US6405018B1 - Indoor distributed microcell - Google Patents

Indoor distributed microcell Download PDF

Info

Publication number
US6405018B1
US6405018B1 US09/229,492 US22949299A US6405018B1 US 6405018 B1 US6405018 B1 US 6405018B1 US 22949299 A US22949299 A US 22949299A US 6405018 B1 US6405018 B1 US 6405018B1
Authority
US
United States
Prior art keywords
antennas
antenna
communication
transceiver
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/229,492
Inventor
Douglas O. Reudink
Donglin Shen
Robert N. Shuman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanger Solutions LLC
Original Assignee
Metawave Communications Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawave Communications Corp filed Critical Metawave Communications Corp
Priority to US09/229,492 priority Critical patent/US6405018B1/en
Assigned to METAWAVE COMMUNICATIONS CORPORATION reassignment METAWAVE COMMUNICATIONS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHEN, DONGLIN, SHUMAN, ROBERT N., REUDINK, DOUGLAS O.
Priority to PCT/US2000/000134 priority patent/WO2000042801A1/en
Application granted granted Critical
Publication of US6405018B1 publication Critical patent/US6405018B1/en
Assigned to KATHREIN-WERKE KG reassignment KATHREIN-WERKE KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: METAWAVE COMMUNICATIONS CORPORATION
Assigned to METAVE ASSET HOLDINGS, LLC reassignment METAVE ASSET HOLDINGS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KATHREIN-WERKE AG
Assigned to METAVE ASSET HOLDINGS, LLC reassignment METAVE ASSET HOLDINGS, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF CONVEYING PARTY PREVIOUSLY RECORDED ON REEL 021976 FRAME 0313. ASSIGNOR(S) HEREBY CONFIRMS THE COMPANY TO COMPANY ASSIGNMENT. Assignors: KATHREIN-WERKE KG
Assigned to F. POSZAT HU, L.L.C. reassignment F. POSZAT HU, L.L.C. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: METAVE ASSET HOLDINGS, L.L.C.
Anticipated expiration legal-status Critical
Assigned to HANGER SOLUTIONS, LLC reassignment HANGER SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTELLECTUAL VENTURES ASSETS 161 LLC
Assigned to INTELLECTUAL VENTURES ASSETS 161 LLC reassignment INTELLECTUAL VENTURES ASSETS 161 LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: F. POSZAT HU, L.L.C.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment

