US20110149838A1 - Method and system for signaling traffic and media types within a communications network switching system - Google Patents

Method and system for signaling traffic and media types within a communications network switching system Download PDF

Info

Publication number
US20110149838A1
US20110149838A1 US11/110,222 US11022205A US2011149838A1 US 20110149838 A1 US20110149838 A1 US 20110149838A1 US 11022205 A US11022205 A US 11022205A US 2011149838 A1 US2011149838 A1 US 2011149838A1
Authority
US
United States
Prior art keywords
bearer connection
subscriber device
network
connection
message
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/110,222
Other versions
US7957348B1 (en
Inventor
Michael D. Gallagher
Puneet Goel
Milan Markovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ribbon Communications Operating Co Inc
Original Assignee
Kineto Wireless Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kineto Wireless Inc filed Critical Kineto Wireless Inc
Priority to US11/110,222 priority Critical patent/US7957348B1/en
Priority to PCT/US2005/013945 priority patent/WO2005107297A1/en
Assigned to KINETO WIRELESS, INC. reassignment KINETO WIRELESS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOEL, PUNEET, GALLAGHER, MICHAEL D., MARKOVIC, MILAN
Application granted granted Critical
Publication of US7957348B1 publication Critical patent/US7957348B1/en
Publication of US20110149838A1 publication Critical patent/US20110149838A1/en
Assigned to BUSINESS DEVELOPMENT CORPORATION OF AMERICA, AS ADMINISTRATIVE AGENT reassignment BUSINESS DEVELOPMENT CORPORATION OF AMERICA, AS ADMINISTRATIVE AGENT NOTICE OF GRANT OF SECURITY INTEREST IN INTELLECTUAL PROPERTY Assignors: KINETO WIRELESS, LLC
Assigned to KINETO WIRELESS, LLC reassignment KINETO WIRELESS, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KINETO WIRELESS, INC.
Assigned to KINETO WIRELESS, LLC reassignment KINETO WIRELESS, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BUSINESS DEVELOPMENT CORPORATION OF AMERICA, AS ADMINISTRATIVE AGENT
Assigned to SONUS NETWORKS, INC. reassignment SONUS NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KINETO WIRELESS, LLC
Assigned to SONUS NETWORKS, INC. reassignment SONUS NETWORKS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SONUS, INC.
Assigned to SONUS, INC. reassignment SONUS, INC. MERGER AND CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SOLSTICE SAPPHIRE, INC., SONUS NETWORKS, INC.
Assigned to SILICON VALLEY BANK, AS ADMINISTRATIVE AGENT reassignment SILICON VALLEY BANK, AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENBAND US LLC, SONUS NETWORKS, INC.
Assigned to RIBBON COMMUNICATIONS OPERATING COMPANY, INC. reassignment RIBBON COMMUNICATIONS OPERATING COMPANY, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SONUS NETWORKS, INC.
Assigned to CITIZENS BANK, N.A., AS ADMINISTRATIVE AGENT reassignment CITIZENS BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RIBBON COMMUNICATIONS OPERATING COMPANY, INC.
Assigned to RIBBON COMMUNICATIONS OPERATING COMPANY, INC. (F/K/A GENBAND US LLC AND SONUS NETWORKS, INC.) reassignment RIBBON COMMUNICATIONS OPERATING COMPANY, INC. (F/K/A GENBAND US LLC AND SONUS NETWORKS, INC.) TERMINATION AND RELEASE OF PATENT SECURITY AGREEMENT AT R/F 044978/0801 Assignors: SILICON VALLEY BANK, AS ADMINISTRATIVE AGENT
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0066Transmission or use of information for re-establishing the radio link of control information between different types of networks in order to establish a new radio link in the target network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present description relates to communications with a call server in a public land mobile network, and, in particular, to communicating information about traffic formats and parameters with a call server.
  • Licensed wireless systems provide mobile wireless communications to individuals using wireless transceivers.
  • Licensed wireless systems refer to public cellular telephone systems and/or Personal Communication Services (PCS) telephone systems.
  • Wireless transceivers include cellular telephones, PCS telephones, wireless-enabled personal digital assistants, wireless modems, and the like.
  • Licensed wireless systems utilize wireless signal frequencies that are licensed from governments. Large fees are paid for access to these frequencies.
  • Expensive base station (BS) equipment is used to support communications on licensed frequencies.
  • Base stations are typically installed approximately a mile apart from one another (e.g., cellular towers in a cellular network).
  • the wireless transport mechanisms and frequencies employed by typical licensed wireless systems limit both data transfer rates and range.
  • the quality of service (voice quality and speed of data transfer) in licensed wireless systems is considerably inferior to the quality of service afforded by landline (wired) connections.
  • the user of a licensed wireless system pays relatively high fees for relatively low quality service.
  • Landline (wired) connections are extensively deployed and generally perform at a lower cost with higher quality voice and higher speed data services.
  • the problem with landline connections is that they constrain the mobility of a user.
  • Traditionally a physical connection to the landline was required.
  • a typical unlicensed wireless communication system includes a base station comprising a wireless access point (AP) with a physical connection (e.g., coaxial, twisted pair, or optical cable) to a landline-based network.
  • AP wireless access point
  • a physical connection e.g., coaxial, twisted pair, or optical cable
  • the AP has a RF (Radio Frequency) transceiver to facilitate communication with a wireless handset that is operative within a modest distance of the AP, wherein the data transport rates supported by the WiFi and BluetoothTM standards are much higher than those supported by the aforementioned licensed wireless systems.
  • RF Radio Frequency
  • the coding and format for voice and data traffic has a predetermined configuration.
  • any voice or data traffic must first be reconfigured to correspond to the predetermined norms.
  • a mobile communications system may have transcoding equipment capable of changing voice or data encoding or formatting.
