag of a plurality of unit RFID tags, each respective unit RFID tag stores a respective unit code of a plurality of unit codes, and each respective unit code is electrically associated with the respective separate unit to which the respective unit RFID tag is affixed; and
reading the plurality of unit RFID tags to determine the plurality of unit codes, wherein each of the plurality of unit codes is electrically associated with the batch code.
55. The method of claim 54, further comprising providing access to a database in which each of the plurality of unit codes is associated with the batch code.
56. The method of claim 55, wherein the batch code is associated with the batch in the database.
57. The method of claim 56, wherein the step of providing access to a database in which the plurality of codes are associated with the batch comprises coupling an interrogator to the database.
58. The method of claim 57, wherein each of the plurality of unit codes is associated with one another in the database.
59. The method of claim 54, further comprising detecting a problem with at least one of the plurality of separate units, and accessing a database to determine the plurality of separate units associated with the batch.
60. The method of claim 54, wherein reading the plurality of unit RFID tags comprises interrogating the plurality of unit RFID tags together using an anti-collision methodology.
61. The method of claim 60, further comprising redistributing the plurality of separate units.
62. The method of claim 61, further comprising providing access to a database in which each of the plurality of unit codes is associated with the batch code.
63. The method of claim 54, further comprising redistributing the plurality of separate units.
64. The method of claim 63, further comprising providing access to a database in which each of the plurality of unit codes is associated with the batch code.
65. A method, comprising:
physically packing together a plurality of separate units to form a packaged batch, wherein each of a plurality of first RFID tags is physically associated with a respective separate unit of the batch, and a second RFID tag is physically associated with the batch;
reading a plurality of first codes from the plurality of first RFID tags, wherein each of the plurality of first codes is electrically associated with a respective separate unit of the batch;
reading a second code from the second RFID tag; and
associating the plurality of first codes to the second code in a database.
66. The method of claim 65, further comprising accessing the database, including providing an interrogator coupled to the database.
67. The method of claim 66, wherein the second code is associated with the batch in the database.
68. The method of claim 66, wherein each of the plurality of first codes is associated with one another in the database.
69. The method of claim 65, wherein reading the plurality of first codes comprises interrogating the plurality of first RFID tags together using an anti-collision methodology.
70. The method of claim 69, further comprising accessing a database in which the second code is associated with the batch.
71. The method of claim 70, wherein each of the plurality of first codes is associated with one another in the database.
72. The method of claim 70, further comprising attaching each of the plurality of first RFID tags to its respective separate unit of the batch.
73. The method of claim 72, wherein attaching each of the plurality of first RFID tags to its respective separate unit of the batch comprises transporting the respective separate unit along a conveyor.
74. The method of claim 65, further comprising electrically associating each of the plurality of first codes to its respective separate unit of the batch.
75. The method of claim 74, further comprising electrically associating the second code to the batch.
76. The method of claim 75, further comprising attaching each of the plurality of first RFID tags to its respective separate unit of the batch, including transporting the respective separate unit along a conveyor.
77. A system, comprising:
a batch comprising a plurality of separate units that have been physically packaged together;
a plurality of first radio frequency identification (RFID) tags, each of the plurality of first RFID tags physically attached to each of the plurality of separate units, respectively, wherein each of the plurality of first RFID tags is configured to transmit one of a plurality of first codes, respectively;
a second RFID tag physically attached to the batch and configured to transmit a second code;
an interrogator configured to read the second code from the second RFID tag; and a computer configured to provide access to a database that associates the second code with the plurality of separate units.
78. The system of claim 77, further comprising an interrogator configured to read the plurality of first codes from the plurality of first RFID tags.
79. The system of claim 77, wherein each of the plurality of first RFID tags comprises an adhesive backing.
80. The system of claim 77, further comprising a conveyor to transport the plurality of separate units.
81. The system of claim 77, wherein the database further associates the second code with the batch.
82. The system of claim 81, wherein the database further associates each of the plurality of first codes with each other of the plurality of first codes.
US11/102,887 1999-07-01 2005-04-08 System and method for electronic tracking of units associated with a batch Expired - Lifetime USRE41562E1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/102,887 USRE41562E1 (en) 1999-07-01 2005-04-08 System and method for electronic tracking of units associated with a batch
US11/872,382 USRE41815E1 (en) 1999-07-01 2007-10-15 System and method for electronic tracking of units associated with a batch
US11/872,374 USRE42821E1 (en) 1999-07-01 2007-10-15 Method for electronic tracking of units associated with a batch
US11/872,390 USRE42736E1 (en) 1999-07-01 2007-10-15 Methods for electronic tracking of units originating from a common source
US13/269,853 USRE44409E1 (en) 1999-07-01 2011-10-10 Method for electronic tracking of units associated with a batch
US13/959,598 US20140035730A1 (en) 1999-07-01 2013-08-05 Method for electronic tracking of units associated with a batch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/346,635 US6545604B1 (en) 1999-07-01 1999-07-01 Methods for electronic tracking of units originating from a common source, and assemblies comprising transponders attached to meat spikes
US11/102,887 USRE41562E1 (en) 1999-07-01 2005-04-08 System and method for electronic tracking of units associated with a batch