Definitions

  • wireless cellular telephone networks have been deployed throughout many populated areas. Such systems rely on the use of predefined areas of channel reuse in order to utilize a limited amount of radio frequency spectrum in serving a particular capacity of wireless communications. Accordingly, radiation of a particular communication channel is limited to within a particular area associated with a cellular base transceiver station (BTS).
  • BTS base transceiver station
  • Such systems generally suffer from coverage gaps or holes where a particular BTS is unable to radiate a signal or channel with attributes suitable for use in conducting communications over the network due to such obstructions as large buildings. Often it is difficult or impossible to sufficiently fill in these gaps with signals radiated from adjacent BTSs of the cellular network because of resulting problems with overlapping radiation patterns in areas unaffected by the obstruction, multiple obstructions such as buildings in a metropolitan area blocking signals from multiple adjacent BTSs, and the like.
  • MSU wireless mobile subscriber units
  • the concentration of persons desiring wireless communication services may demand capacity not available from such a cell. Accordingly, enhanced capacity may be provided by disposing a cell, or microcell, to service such a concentration, i.e., a cell disposed to service communications associated with MSUs located within or near a high rise office tower.
  • the number of such antennas is generally limited to a small number in order to maintain a desired signal quality level. Additionally, due to the signal loss issues associated with the antenna feed network of these prior art systems, the deployment of these prior art antennas is limited to relatively short distances from the associated transceiver.
  • transceivers distributed throughout the communication coverage area, i.e., deployed throughout a building in which communication is to be provided.
  • a solution presents substantial disadvantages also. Specifically, by definition such a solution requires multiple, and often expensive, transceivers to be deployed in order to provide communications in more than one area of the building.
  • the deployment of multiple transceivers capable of communicating on a same channel in order to provide this channel within multiple portions or an increased portion of the area serviced involves the inefficient use of such transceivers and/or channels.
  • transceivers does not readily provide capacity for multiple simultaneous communications within a particular area without deploying multiple ones of the transceivers to provide communications within each such area, thus further aggravating inefficiencies associated with the deployment of transceivers throughout the service area. Additionally, the distributed deployment of transceivers substantially complicates the control mechanism required to operate such a communication network in addition to requiring added communication paths including control signal paths for each transceiver.
  • the wireless communication system to be adapted to require a minimum of signal paths as between the antennas and transceiver equipment in order to provide the desired communications.
  • a system and method which utilizes a plurality of antennas strategically deployed throughout an area to be provided wireless communication service and coupling such antennas to transceiver equipment, i.e., radios, of a BTS or BTSs such that a particular antenna may be selected for communication of a particular transceiver signal.
  • the transceivers of the BTS may be centrally located and thus easily centrally controlled and/or coupled to additional components of the communication network such as a public switched network (PSN) or mobile switching office (MSO).
  • PSN public switched network
  • MSO mobile switching office
  • transceivers of the BTS may selectively communicate via ones of the plurality of antennas, efficient use may be made of such transceivers.
  • a single transceiver may be deployed for each channel of a plurality of channels utilized by such a communication system and yet communications may be established and maintained on a particular channel throughout all or a substantial portion of the coverage area utilizing only a single transceiver associated with this particular channel.
  • the preferred embodiment of the present invention utilizes switched beam or smart antenna technology in order to provide a plurality of antenna beams throughout the area to be covered which may then be selectively utilized by ones of the BTS radios.
  • directional, either fixed beam or adaptive array, antennas are placed throughout the area to be covered, such as by deploying multiple antennas on each floor of a building and directing their antenna beams to illuminate substantially only areas within the building.
  • MSUs or other wireless communication units including fixed subscriber units (FSUs)
  • FSUs fixed subscriber units
  • initiate or accept communications a particular antenna having a radiation pattern encompassing the subscriber unit may be selected for use in servicing the communication.
  • a controller operating according to the present invention may then provide the signal of this antenna to a proper BTS transceiver, i.e., a transceiver adjusted to communicate via a channel corresponding to that of the MSU, in order that a communication link is established/maintained.
  • a proper BTS transceiver i.e., a transceiver adjusted to communicate via a channel corresponding to that of the MSU, in order that a communication link is established/maintained.
  • the controller operates to provide the signal of this second antenna to the proper BTS transceiver.
  • each BTS transceiver may be utilized for servicing communications throughout substantial portions, if not all, of the area serviced by the BTS.
  • the quality of such communications may be maintained with reduced amounts of noise as compared to prior art systems.
  • the antennas of the preferred embodiment described above may be utilized to service more than a single MSU.
  • the controller may provide the signal of this antenna to multiple BTS transceivers, i.e., a transceiver adjusted to communicate via a first channel (whether a frequency division channel, time division channel, code division channel, or otherwise) corresponding to that of the first MSU and a transceiver adjusted to communicate via a second channel (also whether a frequency division channel, time division channel, code division channel, or otherwise) corresponding to that of the second MSU.
  • the controller may provide the signal of each of these antennas to a single BTS transceiver, i.e., a transceiver utilizing different time division channels of a frequency associated with this transceiver to communicate with multiple MSUs may be coupled to multiple ones of the antennas either persistently throughout the communications with these units or in synchronization with the use of the appropriate channel. Accordingly, the present invention efficiently provides increased communication capacity throughout all portions of the service area.
  • a preferred embodiment of the present invention deploys at least a portion of the antennas utilized along the outer periphery of the service area, such as at the corners of each floor within a building to be provided with communication services. Accordingly, the communicated signals will be directed within the service area providing less interference to wireless systems outside the service area as well as accepting less interference from outside the service area.
  • MSUs operating therein may generally expect such communication services to be provided from sources external to the actual service area, i.e., cellular towers disposed external to a building within which they are operating, these users may be prone to migrating toward the periphery of the service area in an effort to achieve improved signal quality.
  • Deployment of antennas along such periphery allows MSU transmission powers to be reduced as the MSUs migrate toward the periphery of the service area. Accordingly, when operating in areas most likely to result in transmitted signals being sufficient to interfere with wireless systems outside the service area, the transmission levels of a preferred embodiment are reduced to mitigate such interference.
  • the system signal strength as received by the MSU may be improved with respect to an interfering signal associated with wireless systems outside the coverage.
  • preamplifiers are disposed in the BTS receive signal path at a point near ones of the antennas. Therefore received signals may be amplified for transmission over a somewhat lengthy or otherwise lossy cable. Accordingly, antennas of this preferred embodiment may be disposed relatively large distances from the associated transceiver equipment. As such, wireless communications may be provided in areas located significant distances from the transceiver, such as in the upper floors of a high rise office tower, while allowing centralized deployment and control over a plurality of transceivers, such as may be deployed in a basement mechanical closet of the high rise office tower.
  • lossier cable i.e., less expensive cable, interconnecting the antennas and transceivers or transmission cable which is already available within the area to be served with wireless communications, i.e., computer systems networking cable deployed within a structure.
  • a preferred embodiment of the present invention utilizes frequency conversion in the signal paths near the antennas to convert received/transmitted signals to/from system native radio frequencies (RF) and intermediate frequencies (IF).
  • frequency conversion is utilized in the signal paths near the transceivers to convert the received/transmitted signals to/from RF and IF. Accordingly, by using a different IF for the RF signal received at ones of the antennas, some or all the antenna signals may be multiplexed onto a single signal path, i.e., a single coax.
  • ones of the antenna signals may be combined on an existing signal path which is also utilized by another communication service, such as the aforementioned computer systems networking cable.
  • antenna selection for each transceiver may be accomplished by selecting a local oscillator (LO) frequency which up converts only that IF corresponding to the antenna selected to the exact carrier frequency that the transceiver serving a particular MSU is tuned for.
  • This operation may be performed for multiple antenna beams with respect to a single transceiver, such as on a time slot by time slot basis for time division multiple access systems (TDMA) as TDMA MSUs may be dispersed throughout the coverage area yet each is served by the best antenna.
  • Multiple antennas may be placed in communication with a single transceiver, to provide the multiple access techniques described above or for other purposes such as to provide signal diversity, by tuning the LO of multiple antennas to a common frequency.
  • each transceiver may have a particular IF associated therewith such that multiple signals are combined for communication through a single cable. Accordingly, a particular antenna or antennas may be selected for transmission of a transceiver signal by selecting a LO frequency which up converts only that IF corresponding to this particular transceiver in order to radiate the transceiver's signal within a desired portion of the coverage area. If more than one carrier is to be transmitted from a single antenna or combination of antennas, the LOs associated with these transceivers may down convert these carriers within the same IF band, thus allowing selection of a corresponding LO at the antenna for up conversion of all of these carrier frequencies.
  • a common signal path i.e., the use of IFs for the combining of signals on a single cable, in both the transmit and receive signal paths.
  • a common cable may be utilized in the receive signal path and individual cables utilized in the transmit signal path, if desired.
  • IFs as in the above described preferred embodiment provides advantages where substantial distances are present between antennas and transceivers.
  • lower cost transmission cable may often be utilized in providing a signal path for lower frequency communications
  • down conversion of the system native RF frequencies to a lower IF frequency is utilized by a preferred embodiment of the present invention in order to provide for cost effective communication of such signals over distances such as those of the above described high rise office tower.
  • An alternative embodiment of the present invention utilizes conversion between the system native RF and lightwave signals for transmission through low-loss fiber.
  • FIG. 1 illustrates a high level block diagram of the present invention deployed to provide wireless communication services in a service area substantially co-extensive with the interior volume of a high rise office tower;
  • FIG. 2A shows a schematic diagram of a preferred embodiment of communication circuitry adapted according to the present invention
  • FIG. 2B shows a schematic diagram of a portion of the circuitry of FIG. 2A adapted according to an alternative preferred embodiment of the present invention
  • FIG. 3 shows a schematic diagram of a portion of the circuitry of FIG. 2A adapted according to an alternative preferred embodiment of the present invention.
  • FIGS. 4-6 show schematic diagrams of alternative embodiments of communication circuitry adapted according to the present invention.
  • BTS 110 base transceiver station 110 is coupled to a plurality of antennas, shown here as antennas 111 a - 114 a , 111 b - 114 b , and 111 c - 114 c , which are disposed at various locations throughout building 101 , in order to communicate with wireless communication devices operable within building 101 , such as mobile subscriber units (MSUs) 130 b and 130 c .
  • MSUs mobile subscriber units
  • BTS 110 may be a portion of a communication network including multiple service areas having other BTSs associated therewith.
  • BTS 110 may be a cell site or microcell site BTS of a cellular telephone communication network wherein other cells and/or microcells are deployed throughout a geographic area, also having BTSs associated therewith, in order to provide substantially uninterrupted cellular telephone service through the geographic area.
  • BTS 110 may be associated with a private communication system, such as a wireless private branch exchange (PBX) or other qualified communication system.
  • PBX wireless private branch exchange
  • the preferred embodiment includes antennas disposed throughout ones of these floors as shown in FIG. 1 .
  • the antennas of the present invention are deployed along the outer periphery of the service area, such as at the comers or along the exterior walls of each floor of building 101 .
  • the communicated signals will be directed within the service area, thus providing less interference to wireless systems outside the service area as well as accepting less interference from outside the service area.
  • users of MSUs operating within building 101 may often operate the units at or near the periphery of the service area.
  • such users generally expect communication services to be provided from sources external to the actual service area in the case of high rise office towers, i.e., cellular towers disposed external to building 101 . Therefore, these users may be prone to migrating toward the periphery of the service area in an effort to achieve improved signal quality.
  • Deployment of antennas along such periphery may be utilized to provide improved signal quality at the MSU as these MSUs are reducing the air gap between the MSU and a communication system antenna in communication therewith by migrating to the periphery of the service area.
  • the system signal strength as received by the MSU may be improved with respect to interfering signals associated with wireless systems outside the coverage as the strength of these interfering signals should not increase at the rate of the communication system's signal strength increase due to the close proximity of the periphery antennas.
  • deployment of antennas along the periphery of the service area provides advantages in that such an arrangement allows MSU transmission powers to be reduced, such as is common in operation of mobile units in digital cellular communication systems, as the MSUs migrate toward the periphery of the service area. Accordingly, when operating in areas most likely to result in transmitted signals being sufficient to interfere with wireless systems outside the service area, i.e., other cells of a cellular network of which BTS 110 is a part, the transmission levels of a preferred embodiment are reduced to mitigate such interference.
  • advantages may be realized in the physical deployment of the preferred periphery antennas.
  • deployment of the antennas may be accomplished by attaching the antennas to the exterior of the building, such as within an aesthetically pleasing radome structure, and the associated cabling routed along the face of the building, such as within a seam or expansion joint, thus simplifying the deployment as the exterior surfaces may be more readily accessible.
  • antennas of FIG. 1 are shown deployed only along the periphery of the service area, it should be appreciated that antennas may be deployed at other locations of the service area according to the present invention, if desired.
  • additional antennas may be added to the interior spaces of the floors of building 101 in order to provide a suitable signal within interior spaces which may not be adequately illuminated by other antennas.
  • antennas may be deployed in order to provide communication services to particular predefined areas or situations.
  • building 101 may include elevators and thus elevator shafts which are not generally well suited for the passing of radio frequency signals, particular antennas may be deployed within the elevator shafts in order to provide suitable wireless communications therein.
  • antennas deployed within such shafts may be adapted to move, such as by coupling to the elevator car itself, in order to provide communications therein without requiring a substantial amount of controller overhead to continuously handoff communications between antennas of the various floors.
  • the antennas utilized according to the present invention are coupled to the BTS transceivers through an interface, shown here as interfaces 120 a - 120 c .
  • interfaces 120 a - 120 c the interfaces utilized according to the present invention are coupled to the BTS transceivers through an interface, shown here as interfaces 120 a - 120 c .
  • the illustration of the interface in FIG. 1 is provided to aid in understanding the present invention and the distributed configuration shown, i.e., individual interfaces 120 a , 120 b , and 120 c for each of the floors of building 101 , is not a limitation of the present invention.
  • particular embodiments of the present invention utilize a centralized or substantially centralized interface in order to couple the antennas and BTS operating according to the present invention as will be more readily appreciated from the discussion herein below.
  • FIG. 2A a schematic diagram of a preferred embodiment of the present invention is shown.
  • BTS 210 similar to BTS 110 of FIG. 1 although the componentry of interfaces 120 a - 120 c of FIG. 1 is included therein, is coupled to a plurality of antennas, shown as antennas 211 a - 211 n , which may include antennas disposed in various groupings such as antennas 111 a - 114 a , 111 b , 114 b , and 111 c - 114 c of FIG. 1 .
  • antennas 211 a - 211 n are deployed relatively near to BTS 210 , i.e., the antennas are spatially separated from the transceiver equipment of the BTS approximately 50-100 meters when frequencies typically used in cellular communication are used.
  • subscript “n” as used in the figures is utilized to represent any desired number of antennas deployed according to the present invention and is not intended to be limiting to any particular number.
  • subscript “m” as used in the figures is utilized to represent any desired number of transceivers or communications channels, i.e., transceivers which are each associated with a particular frequency channel or communications channels assignable to discrete users such as a frequency division channel, a time division burst, a code division chip code, or the like, utilized by the BTS and is not intended to be limiting to any particular number.
  • switch matrixes 220 a - 220 n are disposed there between.
  • any antenna beam signal associated with antennas 211 a - 211 n may be coupled to any of transceivers 240 a - 240 m .
  • 1 ⁇ m (one input and m outputs) switch matrixes 220 a - 220 n are provided to couple any antenna beam n to any transceiver m.
  • combinations of switch matrixes other than the discrete switch matrixes illustrated in FIG. 2A may be utilized as described in further detail below, if desired.
  • the preferred embodiment illustrated in FIG. 2A utilizes signal combiners 230 a - 230 m in order to couple the antenna beam signals as switchably passed by switch matrixes 220 a - 220 n to transceivers 240 a - 240 m .
  • combiners 230 a - 230 m may be utilized to combine the antenna beam signal of multiple ones of antennas 211 a - 211 n to a single transceiver where advantages may be realized by combining multiple antenna beam signals for input into the transceivers, such as where code division multiple access (CDMA) is utilized and multiple diverse signals are desired at a single transceiver input or where time division multiple access (TDMA) is utilized and time divided MSUs are operating in the antenna beams of multiple antennas.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • the use of delays in the signal paths of various ones of the antennas and/or various antenna diversity techniques may be utilized to enhance communications utilizing multiple antenna beams, if desired.
  • operation of the switch matrixes according to the present invention may be utilized to couple the signals of multiple MSUs, such as the above mentioned time divided MSUs, operating in the antenna beams of multiple antennas to a particular transceiver interface, such as on a time slot by time slot basis for TDMA systems.
  • the present invention may utilize transceiver equipment having diversity inputs and, accordingly, the system may operate to switchably couple a first antenna to one diversity input and a second antenna to another diversity input of each transceiver.
  • the system may operate to switchably couple a first antenna to one diversity input and a second antenna to another diversity input of each transceiver.
  • switch matrix apparatus providing signal paths associated with the diversity inputs of such transceiver equipment as will be readily appreciated by one of ordinary skill in the art.
  • FIG. 2B a preferred embodiment receive signal path adapted according to the present invention including diversity inputs is shown.
  • each of transceivers 240 a - 240 m include multiple inputs coupled to antennas 211 a - 211 n through switch matrix 280 .
  • switch matrix of FIG. 2B is somewhat simplified over the combination of switch matrixes and combiners of the embodiment of FIG. 2 A. As described above, various switch matrix arrangements may be utilized according to the present invention.
  • Switch matrix 280 of FIG. 2B provides selectable signal paths between n antenna inputs and 2 m transceiver outputs (m transceivers each having 2 inputs for diversity).
  • the combiners of FIG. 2A have been omitted in the embodiment of FIG. 2B as in this illustrated embodiment it is not desired to provide the antenna beam signal of more than a single antenna to any one transceiver input. Accordingly, each antenna may be switchably coupled to any combination of transceiver inputs by switch matrix 280 .
  • the transmit signal path or forward link of the system is similar to that of the receive or reverse link. Accordingly, in order to couple the output of transceivers 240 a - 240 m to selected ones of antennas 211 a - 211 n , switch matrixes 221 a - 221 n are disposed there between. In the preferred embodiment of FIG. 2A, any transceiver output signal may be coupled to any of antennas 211 a - 211 n . Accordingly, n m ⁇ 1 (m inputs and 1 output) switch matrixes 221 a - 221 n are provided to couple any transceiver signal m to any of antennas n. The preferred embodiment illustrated in FIG.
  • the forward link may utilize delays in the signal paths of various ones of the antennas and/or various antenna diversity techniques, such as shown and described in the above-referenced patent application entitled “Diversity Among Multiple Antenna Beams,” if desired.
  • the use of delays, such as on the order of micro seconds for example, may be desirable to allow the MSU receiver to process signals from two antennas.
  • duplexers 260 a - 260 n are placed in the antenna signal paths in order to utilize a same antenna structure in both the forward and reverse links.
  • a single antenna may be deployed for each antenna of the plurality of antennas deployed throughout building 101 , and a single cable coupled to BTS 210 for use in both the forward and reverse links.
  • the duplexers may be disposed more near the antennas if desired, although such an embodiment would necessitate extended lengths of forward link and reverse link cabling from the BTS to the duplexers.
  • separate antenna structure and/or connecting cables may be utilized in the forward and reverse links, if desired.
  • antennas deployed along the periphery of the service area may be utilized in the BTS reverse link in order to realize the above described advantages of power control and reduced interference and a centrally located antenna utilized in the forward link, i.e., a centrally located omni-directional forward link antenna may be deployed on each floor of building 101 .
  • controller 270 will control selectable signal paths coupled thereto, such as the switch matrixes of FIG. 2A, in order to selectively couple ones of the antennas to ones of the transceivers. Accordingly, by monitoring communication attributes, such as received signal strength indicator (RSSI) for each communication on each of the antenna beams, or by receiving such information from coupled BTS components such as a scan receiver or cellular BTS controller, controller 270 may select a particular antenna to couple to a transceiver providing communication with an MSU.
  • RSSI received signal strength indicator
  • MSU 130 b shown in FIG. 1 is disposed most near antenna 111 b corresponding to antenna 211 b of FIG. 2 A. Accordingly, controller 270 of FIG. 2A may detect a strongest receive signal from MSU 130 b at antenna 211 b and therefore operate switch 220 b to couple the antenna beam signal of antenna 211 b to a particular transceiver operating on a channel consistent with that of MSU 130 b . Where signal diversity is utilized, controller 270 may identify a second best antenna, i.e., a second antenna also having suitable attributes for communication according to the present invention, and couple the corresponding signal path to a diversity port of the particular transceiver operating on the channel consistent with that of MSU 130 b . As MSU 130 b moves about building 101 , controller 270 will update the antenna assignments by manipulating the selectable signal paths coupled thereto in accordance with information regarding movement of MSU 130 b.
  • Controller 270 is preferably a processor based system having a central processing unit and memory operating under control of an instruction set according to the present invention.
  • controller 270 may be a general purpose processor based system, such as a personal computer built on an INTEL 80X86 or PENTIUM processor platform, in information communication with BTS componentry as described herein and operating under control of a computer program to provide the functionality of the present invention.
  • BTS componentry as described herein and operating under control of a computer program to provide the functionality of the present invention.
  • other forms of controller may be utilized if desired, such as dedicated control systems and/or utilizing a portion of a cellular BTS controller capacity, generally utilized in scanning signals and assigning/handing off communications, to provide the added control functionality of the present invention.
  • the present invention may utilize any number of, or combination of, communication characteristics in selectively coupling antennas to transceivers and, therefore, the present invention is not limited to the above mentioned RSSI information in selecting antennas.
  • a signal to noise (S/N) ratio, carrier to interference (C/I) ratio, or bit error rate (BER) of a received and/or transmitted signal may be utilized in selecting an antenna.
  • attributes which may be monitored outside of the communicated signals themselves may be utilized in selection of antennas, if desired.
  • MSU position information such as may be determined by triangulation techniques involving ones of the plurality of antennas, may be utilized in selecting a particular antenna through which to provide wireless communications to an MSU.
  • Selective coupling of the transmit or forward link signal paths is preferably symmetric with that of the receive or reverse link.
  • a particular antenna or antennas may be selected for use in receiving communication signals from an MSU based on received signal attributes and this same antenna selected for transmitting communication signals to the MSU.
  • Such a symmetric system is generally acceptable as an antenna determined to provide a best receive signal path is likely to provide similar link characteristics in the transmit signal path as well.
  • an alternative embodiment of the present invention monitors link characteristic information in each direction of the wireless link, such as may be provided with respect to a BTS transmitted signal attribute through a control loop from the receiving MSU, in selection of antennas utilized according to the present invention. It shall be appreciated that the present invention may utilize different antennas in the forward and reverse links by manipulating the selectable signal paths differently for each of the forward and reverse links.
  • the embodiment of FIG. 2A is a substantially passive system which is preferably utilized, at radio frequencies typically associated with cellular communications, when the longest distances between the antennas and transceivers are approximately 100 meters.
  • FIG. 3 adaptation of the system of FIGS. 2A and 2B for deployment of antennas greater distances than may provide acceptable communication attributes in the substantially passive system described therein is shown.
  • an amplifier is disposed in the receive signal path at a point near ones of the antennas.
  • duplexer 260 a is disposed at a point near antenna 211 a in order to provide a discrete transmit and receive signal path.
  • Amplifier 310 a is disposed in the receive signal path in order to provide a signal at a corresponding transceiver of BTS 210 with desired characteristics. Accordingly, ones of the antennas may be deployed greater distances, i.e., approximately 200 meters at radio frequencies typically associated with cellular communications, than may be possible with the substantially passive embodiments of FIGS. 2A and 2B.
  • amplifiers may be deployed as shown in FIG. 3 for use with antennas 111 c - 114 c and 111 b - 114 b of FIG. 1 and not for use with antennas 111 a - 114 a of FIG. 1 as antennas 111 a - 114 a are disposed more near the transceivers of the associated BTS.
  • cellular BTS communication equipment generally includes the use of amplifiers, such as linear power amplifiers (LPAs), in order to provide a transmitted signal with a desired signal strength
  • LPAs linear power amplifiers
  • the preferred embodiment of the present invention does not utilize added amplification of the transmitted signals.
  • amplification such as that shown in the receive signal path may be utilized if desired.
  • signal manipulation of signal attributes according to this embodiment of the present invention is not limited to signal amplification as shown in FIG. 3 .
  • the receive and/or transmit signal paths may include signal manipulation componentry such as filters, attenuators, interference cancelers, digital signal processors, and the like, where deemed advantageous.
  • the number of such devices utilized in a particular signal path there is no limitation to the number of such devices utilized in a particular signal path according to the present invention.
  • the spatial separation of an antenna and associated transceiver at radio frequencies commonly utilized for cellular communications is suggested to be approximately 200 meters, multiple ones of the amplifiers shown in FIG. 3 may be deployed in the signal path to extend such distances.
  • the present invention is uniquely suited for deployment in structures, such as the aforementioned high rise office tower, deployment of multiple signal manipulation apparatus along the length of such signal paths may be readily accommodated in both environment, i.e., a service closet available on particular floors may be utilized, and utilities, i.e., necessary power connections may be present throughout the structure.
  • the embodiments of the present invention described above utilize a plurality of signal paths or cables in order to maintain discrete signals for coupling between antennas and transceivers according to the present invention.
  • FIG. 4 a preferred embodiment utilizing fewer signal paths between the antennas and transceivers utilized according to the present invention is shown.
  • the signals of antennas of the plurality of antennas are composited for coupling to the BTS transceivers through a common signal path.
  • the embodiment of FIG. 4 utilizes discrete intermediate frequencies (IFs) for signals to be composited.
  • antennas 211 a - 211 n have mixers 450 a - 450 n , respectively, associated therewith.
  • the antenna beam signals for each antenna may be converted to a unique IF for signal compositing by combiner 430 , shown here as an n ⁇ 1(n inputs and 1 output) signal combiner. Accordingly, although maintained as discrete signals which may be recovered independently, a single cable may be utilized as a signal path between combiner 430 and BTS 410 .
  • LO local oscillator
  • antenna beam signals may be composited in groups, such as antennas of a particular floor or group of floors may be composited by a combiner and the composite signal also composited with additional antenna beam signals in cascading fashion, if desired.
  • BTS 410 of FIG. 4 utilizes splitter 431 , shown here as an 1 ⁇ m (1 input and m outputs) splitter, coupled to mixers 451 a - 451 m .
  • LO generator 421 adapted to generate a plurality of frequencies corresponding to those utilized by mixers 450 a - 450 n , is coupled to each of mixers 451 a - 451 m through switch matrix 420 . Accordingly, a particular antenna beam signal present in a corresponding unique IF may be selected for coupling to a desired transceiver by selectively coupling the appropriate LO frequency of LO generator 421 to the corresponding mixer.
  • LOa as generated by LO generator 421 is coupled to mixer 451 m by switch matrix 420 operating under control of controller 270 .
  • switch matrix 420 operating under control of controller 270 .
  • mixers in the transmit path at the BTS may be coupled to a selected LO frequency corresponding to a LO frequency of a selected antenna and, thus, the transceiver output signal may be selected for radiation by a selected antenna of the plurality of antennas. If more than one carrier is to be transmitted from a single antenna, the mixers associated with each of these transceiver output signals may be coupled to a same LO frequency corresponding to the desired antenna.
  • the local oscillator frequencies utilized by the mixers at the antennas may be adjustable according to the present invention, such as under control of controller 270 .
  • an IF associated with a particular antenna may be selectable by adjusting the LO utilized by the corresponding mixer.
  • antenna beam signals may be combined by selecting a common LO for multiple ones of the antennas in the receive path.
  • a transceiver output signal may be simulcast from several antennas by having the LOs associated with antennas desired for transmission of the transceiver signal all tune to the same frequency.
  • Apparatus may be disposed in the signal paths in order to provide desired signal attributes.
  • amplifiers such as amplifiers 310 a - 310 n disposed in the receive signal path, may be utilized to provide a signal of a desired amplitude.
  • other signal attribute components as described above may be utilized, if desired.
  • filters may be disposed in the signal paths in order to filter image frequencies corresponding to the up-converters and down-converters and/or to filter the LO frequencies from the transmitted signals.
  • frequency conversion of system native frequencies may be useful in allowing for increased separation between the antennas and BTS transceivers utilized according to the present invention.
  • a lower cost cabling solution which is available for deployment in the above mentioned high rise office tower may be very lossy with respect to system native frequencies and, therefore, provide for only relatively short antenna/transceiver separation.
  • this same cable may be substantially less lossy with respect to the lower frequencies of a selected IF and, therefore, allow for increased antenna/transceiver separation. Accordingly, in a preferred embodiment of the circuitry shown in FIG.
  • mixers 450 a - 450 n operate to down-convert the antenna beam signals to an IF suitable for relatively lengthy transmission through the associated cable and mixers 451 a - 451 m operate to up-convert the various IFs back to the system native frequencies.
  • the embodiment of FIG. 4 provides for antenna/transceiver separation on the order of approximately 200 meters and more.
  • an alternative embodiment of the present invention allows for such spatially diverse deployments by converting the RF signals to lightwave signals and transmitting these signals along low-loss fiber. Conversion of the signals back to RF preferably occurs at the BTS wherein selectable signal paths may be utilized in coupling the signals to transceivers such as shown in FIGS. 2A and 2B. This alternative embodiment is shown in FIG.
  • antennas 211 a - 211 n are coupled to transceivers 240 a - 240 m of BTS 510 through RF to light converters 510 a - 510 n and light to RF converters 511 a - 511 n , respectively, and switch matrix 280 .
  • multiple BTSs and/or their associated transceiver equipment may be deployed according to the present invention.
  • circuitry as illustrated in any of the embodiments described above may be deployed for a particular subset of the floors of the aforementioned high rise office tower, with a second such system deployed for a second subset of the floors of the high rise office tower.
  • communication signals associated with the plurality of antennas deployed according to the present invention may be split and/or combined in order to be simultaneously provided to transceiver equipment of a second BTS or to transceiver equipment of an enlarged capacity BTS. This is illustrated in FIG.
  • each of switch matrixes 780 and 790 may be controlled to provide a selected antenna beam signal to particular ones of the transceivers by controller 270 as described above.
  • the signals transmitted by the transceivers are selectively coupled to antennas 211 a - 211 n through a corresponding switch matrix 681 and 691 , each operable under control of controller 270 as described above.
  • signal combiners 630 a - 630 n are provided in the transmit signal path.
  • transceiver equipment Although reference has been made herein to transceiver equipment, it shall be appreciated that the concepts of the present invention are not limited to use only with transceivers. Accordingly, the use of the term transceiver as used herein is intended to include communication equipment which may receive, transmit, and/or receive and transmit.
  • switch matrixes may utilize any number of selectable, configurable signal apparatuses or dynamically adjustable signal path networks. Accordingly, the present invention is not limited to any particular form of apparatus by the term Switch matrix.
  • a system of the present invention may be deployed in a building to provide not only mobile communications, but may also provide communication links for fixed or semi-fixed equipment, such as computer workstations or even a desktop telephone system.
  • wireless communication services may be provided consistent with any desired area of coverage according to the principals of the present invention.
  • the present invention may be utilized to provide communications along a highway, such as within a tunnel, having insufficient wireless communication services provided thereto.
  • the transceivers of FIG. 2A may be embodied in a single unit providing radio communication on various channels associated with the communication system operated according to the present invention.
  • the switch matrixes of the transmit or receive signal paths may be combined into a reduced number of switch matrixes providing selectable signal paths consistent with the operation of the communication as described above.
  • alternative embodiments of the present invention utilize a single switch matrix assembly coupled to the transceiver equipment through duplexers in order to couple antennas to the transceivers according to the present invention.