  • the transcoding equipment is designed only to work according to the predetermined norms, there may be no provision for reconfiguring the equipment to transcode into or out of other formats.
  • a GSM Global System for Mobile Communication
  • specialized media gateways i.e., transcoder and rate adaptation units
  • PCM Pulse Code Modulation
  • TDM Time Division Multiplexed
  • the invention includes receiving an assignment request message from a call server of a communications network, the assignment request message including a description of a bearer connection between a subscriber and the communications network, sending a channel activation request to the subscriber, the channel activation request including at least a portion of the description of the bearer connection between the subscriber and the communications network, receiving connection information about a channel activated by the subscriber in response to the channel activation request, and sending the connection information to the call server to allow the call server to modify the bearer connection.
  • FIG. 1A provides an overview of the indoor access network (IAN) mobile service solution in accordance with one embodiment of the present invention
  • FIG. 1B illustrates protocol layers of a mobile set in accordance with one embodiment
  • FIG. 1C illustrates a method of protocol conversion in accordance with one embodiment
  • FIG. 2A illustrates an overview of a level 1, level 2, and level 3 GSM-related protocol architecture for one embodiment of a mobile station that provides unlicensed radio links via Bluetooth signaling;
  • FIG. 2B illustrates an overview of a level 1, level 2, and level 3 GSM-related protocol architecture for one embodiment of a mobile station that provides unlicensed radio links via IEEE 802.11 signaling;
  • FIG. 3A illustrates the Up interface protocol architecture in support of CS Domain signaling, as well as UMA-specific signaling, according to one embodiment
  • FIG. 3B shows Bluetooth lower layers employed by a mobile station and access point to facilitate physical layer communications
  • FIG. 3C shows Bluetooth lower layers employed by a mobile station and access point to facilitate physical layer communications
  • FIG. 3D illustrates the Up CS domain voice bearer protocol architecture in support of GSM voice transmission, according to one embodiment
  • FIG. 3E illustrates the Up GPRS user plane protocol architecture, according to one embodiment
  • FIG. 5 illustrates an enhanced UMA architecture in one embodiment also without packet data elements
  • FIG. 6A illustrates an enhanced Up interface protocol architecture in support of CS Domain signaling, as well as UMA specific signaling in accordance with one embodiment
  • FIG. 6B illustrates an enhanced Up Audio interface protocol architecture with direct passage of higher layers to a media gateway, according to one embodiment
  • FIG. 7 is a message and data flow diagram illustrating messages and operations employed to establish a connection between a mobile station and a MSC Call Server, according to one embodiment
  • FIG. 8 is a message and data flow diagram illustrating messages and operations employed to handover a call from a licensed base station to a mobile wireless LAN according to an embodiment
  • FIG. 9 is a message and data flow diagram illustrating messages and operations employed to modify a bearer connection according to an embodiment.
  • FIG. 10 is a message and data flow diagram illustrating messages and operations employed to indicate uplink quality according to an embodiment.
  • the unlicensed wireless system may be a short-range wireless system, which may be described as an “indoor” solution.
  • the unlicensed wireless system includes unlicensed wireless systems that cover not only a portion of a building but also local outdoor regions, such as outdoor portions of a corporate campus serviced by an unlicensed wireless system.
  • the mobile station may, for example, be a wireless phone, smart phone, personal digital assistant, or mobile computer.
  • the “mobile station” may also, for example, be a fixed wireless device providing a set of terminal adapter functions for connecting Integrated Services Digital Network (ISDN) or Plain Old Telephone Service (POTS) terminals to the wireless system.
  • ISDN Integrated Services Digital Network
  • POTS Plain Old Telephone Service
  • FIG. 1A illustrates an Unlicensed Mobile Access (UMA) architecture 100 in accordance with one embodiment of the present invention.
  • UMA architecture 100 enables a user of a mobile station 102 to access a voice and telecommunications network 104 via either a licensed wireless communications session 106 , or an unlicensed wireless communication session 108 .
  • the telecommunications network 104 includes a mobile switching center (MSC) 110 , which provides access to a voice network 112 , and a Serving GPRS (General Packet Radio Service) Support Node (SGSN) 114 , which provides access to a data network 116 .
  • MSC 110 also provides an internal visitor location register (VLR) function.
  • VLR visitor location register
  • licensed wireless communication session is facilitated by infrastructure provided by a licensed wireless network 118 that includes telecommunications network 104 .
  • licensed wireless network 118 depicts components common to a GSM-(Global System for Mobile Communication) based cellular network that includes multiple base transceiver stations (BTS) 120 (of which only one is shown for simplicity) that facilitate wireless communication services for various mobile stations 102 via respective licensed radio links 122 (e.g., radio links employing radio frequencies within a licensed bandwidth).
  • BTS base transceiver stations
  • the multiple BTSs 120 are configured in a cellular configuration (one per each cell) that covers a wide service area.
  • the various BTSs 120 for a given area or region are managed by a base station controller (BSC) 124 , with each BTS 120 communicatively-coupled to its BSC 124 via a private trunk 126 .
  • BSC base station controller
  • a large licensed wireless network such as that provided by a regional or nationwide mobile services provider, will include multiple BSCs 124 .
  • Each BSC 124 communicates with telecommunications network 104 through a standard base station controller interface 126 .
  • a BSC 124 may communicate with MSC 110 via the GSM A-interface for circuit switched voice services and with SGSN 114 via the GSM Gb interface for packet data services (GPRS).
  • GPRS packet data services
  • Conventional licensed voice and data networks 104 include protocols to permit seamless handoffs from one recognized BSC 124 to another BSC (not shown).
  • An unlicensed communication session 108 is facilitated via an (wireless) access point (AP) 128 comprising an indoor base station 130 .
  • AP 128 will be located in a fixed structure, such as a home 132 or an office building 134 .