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/346,635 Reissue US6545604B1 (en) 1999-07-01 1999-07-01 Methods for electronic tracking of units originating from a common source, and assemblies comprising transponders attached to meat spikes
US09/346,635 Continuation US6545604B1 (en) 1999-07-01 1999-07-01 Methods for electronic tracking of units originating from a common source, and assemblies comprising transponders attached to meat spikes

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/346,635 Continuation US6545604B1 (en) 1999-07-01 1999-07-01 Methods for electronic tracking of units originating from a common source, and assemblies comprising transponders attached to meat spikes
US11/872,374 Continuation USRE42821E1 (en) 1999-07-01 2007-10-15 Method for electronic tracking of units associated with a batch

Publications (1)

Publication Number Publication Date
USRE41562E1 true USRE41562E1 (en) 2010-08-24

Family

ID=23360333

Family Applications (7)

Application Number Title Priority Date Filing Date
US09/346,635 Ceased US6545604B1 (en) 1999-07-01 1999-07-01 Methods for electronic tracking of units originating from a common source, and assemblies comprising transponders attached to meat spikes
US11/102,887 Expired - Lifetime USRE41562E1 (en) 1999-07-01 2005-04-08 System and method for electronic tracking of units associated with a batch
US11/872,382 Expired - Lifetime USRE41815E1 (en) 1999-07-01 2007-10-15 System and method for electronic tracking of units associated with a batch
US11/872,390 Expired - Lifetime USRE42736E1 (en) 1999-07-01 2007-10-15 Methods for electronic tracking of units originating from a common source
US11/872,374 Expired - Lifetime USRE42821E1 (en) 1999-07-01 2007-10-15 Method for electronic tracking of units associated with a batch
US13/269,853 Expired - Lifetime USRE44409E1 (en) 1999-07-01 2011-10-10 Method for electronic tracking of units associated with a batch
US13/959,598 Abandoned US20140035730A1 (en) 1999-07-01 2013-08-05 Method for electronic tracking of units associated with a batch

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/346,635 Ceased US6545604B1 (en) 1999-07-01 1999-07-01 Methods for electronic tracking of units originating from a common source, and assemblies comprising transponders attached to meat spikes

Family Applications After (5)

Application Number Title Priority Date Filing Date
US11/872,382 Expired - Lifetime USRE41815E1 (en) 1999-07-01 2007-10-15 System and method for electronic tracking of units associated with a batch
US11/872,390 Expired - Lifetime USRE42736E1 (en) 1999-07-01 2007-10-15 Methods for electronic tracking of units originating from a common source
US11/872,374 Expired - Lifetime USRE42821E1 (en) 1999-07-01 2007-10-15 Method for electronic tracking of units associated with a batch
US13/269,853 Expired - Lifetime USRE44409E1 (en) 1999-07-01 2011-10-10 Method for electronic tracking of units associated with a batch
US13/959,598 Abandoned US20140035730A1 (en) 1999-07-01 2013-08-05 Method for electronic tracking of units associated with a batch

Country Status (1)

Country Link
US (7) US6545604B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8645222B1 (en) 2009-03-20 2014-02-04 Jpmorgan Chase Bank, N.A. System and methods for mobile ordering and payment
US20140042221A1 (en) * 2007-05-30 2014-02-13 Accenture Global Services Limited System for determining a relative location of a plurality of items upon a plurality of platforms
US9747480B2 (en) 2011-12-05 2017-08-29 Adasa Inc. RFID and robots for multichannel shopping
US9780435B2 (en) 2011-12-05 2017-10-03 Adasa Inc. Aerial inventory antenna
US10050330B2 (en) 2011-12-05 2018-08-14 Adasa Inc. Aerial inventory antenna
US10476130B2 (en) 2011-12-05 2019-11-12 Adasa Inc. Aerial inventory antenna
US10846497B2 (en) 2011-12-05 2020-11-24 Adasa Inc. Holonomic RFID reader
US11019829B2 (en) 2016-09-29 2021-06-01 Dirigo Food Safety, LLC Modular comestibles processing units
US11093722B2 (en) 2011-12-05 2021-08-17 Adasa Inc. Holonomic RFID reader