Abstract

A cellular micro-cell is deployed within a building or other structure to provide wireless communication services therein. Accordingly, a plurality of antennas are deployed such that their area of influence illuminates the desired service area, Each antenna is in selective communication with various inputs/outputs of the micro-cell base transceiver station radio in order to allow mobile subscriber units to move throughout the service area without necessitating handoff conditions. Additionally, as the antennas may be selectively coupled to the transceiver inputs, all channels of the micro-cell may be made available throughout the entire service area thus providing increased capacity in all regions of the service area.

Description

BACKGROUND
As wireless communication services become more popular, the need for providing wireless communication services where those desiring such services may be located also increases. Moreover, such wireless service demand increases introduce problems in providing enough capacity in areas where such wireless communication services are provided.
In order to provide for free roaming wireless telephone communications wireless cellular telephone networks have been deployed throughout many populated areas. Such systems rely on the use of predefined areas of channel reuse in order to utilize a limited amount of radio frequency spectrum in serving a particular capacity of wireless communications. Accordingly, radiation of a particular communication channel is limited to within a particular area associated with a cellular base transceiver station (BTS).
Such systems generally suffer from coverage gaps or holes where a particular BTS is unable to radiate a signal or channel with attributes suitable for use in conducting communications over the network due to such obstructions as large buildings. Often it is difficult or impossible to sufficiently fill in these gaps with signals radiated from adjacent BTSs of the cellular network because of resulting problems with overlapping radiation patterns in areas unaffected by the obstruction, multiple obstructions such as buildings in a metropolitan area blocking signals from multiple adjacent BTSs, and the like.
Moreover, often the areas associated with such gaps in communication service coverage are areas of more dense congregation of those desiring such wireless services. For example, large numbers of persons desiring to use wireless mobile subscriber units (MSU) may be present within urban buildings which are shaded from signals radiated from BTSs of a communication network by the structure of the building itself or other buildings located in the communication path.
Similarly, although within an area providing suitable communication with a BTS of a cell encompassing such a building, the concentration of persons desiring wireless communication services may demand capacity not available from such a cell. Accordingly, enhanced capacity may be provided by disposing a cell, or microcell, to service such a concentration, i.e., a cell disposed to service communications associated with MSUs located within or near a high rise office tower.
Accordingly, solutions have been offered which deploy antennas, coupled to a transceiver of a communication network, within buildings in order to provide wireless communication services therein. However, such prior art solutions have often been limited to combining the signals of all or a plurality of the antennas disposed in the building and providing the combined signals to the transceivers. Such an approach suffers from disadvantages such as the signal provided to each transceiver includes the noise initially present on only one or a few antennas, such as a particular interfering signal from outside the building, because the antenna signals are combined. Moreover, the sum of such noise being present on multiple ones of the antennas can result in the noise exceeding limits for an acceptable carrier to interference (C/I) ratio. Accordingly, the number of such antennas is generally limited to a small number in order to maintain a desired signal quality level. Additionally, due to the signal loss issues associated with the antenna feed network of these prior art systems, the deployment of these prior art antennas is limited to relatively short distances from the associated transceiver.
In order to overcome some of the above described problems, other prior art systems have utilized transceivers distributed throughout the communication coverage area, i.e., deployed throughout a building in which communication is to be provided. However, such a solution presents substantial disadvantages also. Specifically, by definition such a solution requires multiple, and often expensive, transceivers to be deployed in order to provide communications in more than one area of the building. Moreover, the deployment of multiple transceivers capable of communicating on a same channel in order to provide this channel within multiple portions or an increased portion of the area serviced involves the inefficient use of such transceivers and/or channels. Furthermore, the use of such transceivers does not readily provide capacity for multiple simultaneous communications within a particular area without deploying multiple ones of the transceivers to provide communications within each such area, thus further aggravating inefficiencies associated with the deployment of transceivers throughout the service area. Additionally, the distributed deployment of transceivers substantially complicates the control mechanism required to operate such a communication network in addition to requiring added communication paths including control signal paths for each transceiver.
Accordingly, a need exists in the art for a wireless communication system adapted to provide communication within a limited area of service, such as within a building, wherein antenna signals are maintained distinct while providing efficient use of transceiver equipment, including allowing for the use of an assigned channel to “follow” the movement of a unit in communication with a particular transceiver as the unit moves from the coverage area of one antenna to that of another and/or providing dynamic capacity availability to address capacity demand changes within the area of service. A further need exists in the art for such a system to be adapted to utilize a number of antennas sufficient to provide a desired cumulative area of coverage even where physical barriers, such as floors or walls of the aforementioned building, prevent each individual antenna from providing coverage within a substantial portion of the total area to be covered.
Additionally, a need exists in the art for the wireless communication system to be adapted to require a minimum of signal paths as between the antennas and transceiver equipment in order to provide the desired communications. A still further need exists in the art for such signal paths to allow for the disposal of antennas a substantial distance from transceiver equipment coupled thereto.
SUMMARY OF THE INVENTION
These and other objects, features and technical advantages are achieved by a system and method which utilizes a plurality of antennas strategically deployed throughout an area to be provided wireless communication service and coupling such antennas to transceiver equipment, i.e., radios, of a BTS or BTSs such that a particular antenna may be selected for communication of a particular transceiver signal. Accordingly, the transceivers of the BTS may be centrally located and thus easily centrally controlled and/or coupled to additional components of the communication network such as a public switched network (PSN) or mobile switching office (MSO). Moreover, as transceivers of the BTS may selectively communicate via ones of the plurality of antennas, efficient use may be made of such transceivers. For example, a single transceiver may be deployed for each channel of a plurality of channels utilized by such a communication system and yet communications may be established and maintained on a particular channel throughout all or a substantial portion of the coverage area utilizing only a single transceiver associated with this particular channel.
The preferred embodiment of the present invention utilizes switched beam or smart antenna technology in order to provide a plurality of antenna beams throughout the area to be covered which may then be selectively utilized by ones of the BTS radios. Accordingly, directional, either fixed beam or adaptive array, antennas are placed throughout the area to be covered, such as by deploying multiple antennas on each floor of a building and directing their antenna beams to illuminate substantially only areas within the building. As MSUs, or other wireless communication units including fixed subscriber units (FSUs), initiate or accept communications, a particular antenna having a radiation pattern encompassing the subscriber unit may be selected for use in servicing the communication. A controller operating according to the present invention may then provide the signal of this antenna to a proper BTS transceiver, i.e., a transceiver adjusted to communicate via a channel corresponding to that of the MSU, in order that a communication link is established/maintained. Preferably, as the MSU moves within the coverage area of the BTS or other events occur which affect the wireless link between the aforementioned antenna and MSU, such that another antenna of the plurality coupled to the BTS provides a more suitable wireless link with the MSU, the controller operates to provide the signal of this second antenna to the proper BTS transceiver. Accordingly efficient use may be made of each BTS transceiver as the transceivers may be utilized for servicing communications throughout substantial portions, if not all, of the area serviced by the BTS. Moreover, as only selected antenna signals are provided to such transceivers, the quality of such communications may be maintained with reduced amounts of noise as compared to prior art systems.
It should be appreciated that the antennas of the preferred embodiment described above may be utilized to service more than a single MSU. For example, where multiple MSUs are located within an area encompassed by the radiation pattern of one antenna of the present invention, the controller may provide the signal of this antenna to multiple BTS transceivers, i.e., a transceiver adjusted to communicate via a first channel (whether a frequency division channel, time division channel, code division channel, or otherwise) corresponding to that of the first MSU and a transceiver adjusted to communicate via a second channel (also whether a frequency division channel, time division channel, code division channel, or otherwise) corresponding to that of the second MSU. Likewise, where MSUs in communication with a same transceiver of the BTS are located within areas encompassed by the radiation patterns of different antennas of the present invention, the controller may provide the signal of each of these antennas to a single BTS transceiver, i.e., a transceiver utilizing different time division channels of a frequency associated with this transceiver to communicate with multiple MSUs may be coupled to multiple ones of the antennas either persistently throughout the communications with these units or in synchronization with the use of the appropriate channel. Accordingly, the present invention efficiently provides increased communication capacity throughout all portions of the service area.
A preferred embodiment of the present invention deploys at least a portion of the antennas utilized along the outer periphery of the service area, such as at the corners of each floor within a building to be provided with communication services. Accordingly, the communicated signals will be directed within the service area providing less interference to wireless systems outside the service area as well as accepting less interference from outside the service area.
Moreover, as users of MSUs operating therein may generally expect such communication services to be provided from sources external to the actual service area, i.e., cellular towers disposed external to a building within which they are operating, these users may be prone to migrating toward the periphery of the service area in an effort to achieve improved signal quality. Deployment of antennas along such periphery allows MSU transmission powers to be reduced as the MSUs migrate toward the periphery of the service area. Accordingly, when operating in areas most likely to result in transmitted signals being sufficient to interfere with wireless systems outside the service area, the transmission levels of a preferred embodiment are reduced to mitigate such interference. Moreover, as these MSUs are by definition closing the air gap between the MSU and a communication system antenna by migrating to the periphery of the service area, the system signal strength as received by the MSU may be improved with respect to an interfering signal associated with wireless systems outside the coverage.
According to one embodiment of the present invention, preamplifiers are disposed in the BTS receive signal path at a point near ones of the antennas. Therefore received signals may be amplified for transmission over a somewhat lengthy or otherwise lossy cable. Accordingly, antennas of this preferred embodiment may be disposed relatively large distances from the associated transceiver equipment. As such, wireless communications may be provided in areas located significant distances from the transceiver, such as in the upper floors of a high rise office tower, while allowing centralized deployment and control over a plurality of transceivers, such as may be deployed in a basement mechanical closet of the high rise office tower. Additionally, or alternatively, use may be made of lossier cable, i.e., less expensive cable, interconnecting the antennas and transceivers or transmission cable which is already available within the area to be served with wireless communications, i.e., computer systems networking cable deployed within a structure.
Additionally or alternatively, a preferred embodiment of the present invention utilizes frequency conversion in the signal paths near the antennas to convert received/transmitted signals to/from system native radio frequencies (RF) and intermediate frequencies (IF). Likewise, frequency conversion is utilized in the signal paths near the transceivers to convert the received/transmitted signals to/from RF and IF. Accordingly, by using a different IF for the RF signal received at ones of the antennas, some or all the antenna signals may be multiplexed onto a single signal path, i.e., a single coax. Moreover, by proper selection of the IFs used, ones of the antenna signals may be combined on an existing signal path which is also utilized by another communication service, such as the aforementioned computer systems networking cable.
According to this embodiment of the present invention, antenna selection for each transceiver may be accomplished by selecting a local oscillator (LO) frequency which up converts only that IF corresponding to the antenna selected to the exact carrier frequency that the transceiver serving a particular MSU is tuned for. This operation may be performed for multiple antenna beams with respect to a single transceiver, such as on a time slot by time slot basis for time division multiple access systems (TDMA) as TDMA MSUs may be dispersed throughout the coverage area yet each is served by the best antenna. Multiple antennas may be placed in communication with a single transceiver, to provide the multiple access techniques described above or for other purposes such as to provide signal diversity, by tuning the LO of multiple antennas to a common frequency.
With respect to the transceiver transmit signals, each transceiver may have a particular IF associated therewith such that multiple signals are combined for communication through a single cable. Accordingly, a particular antenna or antennas may be selected for transmission of a transceiver signal by selecting a LO frequency which up converts only that IF corresponding to this particular transceiver in order to radiate the transceiver's signal within a desired portion of the coverage area. If more than one carrier is to be transmitted from a single antenna or combination of antennas, the LOs associated with these transceivers may down convert these carriers within the same IF band, thus allowing selection of a corresponding LO at the antenna for up conversion of all of these carrier frequencies.
Of course, there is no limitation to the use of a common signal path, i.e., the use of IFs for the combining of signals on a single cable, in both the transmit and receive signal paths. For example, a common cable may be utilized in the receive signal path and individual cables utilized in the transmit signal path, if desired.
The use of IFs as in the above described preferred embodiment provides advantages where substantial distances are present between antennas and transceivers. As lower cost transmission cable may often be utilized in providing a signal path for lower frequency communications, down conversion of the system native RF frequencies to a lower IF frequency is utilized by a preferred embodiment of the present invention in order to provide for cost effective communication of such signals over distances such as those of the above described high rise office tower. An alternative embodiment of the present invention utilizes conversion between the system native RF and lightwave signals for transmission through low-loss fiber.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
BRIEF DESCRIPTION OF THE DRAWING
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
FIG. 1 illustrates a high level block diagram of the present invention deployed to provide wireless communication services in a service area substantially co-extensive with the interior volume of a high rise office tower;
FIG. 2A shows a schematic diagram of a preferred embodiment of communication circuitry adapted according to the present invention;
FIG. 2B shows a schematic diagram of a portion of the circuitry of FIG. 2A adapted according to an alternative preferred embodiment of the present invention;
FIG. 3 shows a schematic diagram of a portion of the circuitry of FIG. 2A adapted according to an alternative preferred embodiment of the present invention; and
FIGS. 4-6 show schematic diagrams of alternative embodiments of communication circuitry adapted according to the present invention.
DETAILED DESCRIPTION
Directing attention to FIG. 1, a high level block diagram of system 100 employing concepts of the present invention is shown deployed to provide wireless communications within a desired service area, here building 101. Accordingly, base transceiver station (BTS) 110 is coupled to a plurality of antennas, shown here as antennas 111 a-114 a, 111 b-114 b, and 111 c-114 c, which are disposed at various locations throughout building 101, in order to communicate with wireless communication devices operable within building 101, such as mobile subscriber units (MSUs) 130 b and 130 c. It should be appreciated that BTS 110 may be a portion of a communication network including multiple service areas having other BTSs associated therewith. For example, BTS 110 may be a cell site or microcell site BTS of a cellular telephone communication network wherein other cells and/or microcells are deployed throughout a geographic area, also having BTSs associated therewith, in order to provide substantially uninterrupted cellular telephone service through the geographic area. Additionally or alternatively, BTS 110 may be associated with a private communication system, such as a wireless private branch exchange (PBX) or other qualified communication system.
In order to provide communication coverage having desired signal attributes on ones of the various floors of building 101, the preferred embodiment includes antennas disposed throughout ones of these floors as shown in FIG. 1. Preferably, at least a portion of the antennas of the present invention are deployed along the outer periphery of the service area, such as at the comers or along the exterior walls of each floor of building 101. Accordingly, by utilizing directional antennas, i.e., antennas providing an antenna beam substantially limited to within at least a portion of the service area, the communicated signals will be directed within the service area, thus providing less interference to wireless systems outside the service area as well as accepting less interference from outside the service area.
Moreover, users of MSUs operating within building 101 may often operate the units at or near the periphery of the service area. For example, such users generally expect communication services to be provided from sources external to the actual service area in the case of high rise office towers, i.e., cellular towers disposed external to building 101. Therefore, these users may be prone to migrating toward the periphery of the service area in an effort to achieve improved signal quality. Deployment of antennas along such periphery may be utilized to provide improved signal quality at the MSU as these MSUs are reducing the air gap between the MSU and a communication system antenna in communication therewith by migrating to the periphery of the service area. Accordingly, the system signal strength as received by the MSU, and therefore a carrier to noise ratio, may be improved with respect to interfering signals associated with wireless systems outside the coverage as the strength of these interfering signals should not increase at the rate of the communication system's signal strength increase due to the close proximity of the periphery antennas.
Additionally, deployment of antennas along the periphery of the service area provides advantages in that such an arrangement allows MSU transmission powers to be reduced, such as is common in operation of mobile units in digital cellular communication systems, as the MSUs migrate toward the periphery of the service area. Accordingly, when operating in areas most likely to result in transmitted signals being sufficient to interfere with wireless systems outside the service area, i.e., other cells of a cellular network of which BTS 110 is a part, the transmission levels of a preferred embodiment are reduced to mitigate such interference.
In addition to the above mentioned advantages of disposal of antennas at the periphery of the service area, advantages may be realized in the physical deployment of the preferred periphery antennas. For example, when utilized to provide wireless communication services within the aforementioned high rise office tower, it may be necessary to deploy such antennas and their associated cabling after such a building has been erected. Accordingly, deployment of the antennas may be accomplished by attaching the antennas to the exterior of the building, such as within an aesthetically pleasing radome structure, and the associated cabling routed along the face of the building, such as within a seam or expansion joint, thus simplifying the deployment as the exterior surfaces may be more readily accessible.
Although the antennas of FIG. 1 are shown deployed only along the periphery of the service area, it should be appreciated that antennas may be deployed at other locations of the service area according to the present invention, if desired. For example, additional antennas may be added to the interior spaces of the floors of building 101 in order to provide a suitable signal within interior spaces which may not be adequately illuminated by other antennas. Additionally, or alternatively, antennas may be deployed in order to provide communication services to particular predefined areas or situations. For example, as building 101 may include elevators and thus elevator shafts which are not generally well suited for the passing of radio frequency signals, particular antennas may be deployed within the elevator shafts in order to provide suitable wireless communications therein. Moreover, as elevators are often highly mobile, i.e., covering a number of floors in a very short time, antennas deployed within such shafts may be adapted to move, such as by coupling to the elevator car itself, in order to provide communications therein without requiring a substantial amount of controller overhead to continuously handoff communications between antennas of the various floors.
As shown in FIG. 1, the antennas utilized according to the present invention are coupled to the BTS transceivers through an interface, shown here as interfaces 120 a-120 c. It should be appreciated that the illustration of the interface in FIG. 1 is provided to aid in understanding the present invention and the distributed configuration shown, i.e., individual interfaces 120 a, 120 b, and 120 c for each of the floors of building 101, is not a limitation of the present invention. Indeed, particular embodiments of the present invention utilize a centralized or substantially centralized interface in order to couple the antennas and BTS operating according to the present invention as will be more readily appreciated from the discussion herein below.
Directing attention to FIG. 2A, a schematic diagram of a preferred embodiment of the present invention is shown. In FIG. 2A, BTS 210, similar to BTS 110 of FIG. 1 although the componentry of interfaces 120 a-120 c of FIG. 1 is included therein, is coupled to a plurality of antennas, shown as antennas 211 a-211 n, which may include antennas disposed in various groupings such as antennas 111 a-114 a, 111 b, 114 b, and 111 c-114 c of FIG. 1. As will be explained in detail below, the circuitry of FIG. 2 is substantially passive and is therefore preferable for use in situations wherein antennas 211 a-211 n are deployed relatively near to BTS 210, i.e., the antennas are spatially separated from the transceiver equipment of the BTS approximately 50-100 meters when frequencies typically used in cellular communication are used.
It should be appreciated that the subscript “n” as used in the figures is utilized to represent any desired number of antennas deployed according to the present invention and is not intended to be limiting to any particular number. Likewise, the subscript “m” as used in the figures is utilized to represent any desired number of transceivers or communications channels, i.e., transceivers which are each associated with a particular frequency channel or communications channels assignable to discrete users such as a frequency division channel, a time division burst, a code division chip code, or the like, utilized by the BTS and is not intended to be limiting to any particular number.