  • the service area of indoor base station 130 includes an indoor portion of a building, although it will be understood that the service area of an indoor base station may include an outdoor portion of a building or campus.
  • the mobile station 102 may be connected to the telecommunications network 114 via a second data path that includes an unlicensed wireless channel 136 , access point 128 , an access network 138 , and an unlicensed mobile access network controller (UNC) 140 .
  • UNC unlicensed mobile access network controller
  • the UNC 140 communicates with telecommunications network 104 using a base station controller interface 126 B that is similar to base station controller interface 126 A, and includes a GSM A interface and Gb interface.
  • Indoor base station 128 and indoor network controller 132 may include software entities stored in memory and executing on one or more microprocessors (not shown in FIG. 1A ) adapted to perform protocol conversion.
  • Indoor base station 128 and UMA network controller 140 may also include software entities stored in memory and executing on one or more microprocessors (not shown in FIG. 1A ) adapted to perform protocol conversion.
  • the unlicensed wireless channel 136 is facilitated by a radio link employing a wavelength (or wavelength range) in an unlicensed, free spectrum (e.g., spectrum around 2.4 GHz, 5 GHz, 11-66 GHz).
  • An unlicensed wireless service hosting unlicensed wireless channel 136 may have an associated communication protocol.
  • the unlicensed wireless service may be a BluetoothTM compatible wireless service, or a wireless local area network (LAN) (WiFi) service (e.g., the IEEE 802.11a, b, or g wireless standard). This provides the user with potentially improved quality of service in the service regions of the unlicensed wireless service (i.e., within the service range of a corresponding AP).
  • LAN wireless local area network
  • the subscriber may enjoy low cost, high speed, and high quality voice and data services.
  • the subscriber enjoys extended service range since the handset can receive services deep within a building at locations that otherwise may not be reliably serviced by a licensed wireless system.
  • the subscriber can roam outside the range of the unlicensed AP without dropping communications. Instead, roaming outside the range of the unlicensed AP results in a seamless handoff (also referred to as a handover) wherein communication services are automatically provided by the licensed wireless system, as described in more detail in U.S.
  • Mobile station 102 may include a microprocessor and memory (not shown) that stores computer program instructions for executing wireless protocols for managing communication sessions. As illustrated in FIG. 1B , in one embodiment the mobile station 102 includes a layer 1 protocol layer 142 , layer 2 protocol layer 144 , and a layer 3 signaling protocol layer for the licensed wireless service that includes a radio resource (RR) sublayer 146 , a mobility management (MM) sublayer 148 , and a call management (CM) layer 150 .
  • RR radio resource
  • MM mobility management
  • CM call management
  • level 1, level 2, and level 3 layers may be implemented as software modules, which may also be described as software “entities.”
  • layer 1 is the physical layer, i.e., the physical baseband for a wireless communication session.
  • the physical layer is the lowest layer of the radio interface and provides functions to transfer bit streams over physical radio links.
  • Layer 2 is the data link layer.
  • the data link layer provides signaling between the mobile station and the base station controller.
  • the RR sublayer is concerned with the management of an RR-session, which is the time that a mobile station is in a dedicated mode, as well as the configuration of radio channel, power controller, discontinuous transmission and reception, and handovers.
  • the mobility management layer manages issues that arise from the mobility of the subscriber.
  • the mobility management layer may, for example, deal with mobile station location, security functions, and authentication.
  • the call control management layer provides controls for end-to-end call establishment. These functions for a licensed wireless system are well known by those in the art of wireless communication.
  • the mobile station may also include an unlicensed wireless service physical layer 152 (i.e., a physical layer for unlicensed wireless service such as Bluetooth, WiFi, or other unlicensed wireless channel (e.g., WiMAX)).
  • the mobile station also includes an unlicensed wireless service level 2 link layer 154 , and an unlicensed wireless service radio resource sublayer(s) 156 .
  • An access mode switch 160 is included for the mobile management 148 and call management layers 150 to access the unlicensed wireless service radio resource sublayer 156 and unlicensed wireless service link layer 154 when the mobile station 102 is within range of an unlicensed AP 128 and to support switching between licensed RR sublayer 146 and unlicensed wireless service RR sublayer 156 .
  • the unlicensed radio resource sublayer 156 and unlicensed link layer 154 may include protocols specific to the unlicensed wireless service utilized in addition to protocols selected to facilitate seamless handoff between licensed and unlicensed wireless systems. Consequently, the unlicensed radio resource sublayer 156 and unlicensed link layer 154 need to be converted into a format compatible with a conventional base station controller interface protocol 126 recognized by a MSC, SGSN, or other voice or data network.
  • the mobile station 102 , AP 128 and UNC 140 provide an interface conversion function to convert the level 1, level 2, and level 3 layers of the unlicensed service into a conventional base station subnetwork (BSS) interface 126 B (e.g., an A-interface or a Gb-interface).
  • BSS base station subnetwork
  • a communication session may be established that is transparent to the voice network/data network 104 , i.e., the voice/data network 104 uses its standard interface and protocols for the communication session as it would with a conventional communication session handled by a conventional base transceiver station.
  • the mobile station 102 and UNC 140 are configured to initiate and forward location update and service requests.
  • protocols for a seamless handoff of services that is transparent to voice/data network 104 are facilitated.
  • This permits, for example, a single phone number to be used for both the licensed wireless service and the unlicensed wireless service.
  • the present invention permits a variety of services that were traditionally offered only through licensed wireless services to be offered through an unlicensed wireless service. The user thus gets the benefit of potentially higher quality service when their mobile station is located within the area serviced by a high bandwidth unlicensed wireless service while also having access to conventional phone services.
  • the licensed wireless service may comprise any licensed wireless service having a defined BSS interface protocol 126 for a voice/data network 104 .