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545604B1 (en) 1999-07-01 2003-04-08 Micron Technology, Inc. Methods for electronic tracking of units originating from a common source, and assemblies comprising transponders attached to meat spikes
US7400256B2 (en) * 2000-11-03 2008-07-15 Cargill, Incorporated Chill cooler storage and selection system
US6724309B2 (en) * 2000-11-03 2004-04-20 Excel Corporation Method and apparatus for tracking carcasses
US7766730B2 (en) * 2000-11-03 2010-08-03 Cargill, Incorporated Carcass tracking
US6957333B2 (en) * 2002-09-12 2005-10-18 Symbol Technologies, Inc. System and method for encrypted communications between electronic devices
US7478758B2 (en) * 2003-07-15 2009-01-20 Lsi Corporation Method and apparatus for automatically tracking and communicating data storage device information using RF tags: operating condition, configuration and location
US7860727B2 (en) * 2003-07-17 2010-12-28 Ventana Medical Systems, Inc. Laboratory instrumentation information management and control network
US20060049949A1 (en) * 2004-09-09 2006-03-09 Omron Electronics Llc RFID Potted Mounting Hole, RFID Mounting Clip and Associated Meat Hook Assembly
ES2573847T3 (en) * 2004-11-17 2016-06-10 Gt Acquisition Sub, Inc. Radio frequency animal tracking system
US20070103314A1 (en) * 2004-11-17 2007-05-10 Geissler Randolph K Radio frequency animal tracking system
US7905154B2 (en) * 2004-11-29 2011-03-15 Jones Jr Arthur T Apparatus and method of contaminant detection for food industry
EP1983838B1 (en) * 2005-12-22 2018-08-08 Marel Food Systems hf. Tracing items through a non-sequential process
US8131599B2 (en) 2006-02-27 2012-03-06 Trace Produce, LLC Methods and systems for accessing information related to an order of a commodity
US8306871B2 (en) * 2006-02-27 2012-11-06 Trace Produce, LLC Methods and systems for readily accessing commodity information
US10229441B2 (en) * 2006-02-27 2019-03-12 Trace Produce, LLC Methods and systems for accessing information related to an order of a commodity
US8407103B2 (en) * 2006-02-27 2013-03-26 Trace Produce, LLC Systems for accessing information related to an order of commodity
US7996285B2 (en) * 2006-02-27 2011-08-09 Farmer James G Methods and systems for accessing information related to an order of a commodity
EP1842428B1 (en) 2006-04-04 2009-11-25 Seidic S.A. Electronic and/or visual identifier to ensure traceability in the food industry
US7949154B2 (en) * 2006-12-18 2011-05-24 Cryovac, Inc. Method and system for associating source information for a source unit with a product converted therefrom
US7843350B2 (en) * 2007-01-21 2010-11-30 Destron Fearing Corporation Animal management system including radio animal tag and additional tranceiver(s)
US7978079B2 (en) * 2007-10-12 2011-07-12 Destron Fearing Corporation Electronic tag
US20110203144A1 (en) * 2008-01-07 2011-08-25 Eriginate Corporation Animal tag and method for making same
SE532743C2 (en) 2008-01-08 2010-03-30 Tractechnology Ab Meat Marking Device
US20090273453A1 (en) * 2008-05-05 2009-11-05 Keystone Technology Solutions, Llc Item Identification Using RFID
US8717145B2 (en) * 2009-08-25 2014-05-06 Tyco Fire & Security Services GmbH RFID portal system with RFID tags having various read ranges
KR101268542B1 (en) * 2009-12-21 2013-05-28 한국전자통신연구원 System and method for recognizing a plurality of RFID tags
AR085690A1 (en) * 2011-03-08 2013-10-23 Scl Holdings Ltd IDENTIFIABLE BONE WORK STATIONS REMOTE
WO2012172593A1 (en) * 2011-06-14 2012-12-20 Empire Technology Development Llc Food management system and food management method
US9339042B2 (en) * 2012-03-27 2016-05-17 Lp Solutions Llc Carcass weight control
US9000893B2 (en) * 2012-10-09 2015-04-07 Hana Micron America, Inc. Food source information transferring system and method for a meat-packing facility
CN103150537A (en) * 2013-01-01 2013-06-12 新疆维吾尔自治区畜牧科学院科技信息研究所 Bar code conversion system and bar code conversion method
US10424882B2 (en) 2013-05-09 2019-09-24 Invue Security Products Inc. Security connector
BR102015008710B1 (en) 2014-04-23 2022-10-11 Cnh Industrial America Llc SYSTEM FOR TRACKING A HARVESTED UNIT OF AGRICULTURAL PRODUCT AND METHOD OF USING A RADIO FREQUENCY IDENTIFICATION DEVICE (RFID)
US9984268B2 (en) * 2016-08-31 2018-05-29 Vium, Inc. Code for animal ID marking
CN110189147A (en) * 2019-05-29 2019-08-30 广州影子科技有限公司 Retroactive method and traceability system
AU2020299027A1 (en) * 2019-07-03 2022-02-03 Foodtrace Solutions Pty Ltd Improvements in food tagging and tracking