In order to couple the received antenna beam signal of selected ones of antennas 211 a-211 n to particular ones of transceivers 240 a-240 m, switch matrixes 220 a-220 n are disposed there between. In the embodiment of FIG. 2A, any antenna beam signal associated with antennas 211 a-211 n may be coupled to any of transceivers 240 a-240 m. Accordingly, 1×m (one input and m outputs) switch matrixes 220 a-220 n are provided to couple any antenna beam n to any transceiver m. Of course, combinations of switch matrixes other than the discrete switch matrixes illustrated in FIG. 2A may be utilized as described in further detail below, if desired.
The preferred embodiment illustrated in FIG. 2A utilizes signal combiners 230 a-230 m in order to couple the antenna beam signals as switchably passed by switch matrixes 220 a-220 n to transceivers 240 a-240 m. Additionally, combiners 230 a-230 m may be utilized to combine the antenna beam signal of multiple ones of antennas 211 a-211 n to a single transceiver where advantages may be realized by combining multiple antenna beam signals for input into the transceivers, such as where code division multiple access (CDMA) is utilized and multiple diverse signals are desired at a single transceiver input or where time division multiple access (TDMA) is utilized and time divided MSUs are operating in the antenna beams of multiple antennas. The use of delays in the signal paths of various ones of the antennas and/or various antenna diversity techniques, such as shown and described in the abovereferenced patent application entitled “Diversity Among Narrow Antenna Beams,” may be utilized to enhance communications utilizing multiple antenna beams, if desired. Moreover, it should be appreciated that operation of the switch matrixes according to the present invention may be utilized to couple the signals of multiple MSUs, such as the above mentioned time divided MSUs, operating in the antenna beams of multiple antennas to a particular transceiver interface, such as on a time slot by time slot basis for TDMA systems.
Although not shown in the schematic diagram of FIG. 2A, the present invention may utilize transceiver equipment having diversity inputs and, accordingly, the system may operate to switchably couple a first antenna to one diversity input and a second antenna to another diversity input of each transceiver. Of course such an embodiment will utilize switch matrix apparatus providing signal paths associated with the diversity inputs of such transceiver equipment as will be readily appreciated by one of ordinary skill in the art. Directing attention to FIG. 2B, a preferred embodiment receive signal path adapted according to the present invention including diversity inputs is shown. Accordingly, each of transceivers 240 a-240 m include multiple inputs coupled to antennas 211 a-211 n through switch matrix 280.
It should be appreciated that the switch matrix of FIG. 2B is somewhat simplified over the combination of switch matrixes and combiners of the embodiment of FIG. 2A. As described above, various switch matrix arrangements may be utilized according to the present invention. Switch matrix 280 of FIG. 2B provides selectable signal paths between n antenna inputs and 2 m transceiver outputs (m transceivers each having 2 inputs for diversity). However, the combiners of FIG. 2A have been omitted in the embodiment of FIG. 2B as in this illustrated embodiment it is not desired to provide the antenna beam signal of more than a single antenna to any one transceiver input. Accordingly, each antenna may be switchably coupled to any combination of transceiver inputs by switch matrix 280.
Referring again to FIG. 2A, it can be seen that the transmit signal path or forward link of the system is similar to that of the receive or reverse link. Accordingly, in order to couple the output of transceivers 240 a-240 m to selected ones of antennas 211 a-211 n, switch matrixes 221 a-221 n are disposed there between. In the preferred embodiment of FIG. 2A, any transceiver output signal may be coupled to any of antennas 211 a-211 n. Accordingly, n m×1 (m inputs and 1 output) switch matrixes 221 a-221 n are provided to couple any transceiver signal m to any of antennas n. The preferred embodiment illustrated in FIG. 2A utilizes signal splitters 231 a-231 m in order to couple the transceiver signal of each transceiver to multiple ones of the antennas. Of course, combinations of switch matrixes and/or splitters other than the discrete components illustrated in FIG. 2A may be utilized, if desired. Additionally, as described above with respect to the reverse link, the forward link may utilize delays in the signal paths of various ones of the antennas and/or various antenna diversity techniques, such as shown and described in the above-referenced patent application entitled “Diversity Among Multiple Antenna Beams,” if desired. The use of delays, such as on the order of micro seconds for example, may be desirable to allow the MSU receiver to process signals from two antennas.
Also shown in FIG. 2A are duplexers 260 a-260 n. These duplexers are placed in the antenna signal paths in order to utilize a same antenna structure in both the forward and reverse links. For example, as shown in the embodiment of FIG. 2A, a single antenna may be deployed for each antenna of the plurality of antennas deployed throughout building 101, and a single cable coupled to BTS 210 for use in both the forward and reverse links. Of course, the duplexers may be disposed more near the antennas if desired, although such an embodiment would necessitate extended lengths of forward link and reverse link cabling from the BTS to the duplexers. Alternatively, separate antenna structure and/or connecting cables may be utilized in the forward and reverse links, if desired. For example, antennas deployed along the periphery of the service area may be utilized in the BTS reverse link in order to realize the above described advantages of power control and reduced interference and a centrally located antenna utilized in the forward link, i.e., a centrally located omni-directional forward link antenna may be deployed on each floor of building 101.
In operation, controller 270 will control selectable signal paths coupled thereto, such as the switch matrixes of FIG. 2A, in order to selectively couple ones of the antennas to ones of the transceivers. Accordingly, by monitoring communication attributes, such as received signal strength indicator (RSSI) for each communication on each of the antenna beams, or by receiving such information from coupled BTS components such as a scan receiver or cellular BTS controller, controller 270 may select a particular antenna to couple to a transceiver providing communication with an MSU.
For example, MSU 130 b shown in FIG. 1 is disposed most near antenna 111 b corresponding to antenna 211 b of FIG. 2A. Accordingly, controller 270 of FIG. 2A may detect a strongest receive signal from MSU 130 b at antenna 211 b and therefore operate switch 220 b to couple the antenna beam signal of antenna 211 b to a particular transceiver operating on a channel consistent with that of MSU 130 b. Where signal diversity is utilized, controller 270 may identify a second best antenna, i.e., a second antenna also having suitable attributes for communication according to the present invention, and couple the corresponding signal path to a diversity port of the particular transceiver operating on the channel consistent with that of MSU 130 b. As MSU 130 b moves about building 101, controller 270 will update the antenna assignments by manipulating the selectable signal paths coupled thereto in accordance with information regarding movement of MSU 130 b.
Controller 270 is preferably a processor based system having a central processing unit and memory operating under control of an instruction set according to the present invention. For example, controller 270 may be a general purpose processor based system, such as a personal computer built on an INTEL 80X86 or PENTIUM processor platform, in information communication with BTS componentry as described herein and operating under control of a computer program to provide the functionality of the present invention. Of course, other forms of controller may be utilized if desired, such as dedicated control systems and/or utilizing a portion of a cellular BTS controller capacity, generally utilized in scanning signals and assigning/handing off communications, to provide the added control functionality of the present invention.
It shall be appreciated that the present invention may utilize any number of, or combination of, communication characteristics in selectively coupling antennas to transceivers and, therefore, the present invention is not limited to the above mentioned RSSI information in selecting antennas. For example, a signal to noise (S/N) ratio, carrier to interference (C/I) ratio, or bit error rate (BER) of a received and/or transmitted signal may be utilized in selecting an antenna. Additionally or alternatively, attributes which may be monitored outside of the communicated signals themselves may be utilized in selection of antennas, if desired. For example, MSU position information, such as may be determined by triangulation techniques involving ones of the plurality of antennas, may be utilized in selecting a particular antenna through which to provide wireless communications to an MSU.
Selective coupling of the transmit or forward link signal paths is preferably symmetric with that of the receive or reverse link. For example, a particular antenna or antennas may be selected for use in receiving communication signals from an MSU based on received signal attributes and this same antenna selected for transmitting communication signals to the MSU. Such a symmetric system is generally acceptable as an antenna determined to provide a best receive signal path is likely to provide similar link characteristics in the transmit signal path as well.
However, due to certain link conditions, such as the presence of multi-paths, i.e., signals reflected off of objects such as room partitions, floors, and furniture to arrive at an antenna at different times, selection of an antenna of one direction of a link based on the selection of another direction of the link may not always provide acceptable results. Accordingly, an alternative embodiment of the present invention monitors link characteristic information in each direction of the wireless link, such as may be provided with respect to a BTS transmitted signal attribute through a control loop from the receiving MSU, in selection of antennas utilized according to the present invention. It shall be appreciated that the present invention may utilize different antennas in the forward and reverse links by manipulating the selectable signal paths differently for each of the forward and reverse links.
As described above, the embodiment of FIG. 2A is a substantially passive system which is preferably utilized, at radio frequencies typically associated with cellular communications, when the longest distances between the antennas and transceivers are approximately 100 meters. Directing attention to FIG. 3, adaptation of the system of FIGS. 2A and 2B for deployment of antennas greater distances than may provide acceptable communication attributes in the substantially passive system described therein is shown. In the alternative embodiment of FIG. 3, an amplifier is disposed in the receive signal path at a point near ones of the antennas. Accordingly, as shown in FIG. 3 with respect to antenna 211 a, duplexer 260 a is disposed at a point near antenna 211 a in order to provide a discrete transmit and receive signal path. Amplifier 310 a is disposed in the receive signal path in order to provide a signal at a corresponding transceiver of BTS 210 with desired characteristics. Accordingly, ones of the antennas may be deployed greater distances, i.e., approximately 200 meters at radio frequencies typically associated with cellular communications, than may be possible with the substantially passive embodiments of FIGS. 2A and 2B.
It shall be appreciated that the use of amplifiers according to this alternative embodiment may be selective. For example, amplifiers may be deployed as shown in FIG. 3 for use with antennas 111 c-114 c and 111 b-114 b of FIG. 1 and not for use with antennas 111 a-114 a of FIG. 1 as antennas 111 a-114 a are disposed more near the transceivers of the associated BTS.
As cellular BTS communication equipment generally includes the use of amplifiers, such as linear power amplifiers (LPAs), in order to provide a transmitted signal with a desired signal strength, the preferred embodiment of the present invention does not utilize added amplification of the transmitted signals. Of course, where the amplitude of transmitted signals is not maintained at a desired level at the antennas of the present invention, amplification such as that shown in the receive signal path may be utilized if desired.
It shall be appreciated that manipulation of signal attributes according to this embodiment of the present invention is not limited to signal amplification as shown in FIG. 3. Additionally or alternatively the receive and/or transmit signal paths may include signal manipulation componentry such as filters, attenuators, interference cancelers, digital signal processors, and the like, where deemed advantageous.
Moreover, there is no limitation to the number of such devices utilized in a particular signal path according to the present invention. For example, although the spatial separation of an antenna and associated transceiver at radio frequencies commonly utilized for cellular communications is suggested to be approximately 200 meters, multiple ones of the amplifiers shown in FIG. 3 may be deployed in the signal path to extend such distances. As it is envisioned that the present invention is uniquely suited for deployment in structures, such as the aforementioned high rise office tower, deployment of multiple signal manipulation apparatus along the length of such signal paths may be readily accommodated in both environment, i.e., a service closet available on particular floors may be utilized, and utilities, i.e., necessary power connections may be present throughout the structure.
The embodiments of the present invention described above utilize a plurality of signal paths or cables in order to maintain discrete signals for coupling between antennas and transceivers according to the present invention. However, it may be desirable to reduce the number of such discrete signal paths in order to provide advantages such as simplified installation/maintenance and reduced cabling costs, including both the ability to utilize fewer cables and more affordably utilize less lossy although typically more expensive cables.
Directing attention to FIG. 4, a preferred embodiment utilizing fewer signal paths between the antennas and transceivers utilized according to the present invention is shown. According to this embodiment of the present invention, the signals of antennas of the plurality of antennas are composited for coupling to the BTS transceivers through a common signal path. However, in order to maintain the antenna beam signals as discrete signals when composited, the embodiment of FIG. 4 utilizes discrete intermediate frequencies (IFs) for signals to be composited. Specifically, antennas 211 a-211 n have mixers 450 a-450 n, respectively, associated therewith. By utilizing a local oscillator (LO) having a unique frequency for each antenna, i.e., LOa for antenna 211 a, LOb for antenna 211 b, and LOn for antenna 211 n, the antenna beam signals for each antenna may be converted to a unique IF for signal compositing by combiner 430, shown here as an n×1(n inputs and 1 output) signal combiner. Accordingly, although maintained as discrete signals which may be recovered independently, a single cable may be utilized as a signal path between combiner 430 and BTS 410.
It shall be appreciated that, although a single combiner is shown for the antennas of FIG. 4, multiple such combiners may be utilized. For example, antenna beam signals may be composited in groups, such as antennas of a particular floor or group of floors may be composited by a combiner and the composite signal also composited with additional antenna beam signals in cascading fashion, if desired.
In order to provide a selected antenna beam signal to a particular transceiver, BTS 410 of FIG. 4 utilizes splitter 431, shown here as an 1×m (1 input and m outputs) splitter, coupled to mixers 451 a-451 m. LO generator 421, adapted to generate a plurality of frequencies corresponding to those utilized by mixers 450 a-450 n, is coupled to each of mixers 451 a-451 m through switch matrix 420. Accordingly, a particular antenna beam signal present in a corresponding unique IF may be selected for coupling to a desired transceiver by selectively coupling the appropriate LO frequency of LO generator 421 to the corresponding mixer. For example, if the antenna beam signal of antenna 211 a is to be coupled to transceiver 240 m, LOa as generated by LO generator 421 is coupled to mixer 451 m by switch matrix 420 operating under control of controller 270. The use of a plurality of intermediate frequencies to provide multiple discrete signals through a common signal path and for their selection for provision to any of a number of associated interfaces is described in detail in the above referenced patent application entitled “System and Method for Frequency Multiplexing Antenna Signals,” previously incorporated herein by reference.
It should be appreciated that, although shown only in the reverse link, the use of a reduced number of transmission cables between the antennas and BTS transceivers as shown in FIG. 4 may also be utilized in the forward link as well. For example, by replicating the circuitry of the receive signal path substantially as shown in FIG. 4 and coupling this circuitry to the transmit ports of the transceivers and to duplexers as shown in FIG. 2A, mixers in the transmit path at the BTS may be coupled to a selected LO frequency corresponding to a LO frequency of a selected antenna and, thus, the transceiver output signal may be selected for radiation by a selected antenna of the plurality of antennas. If more than one carrier is to be transmitted from a single antenna, the mixers associated with each of these transceiver output signals may be coupled to a same LO frequency corresponding to the desired antenna.
Additionally, it should be appreciated that the local oscillator frequencies utilized by the mixers at the antennas may be adjustable according to the present invention, such as under control of controller 270. For example, an IF associated with a particular antenna may be selectable by adjusting the LO utilized by the corresponding mixer. Accordingly, antenna beam signals may be combined by selecting a common LO for multiple ones of the antennas in the receive path. Likewise, a transceiver output signal may be simulcast from several antennas by having the LOs associated with antennas desired for transmission of the transceiver signal all tune to the same frequency.
Apparatus may be disposed in the signal paths in order to provide desired signal attributes. For example, as shown in FIG. 4, amplifiers, such as amplifiers 310 a-310 n disposed in the receive signal path, may be utilized to provide a signal of a desired amplitude. Additionally or alternatively other signal attribute components as described above may be utilized, if desired. For example filters may be disposed in the signal paths in order to filter image frequencies corresponding to the up-converters and down-converters and/or to filter the LO frequencies from the transmitted signals.
It shall be appreciated that frequency conversion of system native frequencies, such as down conversion of frequencies utilized by cellular communication systems to intermediate frequencies, may be useful in allowing for increased separation between the antennas and BTS transceivers utilized according to the present invention. For example, a lower cost cabling solution which is available for deployment in the above mentioned high rise office tower may be very lossy with respect to system native frequencies and, therefore, provide for only relatively short antenna/transceiver separation. However, this same cable may be substantially less lossy with respect to the lower frequencies of a selected IF and, therefore, allow for increased antenna/transceiver separation. Accordingly, in a preferred embodiment of the circuitry shown in FIG. 4, mixers 450 a-450 n operate to down-convert the antenna beam signals to an IF suitable for relatively lengthy transmission through the associated cable and mixers 451 a-451 m operate to up-convert the various IFs back to the system native frequencies. In a preferred embodiment wherein radio frequencies commonly utilized for cellular communications are utilized, the embodiment of FIG. 4 provides for antenna/transceiver separation on the order of approximately 200 meters and more.
Where separation between antennas and BTS transceivers utilized according to the present invention are greater than those providing desired signal attributes utilizing the above described embodiments, an alternative embodiment of the present invention allows for such spatially diverse deployments by converting the RF signals to lightwave signals and transmitting these signals along low-loss fiber. Conversion of the signals back to RF preferably occurs at the BTS wherein selectable signal paths may be utilized in coupling the signals to transceivers such as shown in FIGS. 2A and 2B. This alternative embodiment is shown in FIG. 5, wherein antennas 211 a-211 n are coupled to transceivers 240 a-240 m of BTS 510 through RF to light converters 510 a-510 n and light to RF converters 511 a-511 n, respectively, and switch matrix 280.
In order to provide added capacity within a particular service area, multiple BTSs and/or their associated transceiver equipment may be deployed according to the present invention. For example, circuitry as illustrated in any of the embodiments described above may be deployed for a particular subset of the floors of the aforementioned high rise office tower, with a second such system deployed for a second subset of the floors of the high rise office tower. Additionally, or alternatively, communication signals associated with the plurality of antennas deployed according to the present invention may be split and/or combined in order to be simultaneously provided to transceiver equipment of a second BTS or to transceiver equipment of an enlarged capacity BTS. This is illustrated in FIG. 6 as BTS 610 having transceiver set 640, possibly associated with a first cellular BTS, and transceiver set 641, possibly associated with a second cellular BTS. In operation, the antenna beam signals of antennas 211 a-211 n are split by signal splitters 631 a-631 n for coupling to each transceiver set through a corresponding switch matrix 680 and 690. It shall be appreciated that each of switch matrixes 780 and 790 may be controlled to provide a selected antenna beam signal to particular ones of the transceivers by controller 270 as described above. The signals transmitted by the transceivers are selectively coupled to antennas 211 a-211 n through a corresponding switch matrix 681 and 691, each operable under control of controller 270 as described above. In order to allow the signals of each transceiver set to be provided to a same antenna, signal combiners 630 a-630 n are provided in the transmit signal path.
Although reference has been made herein to transceiver equipment, it shall be appreciated that the concepts of the present invention are not limited to use only with transceivers. Accordingly, the use of the term transceiver as used herein is intended to include communication equipment which may receive, transmit, and/or receive and transmit.
Likewise, although reference has been made herein to the use of switch matrixes, it shall be appreciated that the present invention may utilize any number of selectable, configurable signal apparatuses or dynamically adjustable signal path networks. Accordingly, the present invention is not limited to any particular form of apparatus by the term Switch matrix.
Similarly, although the preferred embodiment has been described herein with reference to a MSU, it shall be appreciated that there is no limitation to operation of the present invention with mobile units. The principals of the present invention are operable with fixed or semi-fixed communication units as well as with mobile communication units. Indeed, a system of the present invention may be deployed in a building to provide not only mobile communications, but may also provide communication links for fixed or semi-fixed equipment, such as computer workstations or even a desktop telephone system.
It shall be appreciated that, although a preferred embodiment has been described herein with reference to disposal within a building, there is no limitation to the configuration of the service area according to the present invention. Accordingly, wireless communication services may be provided consistent with any desired area of coverage according to the principals of the present invention. For example, the present invention may be utilized to provide communications along a highway, such as within a tunnel, having insufficient wireless communication services provided thereto.
Additionally, it should be appreciated that, although represented as individual components in schematic diagrams presented herein, various ones of the components may be integrated. For example, the transceivers of FIG. 2A may be embodied in a single unit providing radio communication on various channels associated with the communication system operated according to the present invention. Likewise, the switch matrixes of the transmit or receive signal paths may be combined into a reduced number of switch matrixes providing selectable signal paths consistent with the operation of the communication as described above. Moreover, as particular embodiments may utilize duplexing to utilize a single set of antennas in both the forward and reverse links, alternative embodiments of the present invention utilize a single switch matrix assembly coupled to the transceiver equipment through duplexers in order to couple antennas to the transceivers according to the present invention.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (3)