  • the licensed wireless service is a GSM/GPRS radio access network, although it will be understood that embodiments of the present invention include other licensed wireless services.
  • the UNC 140 interconnects to the GSM core network via the same base station controller interfaces 126 used by a standard GSM BSS network element.
  • these interfaces are the GSM A-interface for circuit switched voice services and the GSM Gb interface for packet data services (GPRS).
  • the UNC 140 interconnects to the UMTS network using a UMTS lu-cs interface for circuit switched voice services and the UMTS lu-ps interface for packet data services.
  • the UNC 140 interconnects with the CDMA network using the CDMA A1 and A2 interfaces for circuit switched voice services and the CDMA A10 and A11 interfaces for packet data services.
  • UNC 140 appears to the GSM/GPRS core network as a GSM BSS network element and is managed and operated as such.
  • the principle elements of transaction control e.g., call processing
  • the MSC 110 visitor location register (VLR) and the SGSN 114 are provided by higher network elements; namely the MSC 110 visitor location register (VLR) and the SGSN 114 .
  • Authorized mobile stations are allowed access to the GSM/GPRS core network either directly through the GSM radio access network if they are outside of the service area of an AP 128 or via the UMA network system if they are within the service area of an AP.
  • the unlicensed wireless service may support all user services that are typically offered by a wireless service provider.
  • this typically includes the following basic services: Telephony; Emergency call (e.g., E911 calling in North America); Short message, mobile-terminated point-to-point (MT/PP); Short message, mobile-originated point-to-point (MO/PP); GPRS bearer services; Handover (outdoor-to-indoor, indoor-to-outdoor, voice, data, SMS, SS).
  • GSM may also support, various supplementary services that are well-known in the art.
  • FIG. 2A provides an overview of a level 1, level 2, and level 3 GSM-related protocol architecture for one embodiment of mobile station 102 that provides unlicensed radio links via Bluetooth signaling.
  • the protocol architecture includes a GSM baseband level 1 layer 206 , GSM level 2 link layer (LAPDm) 208 , Bluetooth baseband level 1 layer 210 , Bluetooth level 2 layers 211 including a layer 2 connection access procedure (L2CAP) layer 212 and a BNEP layer 213 , an access mode switch 214 , and upper layer protocols 216 .
  • L2CAP layer 2 connection access procedure
  • the UMA-RR entity 204 When the mobile station is operating in an UMA mode, the UMA-RR entity 204 is the current “serving” RR entity providing service to the mobility management (MM) sublayer via the designated service access point (RR-SAP).
  • the GSM RR entity is detached from the MM sublayer in this mode.
  • the UMA-RR entity 204 provides a new set of functions, and is responsible for several tasks. First the UMA-RR entity is responsible for discovery of UMA coverage and UMA registration. Second, the UMA-RR entity is responsible for emulation of the GSM RR layer to provide the expected services to the MM layer; i.e., create, maintain and tear down RR connections. All existing GSM 04.07 primitives defined for the RR-SAP apply.
  • UMA-RR entity 204 The plug-in of UMA-RR entity 204 is made transparent to the upper layer protocols in this way.
  • a UMA-RR entity 204 module is responsible for coordination with the GSM RR entity to manage access mode switching and handover, as described in further detail in application Ser. No. 10/688,470 referenced above.
  • FIG. 2B provides an overview of a level 1, level 2, and level 3 GSM-related protocol architecture for one embodiment of mobile station 102 that provides unlicensed radio links via IEEE 802.11 signaling. All of the entities and layers are the same as described above for FIG. 2A , except that the Bluetooth layers have been replaced with an 802.11 PHY layer 218 and an 802.11 MAC layer 220 .
  • FIG. 3A illustrates the Up interface protocol architecture in support of circuit switched (CS) Domain signaling, as well as UMA-specific signaling, according to one embodiment.
  • the MSC sublayers are conventional, well known features known in the art in regards to the message transfer part (MTP) interfaces MTP 1 302 , MTP 2 304 , and MTP 3 306 , signaling connection control part (SCCP) 308 , base station system application part (BSSAP) 310 , mobility management interface 312 , and connection management interface 314 .
  • MTP message transfer part
  • SCCP signaling connection control part
  • BSSAP base station system application part
  • the UMA-RR protocol supports the UMA “layer 3” signaling functions via UMA-RR layers 204 provided by each of the mobile station 102 and UNC 140 .
  • the UNC 140 acting like a BSC, terminates UMA-RR protocol messages and is responsible for the interworking between these messages and the analogous A-interface messages.
  • the layers below the UMA-RR layer 204 in each of mobile station 104 and UNC 140 include a TCP layer 316 , a remote IP layer 318 , and an IPSec (IP security) layer 320 .
  • IPSec IP security
  • a standard Secure Socket Layer (SSL) protocol running over TCP/IP may be deployed in place of IPSec layer 320 .
  • Lower-level IP connectivity between mobile station 102 and UNC 140 is supported by appropriate layers hosted by an intervening access point 128 and broadband IP network 138 (i.e., the access network 138 shown in FIG. 1A ).
  • the components for supporting the IP transport layer include a transport IP layers 322 for each of the mobile station 104 , AP 128 , and IP network 138 , and an IP layer 322 A at UNC 140 .
  • mobile station 104 and AP 128 are depicted as providing unlicensed lower layers 324 , while each of AP 128 , IP network 138 , and UNC 140 provide appropriate access layers 326 .
  • access layers 326 will include conventional Ethernet PHY and MAC layers (IEEE 802.3), although this is not limiting.
  • the unlicensed layers lower layers 324 will depend on whether the unlicensed radio link uses Bluetooth signaling or IEEE 802.11 signaling.