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847592A (en) 1985-06-14 1989-07-11 N.V. Nederlandsche Apparatenfabriek Nedap Detection plate having pin-shaped attachment means
US5053774A (en) 1987-07-31 1991-10-01 Texas Instruments Deutschland Gmbh Transponder arrangement
US5266925A (en) 1991-09-30 1993-11-30 Westinghouse Electric Corp. Electronic identification tag interrogation method
US5365551A (en) 1992-12-15 1994-11-15 Micron Technology, Inc. Data communication transceiver using identification protocol
US5367289A (en) 1991-11-27 1994-11-22 Sensormatic Electronics Corporation Alarm tag for an electronic article surveillance system
US5565858A (en) * 1994-09-14 1996-10-15 Northrop Grumman Corporation Electronic inventory system for stacked containers
US5886634A (en) 1997-05-05 1999-03-23 Electronic Data Systems Corporation Item removal system and method
US5910776A (en) 1994-10-24 1999-06-08 Id Technologies, Inc. Method and apparatus for identifying locating or monitoring equipment or other objects
US5945909A (en) 1998-06-02 1999-08-31 B&G Plastics, Inc. Article identification and surveillance seal
US6000361A (en) 1994-10-31 1999-12-14 Micro Chemical, Inc. Cattle Management method and system
US6010239A (en) * 1996-03-07 2000-01-04 Hardgrave; William David Automatic item-driven system for deposit and pick-up
US6060992A (en) * 1998-08-28 2000-05-09 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for tracking mobile work-in-process parts
US6100804A (en) 1998-10-29 2000-08-08 Intecmec Ip Corp. Radio frequency identification system
US6130602A (en) 1996-05-13 2000-10-10 Micron Technology, Inc. Radio frequency data communications device
US6166637A (en) 1999-02-09 2000-12-26 Micron Technology, Inc. Apparatuses for electronic identification of a plurality of passing units and methods of electronic identification of a plurality of passing units
US6204764B1 (en) * 1998-09-11 2001-03-20 Key-Trak, Inc. Object tracking system with non-contact object detection and identification
US6496806B1 (en) * 1999-12-16 2002-12-17 Samsys Technologies Inc. Method and system for tracking clustered items
US6545604B1 (en) 1999-07-01 2003-04-08 Micron Technology, Inc. Methods for electronic tracking of units originating from a common source, and assemblies comprising transponders attached to meat spikes
US6669089B2 (en) * 2001-11-12 2003-12-30 3M Innovative Properties Co Radio frequency identification systems for asset tracking

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497140A (en) 1992-08-12 1996-03-05 Micron Technology, Inc. Electrically powered postage stamp or mailing or shipping label operative with radio frequency (RF) communication
US6045652A (en) 1992-06-17 2000-04-04 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
US6229445B1 (en) 1997-01-13 2001-05-08 Tecsec, Incorporated RF identification process and apparatus
US5963134A (en) 1997-07-24 1999-10-05 Checkpoint Systems, Inc. Inventory system using articles with RFID tags