What is claimed is:
1. A system for providing wireless communication to a service area substantially within a building, said system comprising:
a plurality of antennas each having an antenna beam associated therewith disposed to provide substantially uninterrupted coverage of said service area with said antenna beams, wherein at least a first one of said antenna beams provides coverage of an area of a first floor of said building and at least a second one of said antenna beams provides coverage of an area of a second floor of said building;
a radio having a plurality of interfaces;
a down converter coupling each antenna to a common signal path, wherein antennas of said plurality are converted to employ a unique intermediate frequency for simultaneous discrete communication through said common signal path; and
an up converter coupled to each interface of said plurality of interfaces, wherein each interface of said plurality of interfaces of said radio is in selectable communication with said each antenna of said plurality of antennas through selective conversion of an associated signal;
wherein selection of a particular antenna to place in communication with a particular interface of said radio is controlled at least in part by selecting an up-conversion mixing frequency associated with said particular interface corresponding to a down-conversion mixing frequency associated with said particular antenna.
2. The system of claim 1, further comprising:
an up-conversion mixing frequency generator generating a plurality of up-conversion frequencies; and
a switch matrix coupled to said up-conversion mixing frequency generator wherein selection of said up-conversion mixing frequency for selection of a particular antenna to place in communication with a particular interface of said radio is accomplished through operation of said switch matrix.
3. The system of claim 1, wherein multiple antennas of said plurality of antennas are placed in communication with said particular interface of said radio at least in part by providing a common down-conversion mixing frequency associated with each said multiple antennas corresponding to a up-conversion mixing frequency associated with said particular interface.
US09/229,492 1999-01-11 1999-01-11 Indoor distributed microcell Expired - Lifetime US6405018B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/229,492 US6405018B1 (en) 1999-01-11 1999-01-11 Indoor distributed microcell
PCT/US2000/000134 WO2000042801A1 (en) 1999-01-11 2000-01-04 Method and system for a distributed indoor microcell network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/229,492 US6405018B1 (en) 1999-01-11 1999-01-11 Indoor distributed microcell

Publications (1)

Publication Number Publication Date
US6405018B1 true US6405018B1 (en) 2002-06-11

Family

ID=22861468

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/229,492 Expired - Lifetime US6405018B1 (en) 1999-01-11 1999-01-11 Indoor distributed microcell

Country Status (2)