  • the Bluetooth lower layers depicted in FIG. 3A correspond to the mobile station architecture of FIG. 2A , and include a Bluetooth baseband layer 210 , an L2CAP layer 212 , and a BNEP layer 213 .
  • the 801.11 lower layers shown in FIG. 3B correspond to the mobile station architecture of FIG. 2B , and include a 802.11 PHY layer 218 and in 802.11 MAC layer 220 .
  • FIG. 3D illustrates the Up CS domain voice bearer protocol architecture in support of GSM voice transmission, according to one embodiment.
  • facilities are provided for supporting GSM voice transmission.
  • these components include conventional components for supporting GSM voice transmissions, and are depicted as physical layers 330 and audio 332 , with similar components being deployed in UNC 140 .
  • Each of mobile station 102 and UNC 140 now include a GERAN (GSM Edge Radio Access Network) codec 334 and an RTP/UDP layer 336 .
  • GERAN GSM Edge Radio Access Network
  • RTP framing format defined in RFC 3267 and RFC 3551.
  • AMR FR as specified in TS 26.103 is supported.
  • Other codecs may also be supported, such as G.711.
  • the mobile station may be, for example, a wireless phone, smart phone, personal digital assistant, or mobile computer.
  • the mobile station may also be, for example, a fixed wireless device providing a set of terminal adapter functions for connecting Integrated Services Digital Network (ISDN) or Plain Old Telephone Service (POTS) terminals to the wireless system.
  • ISDN Integrated Services Digital Network
  • POTS Plain Old Telephone Service
  • terminal adapter types may be employed with embodiments of the present invention. For example: (1) a terminal adapter that supports cordless telephones rather than POTS phones; (2) a terminal adapter that supports standard Session Initiation Protocol (SIP) telephones; and (3) a terminal adapter that also integrates a corded handset and user interface, such as one would find on a desk phone.
  • SIP Session Initiation Protocol
  • terminal adapter that also integrates a corded handset and user interface, such as one would find on a desk phone.
  • the invention described herein describes how these terminal adapter functions can be connected to the wireless system via the unlicensed network.
  • SIM Access Profile a Bluetooth standard capability that allows one Bluetooth device (e.g., an embedded cell phone subsystem in a car) to access the SIM that is in another Bluetooth device (e.g., the user's normal cell phone), allowing the first device to take on the “personality” associated with the SIM (i.e., that of the user's normal cell phone).
  • SIM Access Profile a Bluetooth standard capability that allows one Bluetooth device (e.g., an embedded cell phone subsystem in a car) to access the SIM that is in another Bluetooth device (e.g., the user's normal cell phone), allowing the first device to take on the “personality” associated with the SIM (i.e., that of the user's normal cell phone).
  • the embodiments described above could make use of this standard capability to give the terminal adapter-attached devices (e.g., a POTS phone) the personality of the user's cell phone.
  • the GSM BSSMAP Base Station Subsystem Management Application Part
  • UNC Unlicensed Mobile Access
  • MSC Mobile Switching Center
  • 3GPP Third Generation Partnership Project Release 4 MSC Server
  • This MSC server uses the “Release 4 distributed MSC Architecture” as defined in the 3GPP TS 23.002 standard. Modifications are made to the BSSMAP protocol and the A interface.
  • FIG. 4 shows a conventional context for an A Interface of a UNC and MSC system architecture.
  • customer premises equipment (CPE) 411 is coupled through a broadband access network 413 , such as a wide area network or the Internet to a UNC 415 .
  • the CPE is shown as a mobile station, such as a wireless or mobile phone shown as 102 in FIG. 1 , coupled through an Up radio interface to a wireless access point (AP) shown as 128 in FIG. 1 .
  • AP wireless access point
  • a variety of types of CPE implementations may be used instead of the MS, AP combination shown. For example an IBS (Indoor Base Station), a VoIP (Voice over Internet Protocol) telephony modem, a UMA (Universal Mobile Access) modem or a private IP branch exchange may be used.
  • IBS Indoor Base Station
  • VoIP Voice over Internet Protocol
  • UMA Universal Mobile Access
  • the UNC which may be similar to the UNC shown as 140 in FIG. 1 , is shown as including a security gateway 417 to terminate the secure tunnel between the MS and the UNC.
  • the security gateway is coupled to a control server and to a media gateway 420 or TRAU (Transcoder and Rate Adaptation Unit).
  • TRAU Transcoder and Rate Adaptation Unit
  • the control server handles signaling with a PLMN 421 .
  • the UNC emulates a BSC (Base Station Controller) and uses signaling protocols, such as A interface protocols designed for communication between an MSC and a BSC.
  • the UNC may also include other components depending on the particular implementation.
  • the UNC is in the form of an INC (Internet Protocol Network Controller)
  • FIG. 4 shows a few of the components of the PLMN 421 which, in this example, includes a telephony switching center 425 , such as an MSC Call Server.
  • the MSC Call Server has a DTAP (Direct Transfer Application Part) and BSSMAP connection to the UNC.
  • the PLMN also has a media gateway 427 that is coupled to the media gateway 420 of the UNC and to the MSC Call Server.
  • the media gateway and the MSC Call Server communicate with the UNC using the A interface.
  • the MSC Call Server and media gateway are further coupled to the rest of the PLMN 429 , which may include SGSNs, GGSNs, MSC servers, and media gateways as well as BSSs and other UNCs, etc.
  • the PLMN may have further connections to the Internet, the PSTN (Public Switched Telephone Network), and other resources.
  • PSTN Public Switched Telephone Network
  • FIG. 5 shows the impact of modifications to the A Interface on the UNC and MSC system architecture.
  • the modifications allow traffic to be communicated between a UMA subscriber and a PLMN without a media gateway or TRAU (Transcoder and Rate Adaptation Unit) function in the UNC. This reduces the cost of the system and improves the system's quality.