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847592A (en) 1985-06-14 1989-07-11 N.V. Nederlandsche Apparatenfabriek Nedap Detection plate having pin-shaped attachment means
US5053774A (en) 1987-07-31 1991-10-01 Texas Instruments Deutschland Gmbh Transponder arrangement
US5266925A (en) 1991-09-30 1993-11-30 Westinghouse Electric Corp. Electronic identification tag interrogation method
US5367289A (en) 1991-11-27 1994-11-22 Sensormatic Electronics Corporation Alarm tag for an electronic article surveillance system
US5365551A (en) 1992-12-15 1994-11-15 Micron Technology, Inc. Data communication transceiver using identification protocol
US5565858A (en) * 1994-09-14 1996-10-15 Northrop Grumman Corporation Electronic inventory system for stacked containers
US5910776A (en) 1994-10-24 1999-06-08 Id Technologies, Inc. Method and apparatus for identifying locating or monitoring equipment or other objects
US6000361A (en) 1994-10-31 1999-12-14 Micro Chemical, Inc. Cattle Management method and system
US6010239A (en) * 1996-03-07 2000-01-04 Hardgrave; William David Automatic item-driven system for deposit and pick-up
US6130602A (en) 1996-05-13 2000-10-10 Micron Technology, Inc. Radio frequency data communications device
US5886634A (en) 1997-05-05 1999-03-23 Electronic Data Systems Corporation Item removal system and method
US5945909A (en) 1998-06-02 1999-08-31 B&G Plastics, Inc. Article identification and surveillance seal
US6060992A (en) * 1998-08-28 2000-05-09 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for tracking mobile work-in-process parts
US6204764B1 (en) * 1998-09-11 2001-03-20 Key-Trak, Inc. Object tracking system with non-contact object detection and identification
US6100804A (en) 1998-10-29 2000-08-08 Intecmec Ip Corp. Radio frequency identification system
US6166637A (en) 1999-02-09 2000-12-26 Micron Technology, Inc. Apparatuses for electronic identification of a plurality of passing units and methods of electronic identification of a plurality of passing units
US6545604B1 (en) 1999-07-01 2003-04-08 Micron Technology, Inc. Methods for electronic tracking of units originating from a common source, and assemblies comprising transponders attached to meat spikes
US6496806B1 (en) * 1999-12-16 2002-12-17 Samsys Technologies Inc. Method and system for tracking clustered items
US6669089B2 (en) * 2001-11-12 2003-12-30 3M Innovative Properties Co Radio frequency identification systems for asset tracking

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Dando, Ross, U.S. Appl. No. 11/872,374; "Methods for Electronic Tracking of Units Originating From a Common Source, and Assemblies Comprising Transponders Attached to Meat Spikes", filed Oct. 15, 2007.
Dando, Ross, U.S. Appl. No. 11/872,382; "Methods for Electronic Tracking of Units Originating From a Common Source, and Assemblies Comprising Transponders Attached to Meat Spikes", filed Oct. 15, 2007.
Dando, Ross, U.S. Appl. No. 11/872,390; "Methods for Electronic Tracking of Units Originating From a Common Source, and Assemblies Comprising Transponders Attached to Meat Spikes", filed Oct. 15, 2007.
Dando, Ross, U.S. Appl. No. 11/872,397; "Methods for Electronic Tracking of Units Originating From a Common Source, and Assemblies Comprising Transponders Attached to Meat Spikes", filed Oct. 15, 2007.
USPTO Transaction History of U.S. Appl. No. 09/346,635, filed Jul. 1, 1999, entitled "Methods For Electronic Tracking Of Units Originating From A Common Source, And Assemblies Comprising Transponders Attached To Meat Spikes," now U.S. Patl. No. 6,545,604.
USPTO Transaction History of U.S. Appl. No. 11/872,374, filed Oct. 15, 2007, entitled "Methods For Electronic Tracking Of Units Originating From A Common Source, And Assemblies Comprising Transponders Attached To Meat Spikes."
USPTO Transaction History of U.S. Appl. No. 11/872,382, filed Oct. 15, 2007, entitled "Methods For Electronic Tracking Of Units Originating From A Common Source, And Assemblies Comprising Transponders Attached To Meat Spikes."
USPTO Transaction History of U.S. Appl. No. 11/872,390, filed Oct. 15, 2007, entitled "Methods For Electronic Tracking Of Units Originating From A Common Source, And Assemblies Comprising Transponders Attached To Meat Spikes."
USPTO Transaction History of U.S. Appl. No. 11/872,397, filed Oct. 15, 2007, entitled "Methods For Electronic Tracking Of Units Originating From A Common Source, And Assemblies Comprising Transponders Attached To Meat Spikes."