Country Link
US (1) US6405018B1 (en)
WO (1) WO2000042801A1 (en)

Cited By (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010046844A1 (en) * 2000-05-17 2001-11-29 Nec Corporation Array antenna transceiver capable of continuing transmission and reception regardless of failure of reference signal
US20010046840A1 (en) * 2000-05-24 2001-11-29 Kyung-Hwan Kim Apparatus for transmitting and receiving radio signals in a pico-BTS
US6449477B1 (en) * 2000-04-25 2002-09-10 Qualcomm, Incorporated Radio frequency coverage of an enclosed region by arrangement of transceivers within the region
US20020186436A1 (en) * 2001-06-08 2002-12-12 Sanjay Mani Method and apparatus for multiplexing in a wireless communication infrastructure
US20030003917A1 (en) * 2001-06-29 2003-01-02 Copley Rich T. Wireless communication system, apparatus and method for providing wireless communication within a building structure
US20030003961A1 (en) * 2001-06-30 2003-01-02 Kuo-Hui Li Sequential signal selection system and method
US20030078029A1 (en) * 2001-10-24 2003-04-24 Statsignal Systems, Inc. System and method for transmitting an emergency message over an integrated wireless network
US20030087672A1 (en) * 2001-09-04 2003-05-08 Paul Kattukaran Integration of wireless LAN and cellular distributed antenna
US20030161410A1 (en) * 2002-02-26 2003-08-28 Martin Smith Radio communications device with adaptive combination
US20040198453A1 (en) * 2002-09-20 2004-10-07 David Cutrer Distributed wireless network employing utility poles and optical signal distribution
US6826163B2 (en) 2001-06-08 2004-11-30 Nextg Networks Method and apparatus for multiplexing in a wireless communication infrastructure
US6826164B2 (en) 2001-06-08 2004-11-30 Nextg Networks Method and apparatus for multiplexing in a wireless communication infrastructure
US20050032531A1 (en) * 2003-08-06 2005-02-10 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Location positioning in wireless networks
US20050079893A1 (en) * 2003-10-10 2005-04-14 Taiwan Semiconductor Manufacturing Co., Ltd. Method to solve the multi-path and to implement the roaming function
US20050159154A1 (en) * 2003-12-30 2005-07-21 Goren David P. Location tracking using directional antennas combined with signal strength measurements
US20060046642A1 (en) * 2003-11-28 2006-03-02 Consistel Pte Ltd. Wireless communication system and lift system having the same
US20060091972A1 (en) * 2004-11-02 2006-05-04 Microwave Photonics, Inc. Distributed matrix switch
US20070257796A1 (en) * 2006-05-08 2007-11-08 Easton Martyn N Wireless picocellular RFID systems and methods
US20070269170A1 (en) * 2006-05-19 2007-11-22 Easton Martyn N Fiber optic cable and fiber optic cable assembly for wireless access
US20070292137A1 (en) * 2006-06-16 2007-12-20 Michael Sauer Redundant transponder array for a radio-over-fiber optical fiber cable
US20080044186A1 (en) * 2006-08-16 2008-02-21 Jacob George Radio-over-fiber transponder with a dual-band patch antenna system
US20080070502A1 (en) * 2006-09-15 2008-03-20 Jacob George Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US20080080863A1 (en) * 2006-09-28 2008-04-03 Michael Sauer Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US20080186143A1 (en) * 2007-02-06 2008-08-07 Jacob George Transponder systems and methods for radio-over-fiber (ROF) wireless picocellular systems
US7426231B1 (en) * 2000-06-19 2008-09-16 Bertrand Dorfman Communication within buildings
US20090006617A1 (en) * 2001-10-30 2009-01-01 Sipco, Llc. System And Method For Transmitting Pollution Information Over An Integrated Wireless Network
US20090068947A1 (en) * 1997-02-14 2009-03-12 Petite Thomas D Multi-function general purpose transceivers & devices
US7650425B2 (en) 1999-03-18 2010-01-19 Sipco, Llc System and method for controlling communication between a host computer and communication devices associated with remote devices in an automated monitoring system
US7697492B2 (en) 1998-06-22 2010-04-13 Sipco, Llc Systems and methods for monitoring and controlling remote devices
US7756086B2 (en) 2004-03-03 2010-07-13 Sipco, Llc Method for communicating in dual-modes
US20100290787A1 (en) * 2009-05-15 2010-11-18 Cox Terry D Power Distribution Devices, Systems, and Methods for Radio-Over-Fiber (RoF) Distributed Communication
US20110008042A1 (en) * 2009-07-07 2011-01-13 Stewart James N Cell phone/internet communication system for RF isolated areas
US20110045767A1 (en) * 2007-09-30 2011-02-24 Ahmadreza Rofougaran Method and system for 60 ghz distributed communication utilizing a mesh network of repeaters
US8000314B2 (en) 1996-12-06 2011-08-16 Ipco, Llc Wireless network system and method for providing same
US8013732B2 (en) 1998-06-22 2011-09-06 Sipco, Llc Systems and methods for monitoring and controlling remote devices
US8031650B2 (en) 2004-03-03 2011-10-04 Sipco, Llc System and method for monitoring remote devices with a dual-mode wireless communication protocol
US8064412B2 (en) 1998-06-22 2011-11-22 Sipco, Llc Systems and methods for monitoring conditions
US20120083207A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and System for 60 GHZ Distributed Communication
US20120083215A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and system for mitigating leakage of a 60 ghz transmitted signal back into an rf input of a 60 ghz device
US20120082069A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and System for Time Division Duplexing (TDD) in a 60 GHZ Distributed Communication System
US20120083225A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and system for a 60 ghz communication device comprising multi-location antennas for pseudo-beamforming
US20120083306A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and system for antenna switching for 60 ghz distributed communication
US20120083233A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and system for communication via subbands in a 60 ghz distributed communication system
US20120091799A1 (en) * 2010-09-30 2012-04-19 Broadcom Corporation Portable computing device with wireless power distribution
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8410931B2 (en) 1998-06-22 2013-04-02 Sipco, Llc Mobile inventory unit monitoring systems and methods
US8489063B2 (en) 2001-10-24 2013-07-16 Sipco, Llc Systems and methods for providing emergency messages to a mobile device
US20130231050A1 (en) * 2012-03-01 2013-09-05 Sony Corporation Information processing device, communication system, and channel setting method
US20130235806A1 (en) * 2010-11-15 2013-09-12 Telefonaktiebolaget L M Ericsson (Publ) Antenna architecture for maintaining beam shape in a reconfigurable antenna
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US20140024322A1 (en) * 2012-07-18 2014-01-23 Rf Micro Devices, Inc. Radio front end having reduced diversity switch linearity requirement
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8787246B2 (en) 2009-02-03 2014-07-22 Ipco, Llc Systems and methods for facilitating wireless network communication, satellite-based wireless network systems, and aircraft-based wireless network systems, and related methods
US20140227982A1 (en) * 2013-02-08 2014-08-14 Rf Micro Devices, Inc. Front end circuitry for carrier aggregation configurations
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8897839B2 (en) 2011-11-10 2014-11-25 Industrial Technology Research Institute Method, apparatus and system for controlling distributed antenna system
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9078211B2 (en) 2012-10-11 2015-07-07 Rf Micro Devices, Inc. Power management configuration for TX MIMO and UL carrier aggregation
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9118100B2 (en) 2012-06-18 2015-08-25 Rf Micro Devices, Inc. Antenna switching circuitry for a worldphone radio interface
US9160449B2 (en) 2010-10-13 2015-10-13 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9166690B2 (en) 2012-09-25 2015-10-20 Corning Optical Communications LLC Power distribution module(s) for distributed antenna systems, and related power units, components, systems, and methods
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9185674B2 (en) 2010-08-09 2015-11-10 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9203596B2 (en) 2012-10-02 2015-12-01 Rf Micro Devices, Inc. Tunable diplexer for carrier aggregation applications
US9219594B2 (en) 2012-06-18 2015-12-22 Rf Micro Devices, Inc. Dual antenna integrated carrier aggregation front end solution
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9220067B2 (en) 2011-05-02 2015-12-22 Rf Micro Devices, Inc. Front end radio architecture (FERA) with power management
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9343797B2 (en) 2011-05-17 2016-05-17 3M Innovative Properties Company Converged in-building network
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
EP3035547A1 (en) * 2014-12-16 2016-06-22 Nokia Technologies OY An apparatus and method for multiple antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9419775B2 (en) 2012-10-02 2016-08-16 Qorvo Us, Inc. Tunable diplexer
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9439126B2 (en) 2005-01-25 2016-09-06 Sipco, Llc Wireless network protocol system and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US9647707B1 (en) * 2016-08-12 2017-05-09 Rafael Microelectronics, Inc. Signal receiver
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9685782B2 (en) 2010-11-24 2017-06-20 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
US9684060B2 (en) 2012-05-29 2017-06-20 CorningOptical Communications LLC Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9729251B2 (en) 2012-07-31 2017-08-08 Corning Optical Communications LLC Cooling system control in distributed antenna systems
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9967032B2 (en) 2010-03-31 2018-05-08 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9991065B2 (en) 2012-07-11 2018-06-05 Qorvo Us, Inc. Contact MEMS architecture for improved cycle count and hot-switching and ESD
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10142864B2 (en) 2014-03-31 2018-11-27 Corning Optical Communications Wireless Ltd Distributed antenna system continuity
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10200960B2 (en) 2015-09-22 2019-02-05 Corning Optical Communications Wireless Ltd Remote antenna unit (RAU) with multiple antenna assembly in a distributed antenna system (DAS)
US20190074942A1 (en) * 2011-10-17 2019-03-07 Golba Llc Method and system for centralized or distributed resource management in a distributed transceiver network
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10257056B2 (en) 2012-11-28 2019-04-09 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US20190181560A1 (en) 2017-12-08 2019-06-13 Movandi Corporation Signal Cancellation in Radio Frequency (RF) Device Network
US20190267716A1 (en) 2018-02-26 2019-08-29 Movandi Corporation Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication
US10455497B2 (en) 2013-11-26 2019-10-22 Corning Optical Communications LLC Selective activation of communications services on power-up of a remote unit(s) in a wireless communication system (WCS) based on power consumption
US10560179B2 (en) 2017-07-11 2020-02-11 Movandi Corporation Active repeater device for operational mode based beam pattern changes for communication with a plurality of user equipment
US10560136B2 (en) 2016-05-31 2020-02-11 Corning Optical Communications LLC Antenna continuity
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10587313B2 (en) 2017-12-07 2020-03-10 Movandi Corporation Optimized multi-beam antenna array network with an extended radio frequency range
US10608727B2 (en) 2012-08-08 2020-03-31 Golba Llc Method and system for a distributed configurable transceiver architecture and implementation
US10637159B2 (en) 2018-02-26 2020-04-28 Movandi Corporation Waveguide antenna element-based beam forming phased array antenna system for millimeter wave communication
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US10666326B2 (en) 2017-12-08 2020-05-26 Movandi Corporation Controlled power transmission in radio frequency (RF) device network
US10693529B1 (en) * 2019-09-30 2020-06-23 Aeroantenna Technology, Inc. Method and apparatus for multiplexing several antenna subsystem signals onto a single RF coaxial cable
US10721634B2 (en) 2017-05-30 2020-07-21 Movandi Corporation Non-line-of-sight (NLOS) coverage for millimeter wave communication
US10992484B2 (en) 2013-08-28 2021-04-27 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US11296504B2 (en) 2010-11-24 2022-04-05 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1107358C (en) * 2000-02-24 2003-04-30 信息产业部电信科学技术研究院 Distributed intelligent antenna system
EP1213877A1 (en) * 2000-12-11 2002-06-12 Siemens Aktiengesellschaft High integrated electrical circuit and method for exchanging data in a closed system
US8279800B2 (en) 2008-02-08 2012-10-02 Adc Telecommunications, Inc. Enterprise mobile network for providing cellular wireless service using licensed radio frequency spectrum and internet protocol backhaul
KR101196437B1 (en) 2011-01-14 2012-11-05 인텔라 주식회사 Super femtocell base station having a plural of antennas installed at remote sites separately

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267262A (en) * 1989-11-07 1993-11-30 Qualcomm Incorporated Transmitter power control system
US5345598A (en) 1992-04-10 1994-09-06 Ericsson-Ge Mobile Communications Holding, Inc. Duplex power control system in a communication network
US5349631A (en) * 1991-11-21 1994-09-20 Airtouch Communications Inbuilding telephone communication system
EP0725498A1 (en) 1995-01-31 1996-08-07 Radio Frequency Systems Inc. Radio signal scanning and targeting system for use in land mobile radio base sites
US5564121A (en) 1994-08-18 1996-10-08 Northern Telecom Limited Microcell layout having directional and omnidirectional antennas defining a rectilinear layout in a building
US5613217A (en) 1995-05-03 1997-03-18 Telefonaktiebolaget Lm Ericsson Transceiver site selection a cellular communications system
US5628052A (en) * 1994-09-12 1997-05-06 Lucent Technologies Inc. Wireless communication system using distributed switched antennas
US5682256A (en) 1988-11-11 1997-10-28 British Telecommunications Public Limited Company Communications system
US5832363A (en) * 1994-06-20 1998-11-03 Kabushiki Kaisha Toshiba Mobile communication system including service management of traffic machines
EP0884915A2 (en) 1997-06-12 1998-12-16 Radio Communication Systems Limited Radio PBX for personal communications system
US6035218A (en) * 1996-05-09 2000-03-07 Samsung Electronics Co., Ltd. Radio signal repeating apparatus of a code division multiple access communication system
US6038272A (en) * 1996-09-06 2000-03-14 Lucent Technologies Inc. Joint timing, frequency and weight acquisition for an adaptive array
US6070071A (en) * 1995-11-13 2000-05-30 Interwave Communications International Ltd. Multiple antenna cellular network
US6108323A (en) * 1997-11-26 2000-08-22 Nokia Mobile Phones Limited Method and system for operating a CDMA cellular system having beamforming antennas
US6148218A (en) * 1998-02-13 2000-11-14 Lucent Technologies, Inc. Architecture for multi-sector base stations
US6195566B1 (en) * 1996-06-13 2001-02-27 Lucent Technologies Inc. Utilization of integrated base stations in the cellular radio system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682256A (en) 1988-11-11 1997-10-28 British Telecommunications Public Limited Company Communications system
US5267262A (en) * 1989-11-07 1993-11-30 Qualcomm Incorporated Transmitter power control system
US5349631A (en) * 1991-11-21 1994-09-20 Airtouch Communications Inbuilding telephone communication system
US5345598A (en) 1992-04-10 1994-09-06 Ericsson-Ge Mobile Communications Holding, Inc. Duplex power control system in a communication network
US5832363A (en) * 1994-06-20 1998-11-03 Kabushiki Kaisha Toshiba Mobile communication system including service management of traffic machines
US5564121A (en) 1994-08-18 1996-10-08 Northern Telecom Limited Microcell layout having directional and omnidirectional antennas defining a rectilinear layout in a building
US5628052A (en) * 1994-09-12 1997-05-06 Lucent Technologies Inc. Wireless communication system using distributed switched antennas
EP0725498A1 (en) 1995-01-31 1996-08-07 Radio Frequency Systems Inc. Radio signal scanning and targeting system for use in land mobile radio base sites
US5613217A (en) 1995-05-03 1997-03-18 Telefonaktiebolaget Lm Ericsson Transceiver site selection a cellular communications system
US6070071A (en) * 1995-11-13 2000-05-30 Interwave Communications International Ltd. Multiple antenna cellular network
US6035218A (en) * 1996-05-09 2000-03-07 Samsung Electronics Co., Ltd. Radio signal repeating apparatus of a code division multiple access communication system
US6195566B1 (en) * 1996-06-13 2001-02-27 Lucent Technologies Inc. Utilization of integrated base stations in the cellular radio system
US6038272A (en) * 1996-09-06 2000-03-14 Lucent Technologies Inc. Joint timing, frequency and weight acquisition for an adaptive array
EP0884915A2 (en) 1997-06-12 1998-12-16 Radio Communication Systems Limited Radio PBX for personal communications system
US6108323A (en) * 1997-11-26 2000-08-22 Nokia Mobile Phones Limited Method and system for operating a CDMA cellular system having beamforming antennas
US6148218A (en) * 1998-02-13 2000-11-14 Lucent Technologies, Inc. Architecture for multi-sector base stations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PCT International Search Report dated May 3, 2000.
Sheldon Meredith and Andrew Crowley, "Antenna Technique Boosts Capacity and Coverage, Reduces Interference: Electronically controlled, directive antennas help cellular site operators to reduce interference, increase capacity, improve coverage (both in-building and rural) and optimize hand-offs.", Apr. 1997, pp. 80, 82, 84, 86 and 88.