  • TRAU Transcoder and Rate Adaptation Unit
  • the mobile station and AP 511 are coupled through a broadband access network 513 to a UNC 515 .
  • the UNC includes a security gateway 517 and a control server 519 , but no media gateway.
  • the PLMN 521 includes an MSC Call Server 525 coupled to the UNC control server and a media gateway 527 which in this case is coupled to the security gateway 517 of the UNC 515 .
  • the MSC Call Server and media gateway are coupled to the rest of the PLMN 529 , which may include many other resources.
  • the UNC and the MSC communicate with a modified set of messages that may be based on the standard BSSMAP messages used for communications between an MSC and a BSC.
  • the MSC Call Server and the media gateway communicate using messages that may be based on the standard A interface messages.
  • BSSMAP messages that may be modified include ASSIGNMENT REQUEST, ASSIGNMENT COMPLETE, HANDOVER REQUEST, and HANDOVER DETECT.
  • Capabilities may be added to the system by adding some additional messages in order to support UMA features. These messages may include CHANNEL MODE MODIFY REQUEST, CHANNEL MODE MODIFY ACKNOWLEDGE, and UPLINK QUALITY INDICATION. These messages and the modified messages are described in more detail below. These new messages may be supported within the existing BSSMAP message system by assigning new message type IE (information element) values to them. Examples of possible IE values are as follows:
  • the ASSIGNMENT REQUEST message is sent from the MSC to the UNC via the relevant SCCP (Signaling Connection Control Part) connection in order to request the UNC to assign radio resources and to establish a terrestrial connection, the attributes of the connection in terms of signaling and of bearer traffic are defined within the message.
  • the message is composed of a set of IEs (information elements) of various types. Some of this message's IEs are listed below.
  • the ASSIGNMENT COMPLETE message is sent from the UNC to the MSC in response to the ASSIGNMENT REQUEST message and indicates that the requested assignment has been completed.
  • the Payload Type IE may be used if a dynamic payload type is used. It defines the Payload Type selected by the UMA MS RTP.
  • the RTP Redundancy Information IE may be used if the Redundancy speech codec FR AMR is specified. It defines RTP Configuration redundancy information adjusted based on the UMA MS capabilities
  • the HANDOVER REQUEST message is sent from the MSC to the UNC via the relevant SCCP connection to indicate that the UMA MS is to be handed over to the UMAN (UMA Network). This corresponds to situations in which a connection is handed over from another BSS handing over to the same MSC or another MSC rather than when a call is initiated and an assignment is requested.
  • UMAN UMA Network
  • these IP Address elements may be used to describe the VoIP RTP UDP Port connection parameters that have been RTCP UDP Port allocated by the MSC Payload Type
  • the Payload Type IE is included if a dynamic payload type is used Multi Rate
  • the Multi-rate Configuration Configuration IE is included if the speech codec FR AMR is signaled
  • RTP Redundancy As with the ASSIGNMENT REQUEST
  • the RTP Configuration Redundancy Information IE is included if the speech codec FR AMR is signaled
  • the HANDOVER DETECT message is sent by the UNC to the MSC in response to the HANDOVER REQUEST message and indicates that the UMA MS has successfully accessed the UMA system.
  • This message's IEs are similar to that of the ASSIGNMENT COMPLETE message. Some of this message's IEs are listed below.
  • RTP UDP Port these IEs describe the VoIP connection parameters IP Address that have been allocated by the UNC RTCP UDP Port Payload Type
  • the Payload Type IE is used if a dynamic Payload Type is used. It defines the Payload Type selected by the MS RTP Redundancy
  • the Configuration RTP Redundancy Information IE is used if the speech codec FR AMR is signaled. It defines RTP redundancy information adjusted based on the MS capabilities
  • the CHANNEL MODE MODIFY message is sent by the MSC to the UNC to request modifications related to an existing UMA bearer channel and associated RTP stream.
  • Such an existing bearer channel and RTP stream would likely be established through the ASSIGNMENT REQUEST message or the HANDOVER REQUEST message.
  • the IEs are similar to those described above and a list follows.
  • the message is shortened by including only IEs that describe requested modifications from the existing bearer channel and associated RTP stream.
  • Sample Size is IP Address included if Sample Size is modified and is not included if RTP UDP Port it remains the same RTCP UDP Port
  • RTP Redundancy Configuration Multi Rate The Multi Rate Configuration IE may be used only when Configuration the speech codec signaled is FR AMR and when the RTP Redundancy configuration is modified
  • the CHANNEL MODE MODIFY ACKNOWLEDGE message is sent by the UNC to the MSC in response to the CHANNEL MODE MODIFY message to acknowledge modifications related to the existing UMA RR bearer channel and associated RTP stream.
  • This message contains IEs similar to the response messages mentioned above. Some are listed below.
  • Sample Size is RTP Redundancy included if Sample Size is modified and is not Configuration included if it remains the same Multi Rate
  • the Multi Rate Configuration IE is included when the Configuration speech codec signaled is FR AMR and when the RTP Redundancy configuration is modified
  • an UPLINK QUALITY INDICATION message can be sent by the MSC to the UNC as a notification that the uplink quality deteriorated below the threshold and can not be further improved with channel modification. This can be used instead of a CHANNEL MODE MODIFY ACKNOWLEDGE message or as a separate message sent on its own timing.
  • FIG. 6A illustrates a modification to the Up interface protocol architecture of FIG. 3A in support of circuit switched (CS) Domain signaling, as well as UMA-specific signaling, according to one embodiment.
  • the MSC sublayers are similar to those described above for FIG. 3A .
  • the BSSMAP protocol (part of BSSAP 610 ), however, is modified to support the modified and additional messages over the modified A interface between the UNC and the MSC. This may include use of the modified and additional A-interface messages described above.
  • the layers below the Up interface protocols are not changed.