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042221A1 (en) * 2007-05-30 2014-02-13 Accenture Global Services Limited System for determining a relative location of a plurality of items upon a plurality of platforms
US8892247B2 (en) * 2007-05-30 2014-11-18 Accenture Global Services Limited System for determining a relative location of a plurality of items upon a plurality of platforms
US8645222B1 (en) 2009-03-20 2014-02-04 Jpmorgan Chase Bank, N.A. System and methods for mobile ordering and payment
US9230259B1 (en) 2009-03-20 2016-01-05 Jpmorgan Chase Bank, N.A. Systems and methods for mobile ordering and payment
US9886706B2 (en) 2009-03-20 2018-02-06 Jpmorgan Chase Bank, N.A. Systems and methods for mobile ordering and payment
US9747480B2 (en) 2011-12-05 2017-08-29 Adasa Inc. RFID and robots for multichannel shopping
US9780435B2 (en) 2011-12-05 2017-10-03 Adasa Inc. Aerial inventory antenna
US10050330B2 (en) 2011-12-05 2018-08-14 Adasa Inc. Aerial inventory antenna
US10476130B2 (en) 2011-12-05 2019-11-12 Adasa Inc. Aerial inventory antenna
US10846497B2 (en) 2011-12-05 2020-11-24 Adasa Inc. Holonomic RFID reader
US11093722B2 (en) 2011-12-05 2021-08-17 Adasa Inc. Holonomic RFID reader
US11019829B2 (en) 2016-09-29 2021-06-01 Dirigo Food Safety, LLC Modular comestibles processing units

Also Published As

Publication number Publication date
US20140035730A1 (en) 2014-02-06
US6545604B1 (en) 2003-04-08
USRE42821E1 (en) 2011-10-11
USRE44409E1 (en) 2013-08-06
USRE42736E1 (en) 2011-09-27
USRE41815E1 (en) 2010-10-12

Similar Documents

Publication Publication Date Title
USRE41562E1 (en) System and method for electronic tracking of units associated with a batch
US6231435B1 (en) Electronic method and system for tracking the carcass of a slaughtered animal through a processing plant
RU2301433C2 (en) Method and system for controlling meat products
US4597495A (en) Livestock identification system
AU769091B2 (en) Terminal for an active labelling system
US6724309B2 (en) Method and apparatus for tracking carcasses
WO2013051841A2 (en) System for monitoring product quality in real time
CN100357955C (en) Pork supply system and method
ATE551663T1 (en) METHOD AND SYSTEM FOR DETECTING RFID-TAGLED OBJECTS
ES2288954T3 (en) INTEGRATED METHOD OF MEAT PROCESSING AND INFORMATION PROCESSING.
US20040236191A1 (en) System and method for identifying and labeling livestock products, and managing data associated with those products
US20090128358A1 (en) Identification System
CN103903025B (en) Slaughtering animal and cutting procedure transmit method and the application of information of tracing to the source
Mc Carthy et al. The case for UHF RFID application in the meat supply chain in the Irish context: A review perspective
Sun et al. A traceability system for beef products based on radio frequency identification technology in China
Pathak et al. Animal products standardization, safety, and traceability
US20180368361A1 (en) System and method for integrating a tracking system into a cattle management system
Foster A comparison of beef traceability models during serial and parallel processing methods
AU2002243296B2 (en) Method and apparatus for tracking carcasses
NZ515412A (en) Terminal for an active labelling system

Legal Events

Date Code Title Description
AS Assignment

Owner name: KEYSTONE TECHNOLOGY SOLUTIONS, LLC, IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:019825/0542

Effective date: 20070628

AS Assignment

Owner name: ROUND ROCK RESEARCH, LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416

Effective date: 20091223

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEYSTONE TECHNOLOGY SOLUTIONS, LLC;REEL/FRAME:023839/0881

Effective date: 20091222

CC Certificate of correction
RR Request for reexamination filed

Effective date: 20120117

B1 Reexamination certificate first reexamination

Free format text: THE PATENTABILITY OF CLAIMS 30, 32-34, 36-38, 40, 42 AND 43 IS CONFIRMED. CLAIMS 1-29, 31, 35, 39, 41 AND 44-82 ARE CANCELLED.