Cited By (301)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8982856B2 (en) 1996-12-06 2015-03-17 Ipco, Llc Systems and methods for facilitating wireless network communication, satellite-based wireless network systems, and aircraft-based wireless network systems, and related methods
US8625496B2 (en) 1996-12-06 2014-01-07 Ipco, Llc Wireless network system and method for providing same
US8000314B2 (en) 1996-12-06 2011-08-16 Ipco, Llc Wireless network system and method for providing same
US8233471B2 (en) 1996-12-06 2012-07-31 Ipco, Llc Wireless network system and method for providing same
US8335304B2 (en) 1997-02-14 2012-12-18 Sipco, Llc Multi-function general purpose transceivers and devices
US20090068947A1 (en) * 1997-02-14 2009-03-12 Petite Thomas D Multi-function general purpose transceivers & devices
US9691263B2 (en) 1998-06-22 2017-06-27 Sipco, Llc Systems and methods for monitoring conditions
US8410931B2 (en) 1998-06-22 2013-04-02 Sipco, Llc Mobile inventory unit monitoring systems and methods
US9571582B2 (en) 1998-06-22 2017-02-14 Sipco, Llc Systems and methods for monitoring and controlling remote devices
US9129497B2 (en) 1998-06-22 2015-09-08 Statsignal Systems, Inc. Systems and methods for monitoring conditions
US8013732B2 (en) 1998-06-22 2011-09-06 Sipco, Llc Systems and methods for monitoring and controlling remote devices
US8964708B2 (en) 1998-06-22 2015-02-24 Sipco Llc Systems and methods for monitoring and controlling remote devices
US7697492B2 (en) 1998-06-22 2010-04-13 Sipco, Llc Systems and methods for monitoring and controlling remote devices
US8223010B2 (en) 1998-06-22 2012-07-17 Sipco Llc Systems and methods for monitoring vehicle parking
US8212667B2 (en) 1998-06-22 2012-07-03 Sipco, Llc Automotive diagnostic data monitoring systems and methods
US8064412B2 (en) 1998-06-22 2011-11-22 Sipco, Llc Systems and methods for monitoring conditions
US9430936B2 (en) 1998-06-22 2016-08-30 Sipco Llc Systems and methods for monitoring and controlling remote devices
US8930571B2 (en) 1999-03-18 2015-01-06 Sipco, LLP Systems and methods for controlling communication between a host computer and communication devices
US8924588B2 (en) 1999-03-18 2014-12-30 Sipco, Llc Systems and methods for controlling communication between a host computer and communication devices
US8924587B2 (en) 1999-03-18 2014-12-30 Sipco, Llc Systems and methods for controlling communication between a host computer and communication devices
US7650425B2 (en) 1999-03-18 2010-01-19 Sipco, Llc System and method for controlling communication between a host computer and communication devices associated with remote devices in an automated monitoring system
US6449477B1 (en) * 2000-04-25 2002-09-10 Qualcomm, Incorporated Radio frequency coverage of an enclosed region by arrangement of transceivers within the region
US20010046844A1 (en) * 2000-05-17 2001-11-29 Nec Corporation Array antenna transceiver capable of continuing transmission and reception regardless of failure of reference signal
US6778843B2 (en) * 2000-05-17 2004-08-17 Nec Corporation Array antenna transceiver capable of continuing transmission and reception regardless of failure of reference signal
US20010046840A1 (en) * 2000-05-24 2001-11-29 Kyung-Hwan Kim Apparatus for transmitting and receiving radio signals in a pico-BTS
US7426231B1 (en) * 2000-06-19 2008-09-16 Bertrand Dorfman Communication within buildings
US20020186436A1 (en) * 2001-06-08 2002-12-12 Sanjay Mani Method and apparatus for multiplexing in a wireless communication infrastructure
US7127175B2 (en) 2001-06-08 2006-10-24 Nextg Networks Method and apparatus for multiplexing in a wireless communication infrastructure
US6826164B2 (en) 2001-06-08 2004-11-30 Nextg Networks Method and apparatus for multiplexing in a wireless communication infrastructure
US6826163B2 (en) 2001-06-08 2004-11-30 Nextg Networks Method and apparatus for multiplexing in a wireless communication infrastructure
US20030003917A1 (en) * 2001-06-29 2003-01-02 Copley Rich T. Wireless communication system, apparatus and method for providing wireless communication within a building structure
US20030003961A1 (en) * 2001-06-30 2003-01-02 Kuo-Hui Li Sequential signal selection system and method
US20030087672A1 (en) * 2001-09-04 2003-05-08 Paul Kattukaran Integration of wireless LAN and cellular distributed antenna
US7082320B2 (en) * 2001-09-04 2006-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Integration of wireless LAN and cellular distributed antenna
US7480501B2 (en) * 2001-10-24 2009-01-20 Statsignal Ipc, Llc System and method for transmitting an emergency message over an integrated wireless network
US8666357B2 (en) * 2001-10-24 2014-03-04 Sipco, Llc System and method for transmitting an emergency message over an integrated wireless network
US20030078029A1 (en) * 2001-10-24 2003-04-24 Statsignal Systems, Inc. System and method for transmitting an emergency message over an integrated wireless network
US10687194B2 (en) 2001-10-24 2020-06-16 Sipco, Llc Systems and methods for providing emergency messages to a mobile device
US9615226B2 (en) 2001-10-24 2017-04-04 Sipco, Llc System and method for transmitting an emergency message over an integrated wireless network
US20090215424A1 (en) * 2001-10-24 2009-08-27 Sipco, Llc. System and method for transmitting an emergency message over an integrated wireless network
US8489063B2 (en) 2001-10-24 2013-07-16 Sipco, Llc Systems and methods for providing emergency messages to a mobile device
US9282029B2 (en) 2001-10-24 2016-03-08 Sipco, Llc. System and method for transmitting an emergency message over an integrated wireless network
US10149129B2 (en) 2001-10-24 2018-12-04 Sipco, Llc Systems and methods for providing emergency messages to a mobile device
US7739378B2 (en) 2001-10-30 2010-06-15 Sipco, Llc System and method for transmitting pollution information over an integrated wireless network
US20090006617A1 (en) * 2001-10-30 2009-01-01 Sipco, Llc. System And Method For Transmitting Pollution Information Over An Integrated Wireless Network
US8171136B2 (en) 2001-10-30 2012-05-01 Sipco, Llc System and method for transmitting pollution information over an integrated wireless network
US9111240B2 (en) 2001-10-30 2015-08-18 Sipco, Llc. System and method for transmitting pollution information over an integrated wireless network
US9515691B2 (en) 2001-10-30 2016-12-06 Sipco, Llc. System and method for transmitting pollution information over an integrated wireless network
US20030161410A1 (en) * 2002-02-26 2003-08-28 Martin Smith Radio communications device with adaptive combination
US20040198453A1 (en) * 2002-09-20 2004-10-07 David Cutrer Distributed wireless network employing utility poles and optical signal distribution
US7313403B2 (en) 2003-08-06 2007-12-25 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Location positioning in wireless networks
US20050032531A1 (en) * 2003-08-06 2005-02-10 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Location positioning in wireless networks
US7174175B2 (en) * 2003-10-10 2007-02-06 Taiwan Semiconductor Manufacturing Co., Ltd. Method to solve the multi-path and to implement the roaming function
US20050079893A1 (en) * 2003-10-10 2005-04-14 Taiwan Semiconductor Manufacturing Co., Ltd. Method to solve the multi-path and to implement the roaming function
US20080261520A1 (en) * 2003-11-28 2008-10-23 Consistel Pte Ltd. Wireless communication system and lift system having the same
US8014718B2 (en) 2003-11-28 2011-09-06 Consistel Pte Ltd. Wireless communication system and lift system having the same
US7376389B2 (en) * 2003-11-28 2008-05-20 Consistel Pte Ltd. Wireless communication system and lift system having the same
US20060046642A1 (en) * 2003-11-28 2006-03-02 Consistel Pte Ltd. Wireless communication system and lift system having the same
US7640024B2 (en) * 2003-12-30 2009-12-29 Symbol Technologies, Inc. Location tracking using directional antennas combined with signal strength measurements
US20050159154A1 (en) * 2003-12-30 2005-07-21 Goren David P. Location tracking using directional antennas combined with signal strength measurements
US8031650B2 (en) 2004-03-03 2011-10-04 Sipco, Llc System and method for monitoring remote devices with a dual-mode wireless communication protocol
US8446884B2 (en) 2004-03-03 2013-05-21 Sipco, Llc Dual-mode communication devices, methods and systems
US8379564B2 (en) 2004-03-03 2013-02-19 Sipco, Llc System and method for monitoring remote devices with a dual-mode wireless communication protocol
US7756086B2 (en) 2004-03-03 2010-07-13 Sipco, Llc Method for communicating in dual-modes
WO2006050004A3 (en) * 2004-11-02 2009-04-09 Nextg Networks Inc Distributed matrix switch
US20060091972A1 (en) * 2004-11-02 2006-05-04 Microwave Photonics, Inc. Distributed matrix switch
US7205864B2 (en) * 2004-11-02 2007-04-17 Nextg Networks, Inc. Distributed matrix switch
US10356687B2 (en) 2005-01-25 2019-07-16 Sipco, Llc Wireless network protocol systems and methods
US9439126B2 (en) 2005-01-25 2016-09-06 Sipco, Llc Wireless network protocol system and methods
US9860820B2 (en) 2005-01-25 2018-01-02 Sipco, Llc Wireless network protocol systems and methods
US11039371B2 (en) 2005-01-25 2021-06-15 Sipco, Llc Wireless network protocol systems and methods
US20070257796A1 (en) * 2006-05-08 2007-11-08 Easton Martyn N Wireless picocellular RFID systems and methods
US7495560B2 (en) 2006-05-08 2009-02-24 Corning Cable Systems Llc Wireless picocellular RFID systems and methods
US8472767B2 (en) 2006-05-19 2013-06-25 Corning Cable Systems Llc Fiber optic cable and fiber optic cable assembly for wireless access
US20070269170A1 (en) * 2006-05-19 2007-11-22 Easton Martyn N Fiber optic cable and fiber optic cable assembly for wireless access
US20070292137A1 (en) * 2006-06-16 2007-12-20 Michael Sauer Redundant transponder array for a radio-over-fiber optical fiber cable
US20070292136A1 (en) * 2006-06-16 2007-12-20 Michael Sauer Transponder for a radio-over-fiber optical fiber cable
US7590354B2 (en) 2006-06-16 2009-09-15 Corning Cable Systems Llc Redundant transponder array for a radio-over-fiber optical fiber cable
US20080044186A1 (en) * 2006-08-16 2008-02-21 Jacob George Radio-over-fiber transponder with a dual-band patch antenna system
US7627250B2 (en) 2006-08-16 2009-12-01 Corning Cable Systems Llc Radio-over-fiber transponder with a dual-band patch antenna system
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US20080070502A1 (en) * 2006-09-15 2008-03-20 Jacob George Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US20080080863A1 (en) * 2006-09-28 2008-04-03 Michael Sauer Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US20080186143A1 (en) * 2007-02-06 2008-08-07 Jacob George Transponder systems and methods for radio-over-fiber (ROF) wireless picocellular systems
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8913951B2 (en) * 2007-09-30 2014-12-16 Broadcom Corporation Method and system for 60 GHz distributed communication utilizing a mesh network of repeaters
US20110045767A1 (en) * 2007-09-30 2011-02-24 Ahmadreza Rofougaran Method and system for 60 ghz distributed communication utilizing a mesh network of repeaters
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8787246B2 (en) 2009-02-03 2014-07-22 Ipco, Llc Systems and methods for facilitating wireless network communication, satellite-based wireless network systems, and aircraft-based wireless network systems, and related methods
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US20100290787A1 (en) * 2009-05-15 2010-11-18 Cox Terry D Power Distribution Devices, Systems, and Methods for Radio-Over-Fiber (RoF) Distributed Communication
US8155525B2 (en) 2009-05-15 2012-04-10 Corning Cable Systems Llc Power distribution devices, systems, and methods for radio-over-fiber (RoF) distributed communication
US20110008042A1 (en) * 2009-07-07 2011-01-13 Stewart James N Cell phone/internet communication system for RF isolated areas
US8326156B2 (en) 2009-07-07 2012-12-04 Fiber-Span, Inc. Cell phone/internet communication system for RF isolated areas
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US10070258B2 (en) 2009-07-24 2018-09-04 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9967032B2 (en) 2010-03-31 2018-05-08 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9913094B2 (en) 2010-08-09 2018-03-06 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US10959047B2 (en) 2010-08-09 2021-03-23 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US10448205B2 (en) 2010-08-09 2019-10-15 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US11653175B2 (en) 2010-08-09 2023-05-16 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9185674B2 (en) 2010-08-09 2015-11-10 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US20120083207A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and System for 60 GHZ Distributed Communication
US9118217B2 (en) * 2010-09-30 2015-08-25 Broadcom Corporation Portable computing device with wireless power distribution
US8977219B2 (en) * 2010-09-30 2015-03-10 Broadcom Corporation Method and system for mitigating leakage of a 60 GHz transmitted signal back into an RF input of a 60 GHz device
US8942646B2 (en) * 2010-09-30 2015-01-27 Broadcom Corporation Method and system for a 60 GHz communication device comprising multi-location antennas for pseudo-beamforming
US9002300B2 (en) * 2010-09-30 2015-04-07 Broadcom Corporation Method and system for time division duplexing (TDD) in a 60 GHZ distributed communication system
US9008593B2 (en) * 2010-09-30 2015-04-14 Broadcom Corporation Method and system for 60 GHz distributed communication
US9608674B2 (en) 2010-09-30 2017-03-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and system for 60 GHz distributed communication
US20120083215A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and system for mitigating leakage of a 60 ghz transmitted signal back into an rf input of a 60 ghz device
US8942647B2 (en) * 2010-09-30 2015-01-27 Broadcom Corporation Method and system for antenna switching for 60 GHz distributed communication
US9270139B2 (en) * 2010-09-30 2016-02-23 Broadcom Corporation Portable computing device with wireless power distribution
US20120091799A1 (en) * 2010-09-30 2012-04-19 Broadcom Corporation Portable computing device with wireless power distribution
US8942645B2 (en) * 2010-09-30 2015-01-27 Broadcom Corporation Method and system for communication via subbands in a 60 GHZ distributed communication system
US20120082069A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and System for Time Division Duplexing (TDD) in a 60 GHZ Distributed Communication System
US20120083233A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and system for communication via subbands in a 60 ghz distributed communication system
US20120083225A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and system for a 60 ghz communication device comprising multi-location antennas for pseudo-beamforming
US20120083306A1 (en) * 2010-09-30 2012-04-05 Ahmadreza Rofougaran Method and system for antenna switching for 60 ghz distributed communication
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US9419712B2 (en) 2010-10-13 2016-08-16 Ccs Technology, Inc. Power management for remote antenna units in distributed antenna systems
US9160449B2 (en) 2010-10-13 2015-10-13 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US10425891B2 (en) 2010-10-13 2019-09-24 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US10045288B2 (en) 2010-10-13 2018-08-07 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US10849064B2 (en) 2010-10-13 2020-11-24 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US10420025B2 (en) 2010-10-13 2019-09-17 Corning Optical Communications LLC Local power management for remote antenna units in distributed antenna systems
US10104610B2 (en) 2010-10-13 2018-10-16 Corning Optical Communications LLC Local power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US10750442B2 (en) 2010-10-13 2020-08-18 Corning Optical Communications LLC Local power management for remote antenna units in distributed antenna systems
US9699723B2 (en) 2010-10-13 2017-07-04 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US20130235806A1 (en) * 2010-11-15 2013-09-12 Telefonaktiebolaget L M Ericsson (Publ) Antenna architecture for maintaining beam shape in a reconfigurable antenna
US9112551B2 (en) * 2010-11-15 2015-08-18 Telefonaktiebolaget L M Ericsson (Publ) Antenna architecture for maintaining beam shape in a reconfigurable antenna
US11114852B2 (en) 2010-11-24 2021-09-07 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US11715949B2 (en) 2010-11-24 2023-08-01 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US11296504B2 (en) 2010-11-24 2022-04-05 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US10454270B2 (en) 2010-11-24 2019-10-22 Corning Optical Communicatons LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US9685782B2 (en) 2010-11-24 2017-06-20 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9220067B2 (en) 2011-05-02 2015-12-22 Rf Micro Devices, Inc. Front end radio architecture (FERA) with power management
US9343797B2 (en) 2011-05-17 2016-05-17 3M Innovative Properties Company Converged in-building network
US10873431B2 (en) 2011-10-17 2020-12-22 Golba Llc Method and system for utilizing multiplexing to increase throughput in a network of distributed transceivers with array processing
US10965411B2 (en) 2011-10-17 2021-03-30 Golba Llc Method and system for a repeater network that utilizes distributed transceivers with array processing
US10581567B2 (en) 2011-10-17 2020-03-03 Golba Llc Method and system for high-throughput and low-power communication links in a distributed transceiver network
US11133903B2 (en) * 2011-10-17 2021-09-28 Golba Llc Method and system for centralized distributed transceiver management
US11075723B2 (en) 2011-10-17 2021-07-27 Golba Llc Method and system for MIMO transmission in a distributed transceiver network
US11075724B2 (en) 2011-10-17 2021-07-27 Golba Llc Method and system for a repeater network that utilizes distributed transceivers with array processing
US11018816B2 (en) 2011-10-17 2021-05-25 Golba Llc Method and system for a repeater network that utilizes distributed transceivers with array processing
US11128415B2 (en) 2011-10-17 2021-09-21 Golba Llc Method and system for a repeater network that utilizes distributed transceivers with array processing
US10958389B2 (en) 2011-10-17 2021-03-23 Golba Llc Method and system for providing diversity in a network that utilizes distributed transceivers with array processing
US20190312692A1 (en) * 2011-10-17 2019-10-10 Golba Llc Method and system for centralized distributed transceiver management
US20190074942A1 (en) * 2011-10-17 2019-03-07 Golba Llc Method and system for centralized or distributed resource management in a distributed transceiver network
US11108512B2 (en) * 2011-10-17 2021-08-31 Golba Llc Method and system for centralized or distributed resource management in a distributed transceiver network
US8897839B2 (en) 2011-11-10 2014-11-25 Industrial Technology Research Institute Method, apparatus and system for controlling distributed antenna system
TWI481218B (en) * 2011-11-10 2015-04-11 Ind Tech Res Inst Method, apparatus and system for controlling distributed antenna system
US20130231050A1 (en) * 2012-03-01 2013-09-05 Sony Corporation Information processing device, communication system, and channel setting method
US9706338B2 (en) * 2012-03-01 2017-07-11 Sony Corporation Information processing device, communication system, and channel setting method
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US9684060B2 (en) 2012-05-29 2017-06-20 CorningOptical Communications LLC Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods
US10250290B2 (en) 2012-06-18 2019-04-02 Qorvo Us, Inc. Front end switching circuitry for carrier aggregation
US10009058B2 (en) 2012-06-18 2018-06-26 Qorvo Us, Inc. RF front-end circuitry for receive MIMO signals
US10298288B2 (en) 2012-06-18 2019-05-21 Qorvo Us, Inc. Antenna switching circuitry for MIMO/diversity modes
US9118100B2 (en) 2012-06-18 2015-08-25 Rf Micro Devices, Inc. Antenna switching circuitry for a worldphone radio interface
US9219594B2 (en) 2012-06-18 2015-12-22 Rf Micro Devices, Inc. Dual antenna integrated carrier aggregation front end solution
US9979433B2 (en) 2012-06-18 2018-05-22 Qorvo Us, Inc. RF front-end circuitry with transistor and microelectromechanical multiple throw switches
US9991065B2 (en) 2012-07-11 2018-06-05 Qorvo Us, Inc. Contact MEMS architecture for improved cycle count and hot-switching and ESD
US9143208B2 (en) * 2012-07-18 2015-09-22 Rf Micro Devices, Inc. Radio front end having reduced diversity switch linearity requirement
US20140024322A1 (en) * 2012-07-18 2014-01-23 Rf Micro Devices, Inc. Radio front end having reduced diversity switch linearity requirement
US9729251B2 (en) 2012-07-31 2017-08-08 Corning Optical Communications LLC Cooling system control in distributed antenna systems
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US10615863B2 (en) 2012-08-08 2020-04-07 Golba Llc Method and system for distributed transceivers for distributed access points connectivity
US10735079B2 (en) 2012-08-08 2020-08-04 Golba Llc Method and system for distributed transceivers and mobile device connectivity
US10608727B2 (en) 2012-08-08 2020-03-31 Golba Llc Method and system for a distributed configurable transceiver architecture and implementation
US11128367B2 (en) 2012-08-08 2021-09-21 Golba Llc Method and system for optimizing communication in leaky wave distributed transceiver environments
US9166690B2 (en) 2012-09-25 2015-10-20 Corning Optical Communications LLC Power distribution module(s) for distributed antenna systems, and related power units, components, systems, and methods
US9419775B2 (en) 2012-10-02 2016-08-16 Qorvo Us, Inc. Tunable diplexer
US9203596B2 (en) 2012-10-02 2015-12-01 Rf Micro Devices, Inc. Tunable diplexer for carrier aggregation applications
US9078211B2 (en) 2012-10-11 2015-07-07 Rf Micro Devices, Inc. Power management configuration for TX MIMO and UL carrier aggregation
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US11665069B2 (en) 2012-11-28 2023-05-30 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10999166B2 (en) 2012-11-28 2021-05-04 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10530670B2 (en) 2012-11-28 2020-01-07 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10257056B2 (en) 2012-11-28 2019-04-09 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9414192B2 (en) 2012-12-21 2016-08-09 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US20140227982A1 (en) * 2013-02-08 2014-08-14 Rf Micro Devices, Inc. Front end circuitry for carrier aggregation configurations
US9172441B2 (en) * 2013-02-08 2015-10-27 Rf Micro Devices, Inc. Front end circuitry for carrier aggregation configurations
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US10992484B2 (en) 2013-08-28 2021-04-27 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US11516030B2 (en) 2013-08-28 2022-11-29 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US10455497B2 (en) 2013-11-26 2019-10-22 Corning Optical Communications LLC Selective activation of communications services on power-up of a remote unit(s) in a wireless communication system (WCS) based on power consumption
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US10721637B2 (en) 2014-03-31 2020-07-21 Corning Optical Communications LLC Distributed antenna system continuity
US10142864B2 (en) 2014-03-31 2018-11-27 Corning Optical Communications Wireless Ltd Distributed antenna system continuity
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9680555B2 (en) 2014-12-16 2017-06-13 Nokia Technologies Oy Apparatus and method for multiple antenna systems
EP3035547A1 (en) * 2014-12-16 2016-06-22 Nokia Technologies OY An apparatus and method for multiple antenna systems
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10200960B2 (en) 2015-09-22 2019-02-05 Corning Optical Communications Wireless Ltd Remote antenna unit (RAU) with multiple antenna assembly in a distributed antenna system (DAS)
US10420045B2 (en) 2015-09-22 2019-09-17 Corning Optical Communications LLC Remote antenna unit (RAU) with multiple antenna assembly in a distributed antenna system (DAS)
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10560136B2 (en) 2016-05-31 2020-02-11 Corning Optical Communications LLC Antenna continuity
US9647707B1 (en) * 2016-08-12 2017-05-09 Rafael Microelectronics, Inc. Signal receiver
US10721634B2 (en) 2017-05-30 2020-07-21 Movandi Corporation Non-line-of-sight (NLOS) coverage for millimeter wave communication
US11082123B2 (en) 2017-07-11 2021-08-03 Silicon Valley Bank Active repeater device shared by multiple service providers to facilitate communication with customer premises equipment
US10630373B2 (en) 2017-07-11 2020-04-21 Movandi Corporation Active repeater device shared by multiple service providers to facilitate communication with customer premises equipment
US11018752B2 (en) 2017-07-11 2021-05-25 Silicon Valley Bank Reconfigurable and modular active repeater device
US10819415B2 (en) 2017-07-11 2020-10-27 Movandi Corporation Reconfigurable and modular active repeater device
US10560179B2 (en) 2017-07-11 2020-02-11 Movandi Corporation Active repeater device for operational mode based beam pattern changes for communication with a plurality of user equipment
US11088756B2 (en) 2017-07-11 2021-08-10 Silicon Valley Bank Active repeater device for operational mode based beam pattern changes for communication with a plurality of user equipment
US10951274B2 (en) 2017-12-07 2021-03-16 Movandi Corporation Optimized multi-beam antenna array network with an extended radio frequency range
US10587313B2 (en) 2017-12-07 2020-03-10 Movandi Corporation Optimized multi-beam antenna array network with an extended radio frequency range
US10666326B2 (en) 2017-12-08 2020-05-26 Movandi Corporation Controlled power transmission in radio frequency (RF) device network
US20190181560A1 (en) 2017-12-08 2019-06-13 Movandi Corporation Signal Cancellation in Radio Frequency (RF) Device Network
US10862559B2 (en) 2017-12-08 2020-12-08 Movandi Corporation Signal cancellation in radio frequency (RF) device network
US11088457B2 (en) 2018-02-26 2021-08-10 Silicon Valley Bank Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication
US20190267716A1 (en) 2018-02-26 2019-08-29 Movandi Corporation Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication
US11108167B2 (en) 2018-02-26 2021-08-31 Silicon Valley Bank Waveguide antenna element-based beam forming phased array antenna system for millimeter wave communication
US10637159B2 (en) 2018-02-26 2020-04-28 Movandi Corporation Waveguide antenna element-based beam forming phased array antenna system for millimeter wave communication
US10693529B1 (en) * 2019-09-30 2020-06-23 Aeroantenna Technology, Inc. Method and apparatus for multiplexing several antenna subsystem signals onto a single RF coaxial cable