  • FIG. 6B illustrates a modification of Up Audio protocol architecture, according to an embodiment, that may be implemented in the architecture of FIG. 5 .
  • This Up Audio architecture allows audio bearer packets 372 to be carried straight through from the MS 102 to the R4 Media Gateway 527 of the PLMN 521 . The same applies to remote IP packets 318 and above. In FIG. 6B , this includes RTP/UDP signaling 356 .
  • the UNC 140 and media gateway 527 employ conventional facilities for supporting Up audio bearer data packets, including lower layers 370 that may include access layers 326 , transport IP 322 and an IPSec ESP layer 320 .
  • the Remote IP layer 318 , RTP/UDP layer 356 and Up audio layer 372 are not shared with the access point 128 , IP network 138 or UNC 140 . These are transmitted through these elements directly between the MS and the media gateway.
  • Up audio does not need to be transcoded or repacketized for any of the intermediate elements in the communication chain.
  • the transcoding, signaling and codecs of FIG. 3D are avoided. This eliminates the need for a media gateway in the UNC, reducing costs and increasing reliability.
  • FIG. 7 shows one procedure associated with successfully establishing a voice channel between the MS 511 and the MSC (i.e., shown as consisting of a MSC Call Server 525 and a Media Gateway 527 ) for mobile-originated or mobile-terminated call purposes.
  • FIG. 7 does not show any connection signaling associated with the call that is not directly related to the connection to the MS (e.g., ISUP (ISDN (Integrated Services Digital Network) User Part) signaling towards the other party.
  • ISUP ISDN (Integrated Services Digital Network) User Part
  • a mobile-originated or mobile-terminated call establishment is in progress.
  • the MSC Call Server determines that a speech channel to the target MS is required. Accordingly, at line A, the MSC Call Server requests that the media gateway (MG) 527 create a VoIP connection.
  • the communication between the MSC Call Server and the MG may be in the form of a media gateway control protocol, such as H.248. Using this protocol, many different parameters for the VoIP connection may be set. This request includes an identification of the codec or codecs that are allowed for the connection.
  • the MG creates the connection and returns a connection ID and a local connection description that includes the assigned MG IP address and port number for the connection.
  • the MSC Call Server sends an ASSIGNMENT-REQUEST message to the UNC.
  • the ASSIGNMENT-REQUEST message may include any of the IEs mentioned above and may include information describing the connection to the MG encoded into a BSSMAP format.
  • the UNC at line D Upon receiving the ASSIGNMENT-REQUEST message, the UNC at line D sends a URR-ACTIVATE-CHANNEL message to the MS at line D.
  • This message includes the information received in the ASSIGNMENT-REQUEST message from the MSC Call Server.
  • the URR-ACTIVATE CHANNEL message together with the other messages between the MS and the UNC, may be based on those defined in the UMA (Universal Mobile Access) standard, however other messages may be used to signal the CPE to activate a channel.
  • UMA Universal Mobile Access
  • the MS establishes a VoIP connection to the IP address and port identified in the URR-ACTIVATE-CHANNEL message.
  • the MS then returns a URR-ACTIVATE-CHANNEL-ACK message to the UNC, including the required connection information.
  • This information may include such parameters as: RTP UDP Port number, sample size, payload type and RTCP UDP Port number.
  • the UNC sends the URR-ACTIVATE-CHANNEL-COMPLETE message to the MS.
  • the UNC may send a BSSMAP ASSIGNMENT-FAILURE message (not shown) to the MSC Call Server.
  • the MSC Call Server then initiates call clearing using, for example, a BSSMAP CLEAR-COMMAND message.
  • the UNC can provide full connection information back to the MSC Call Server.
  • the UNC signals the MSC Call Server that assignment is complete using an ASSIGNMENT-COMPLETE message, including the connection information received from the MS.
  • the MSC Call Server requests the MG to modify the previously-created VoIP connection to use the codec and remote IP address and port identified in the ASSIGNMENT-COMPLETE message.
  • the MG modifies the connection, and at line K, RTP packets are flowing in both directions between the MS and the MG, via the broadband IP network. Call establishment may then continue to any other terminals involved in the call.
  • FIG. 8 shows an example of messages that may be used to establish a voice channel between an MS 511 and the MSC 525 , 527 for GSM-to-AP handover purposes.
  • the signaling not directly related to the MS to MSC Call Server connection is not shown (e.g., GSM signaling towards the other called party).
  • a GSM-to-UMA or AP handover is in progress.
  • the MS 511 is in a call through a GSM air interface to a BTS (Base Transceiver Station).
  • the MS is in the process of handing over that call to the UMAN.
  • a speech channel between the MS and the MSC may be used.
  • the MSC Call Server 525 requests that the media gateway (MG) 527 create a VoIP connection. This request includes the parameters for the codec or codecs that are allowed for the connection.
  • the MG creates the connection and returns a connection ID and a local connection description that includes the assigned MG IP address and port number for the connection.
  • the MSC Server encodes any required connection description information in a HANDOVER-REQUEST message as described above.
  • this message is forwarded to the UNC, and at line D, the UNC responds with a standard BSSMAP HANDOVER-REQUEST-ACK message containing an encapsulated HANDOVER-COMMAND message formulated according to the standard GERAN (GSM EDGE (Enhanced Data Rate for GSM Evolution) Radio Access Network) procedure.
  • GSM EDGE Enhanced Data Rate for GSM Evolution
  • the MSC Server directs a GSM BSC (Base Station Controller) (not shown) to send a HANDOVER-COMMAND message to the MS via the GSM air interface (not shown).
  • GSM BSC Base Station Controller
  • the MS sends an URR-HANDOVER-ACCESS message to the UNC containing the HANDOVER-COMMAND that it received through the GSM air interface.