Also Published As

Publication number Publication date
WO2000042801A1 (en) 2000-07-20

Similar Documents

Publication Publication Date Title
US6405018B1 (en) Indoor distributed microcell
JP3892483B2 (en) Cellular communication system having apparatus for coupling antenna array to a plurality of receivers
EP0593822B1 (en) Base station antenna arrangement
US7003322B2 (en) Architecture for digital shared antenna system to support existing base station hardware
US10693550B2 (en) Enhanced customer premise equipment
US7272362B2 (en) Multi-sector in-building repeater
EP1807939B1 (en) Communications system and method
US6016123A (en) Base station antenna arrangement
JP5044040B2 (en) Antenna system and transmission / reception method thereof
US5303287A (en) Integrated personal/cellular communications system architecture
KR100237903B1 (en) Double diversity antenna system
EP0391597A2 (en) Optical fiber microcellular mobile radio
KR20020081346A (en) Distributive intelligent antenna system
US20020103001A1 (en) Dynamic capacity allocation of in-building system
US5845199A (en) Simulcasting system with diversity reception
CA2240153A1 (en) Radio pbx for personal communications system
EP3917278B1 (en) Bridge comprising a donor bridge node and one or more service bridge nodes
KR100780374B1 (en) Multi-beam distribution apparatus having a dual sector structure
Ogawa Millimeter-wave wireless access systems
KR20000062871A (en) Dual carrier, three-sector configuration for a cdma transmitter/receiver

Legal Events

Date Code Title Description
AS Assignment

Owner name: METAWAVE COMMUNICATIONS CORPORATION, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REUDINK, DOUGLAS O.;SHEN, DONGLIN;SHUMAN, ROBERT N.;REEL/FRAME:009856/0127;SIGNING DATES FROM 19990308 TO 19990322

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: KATHREIN-WERKE KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:METAWAVE COMMUNICATIONS CORPORATION;REEL/FRAME:014910/0513

Effective date: 20030919

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: METAVE ASSET HOLDINGS, LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KATHREIN-WERKE AG;REEL/FRAME:021976/0313

Effective date: 20080619

AS Assignment

Owner name: METAVE ASSET HOLDINGS, LLC, DELAWARE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF CONVEYING PARTY PREVIOUSLY RECORDED ON REEL 021976 FRAME 0313;ASSIGNOR:KATHREIN-WERKE KG;REEL/FRAME:022354/0239

Effective date: 20080619

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: F. POSZAT HU, L.L.C., DELAWARE

Free format text: MERGER;ASSIGNOR:METAVE ASSET HOLDINGS, L.L.C.;REEL/FRAME:037097/0162

Effective date: 20150812

AS Assignment

Owner name: HANGER SOLUTIONS, LLC, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTELLECTUAL VENTURES ASSETS 161 LLC;REEL/FRAME:052159/0509

Effective date: 20191206

AS Assignment

Owner name: INTELLECTUAL VENTURES ASSETS 161 LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:F. POSZAT HU, L.L.C.;REEL/FRAME:051944/0432

Effective date: 20191126