  • the UNC correlates this signal with the handover request that it responded to on line C.
  • Lines G-I show operations similar to those of lines D-F of FIG. 7 .
  • the UNC sends an URR-ACTIVATE-CHANNEL message to the MS that includes the information received in the HANDOVER-REQUEST message from the MSC Call Server.
  • the MS returns a URR-ACTIVATE-CHANNEL-ACK message to the UNC including the required connection information such as: RTP UDP Port #, sample size, payload type and RTCP UDP Port #.
  • the UNC sends the URR-ACTIVATE-CHANNEL-COMPLETE message to the MS, completing the connection between the MS and the UNC.
  • the UNC signals the MSC Call Server that the MS has accessed the UNC system via the HANDOVER-DETECT message described above, that includes the connection information received from the MS.
  • Lines K-M show signaling similar to that of lines H-J in of FIG. 7 .
  • Line K shows RTP packets flowing in one direction from the MS to the MG, via the UNC 515 .
  • the MSC Call Server requests the MG to modify any previously created VoIP connection to use the codec and remote IP address and port identified in the HANDOVER-DETECT message.
  • the MG modifies the connection, and at line N, RTP packets are flowing in both directions between the MS and the MG, via the access router.
  • the MS signals the successful completion of the handover by sending the URR-HANDOVER-COMPLETE message to the UNC.
  • the UNC signals successful completion of the handover by sending a BSSMAP HANDOVER-COMPLETE message to the MSC Call Server, and at line Q, the MSC Server responds by switching the call path from GSM public air interface to the UNC. This allows the call to continue uninterrupted at line R.
  • the handover may fail for any number of reasons which may result in the mobile retaining the connection with the GSM BTS, or it may result in the call being dropped. For example, if the MSC Server fails to create the MG connection, or if the UNC connection is not established, then the MSC Server may abort the handover. If the MSC Server fails to modify the MG connection, then the MSC Server may clear the call (e.g., send a BSSMAP CLEAR-COMMAND message).
  • FIG. 9 shows an example of modifying the bearer connection between the MS and the MSC.
  • a mobile originated or mobile terminated call is in progress and the MSC Call Server determines that the bearer connection has to be modified. This may be due, for example, to detecting the loss of too many RTP packets.
  • One example of a modification of a bearer connection is to apply RTP Redundancy.
  • the RTP session is established and RTP packets are exchanged in both directions.
  • the MSC determines that a modification to the bearer connection is called for and determines what parameters need to be modified.
  • the MSC prepares a CHANNEL-MODE-MODIFY message, as described above, specifying the parameters that need to be modified and sends this message to the UNC.
  • the UNC constructs a URR-CHANNEL-MODE-MODIFY message based on the request form the MSC and forwards it to the MS.
  • the MS modifies the connection in accordance with the request and responds with an acknowledgment message, URR-CHANNEL-MODE-MODIFY ACKNOWLEDGMENT.
  • the UNC forwards the acknowledgment to the MSC at line E. However, if the MS is not able to handle the requested modification, then the MS will so indicate in the acknowledgment message.
  • the MS can reply by sending an acknowledgment that does not include the requested modification to the IE corresponding to RTP redundancy.
  • the modification relates to IP addresses and UDP ports, then if the MS is not able to make the change, the call may continue on the original ports, or if these are unavailable then the call may be cleared.
  • the MS and MSC modify the RTP stream associated with this connection and, at line F, the modified RTP packets are now exchanged between the MS and MSC. The call continues at line G using the modified RTP stream.
  • FIG. 10 shows an example of providing an indication of the quality of the uplink channel from the MSC to the MS. These operations may be used by the MSC to notify the UNC when the uplink quality associated with a particular bearer connection falls below a predefined threshold or experiences a large change. It may also be used if the uplink quality degrades and is not improved by a channel mode modify procedure as shown in FIG. 9 .
  • a mobile originated or mobile terminated call is in progress.
  • an RTP session is established and RTP packets are exchanged in both directions.
  • the MSC determines that an uplink quality indication is to be sent. This may occur, for example, because the uplink quality associated with the bearer connection is below a predefined threshold for uplink quality and all attempts to improve the quality have failed.
  • the MSC sends an UPLINK-QUALITY-INDICATION message, such as the one described above, to notify the UNC.
  • the UNC constructs a URR-UPLINK-QUALITY-INDICATION message based on the indication from the MSC and forwards it to the UMA MS.
  • the MS may take any appropriate measure.
  • the MS initiates a handover to a GERAN connection.
  • FIGS. 7 , 8 , 9 , and 10 are presented in the context of a VoIP WLAN AP and a GSM cellular network, appropriate modifications may be made to comply with other types of networks and protocols.
  • embodiments of the invention may be applied to other types of subscriber equipment including enterprise systems and networks, private and public switched networks and other wired, wireless and hybrid systems that may connect to a UNC or similar device through the Internet or through any other communications medium.
  • embodiments of the invention may be applied to other network devices that interface to a PLMN or PSTN.
  • embodiments of the invention may be applied to other types of telecommunications networks, both wired and wireless, these may include those based on CDMA, TDMA, PCS (Personal Communication Services), PHS (Personal Handyphone System) and other standardized protocols.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • PCS Personal Communication Services
  • PHS Personal Handyphone System
  • the protocol architecture diagrams described above are provided as examples only. Many of the layers may be grouped, divided or identified differently to suit a particular application. The components involved in communicating at any particular layer may also be modified to suit a particular application.
  • the configuration of the UNC, AP, mobile station, private network, and public network may vary with different implementations depending upon numerous factors, such as price constraints, performance requirements, technological improvements, or other circumstances. It is not necessary that the licensed frequencies be used for a portion of the system nor that unlicensed frequencies be used for a portion of the system. It is further not necessary that a portion of the system be private and another portion be public.
  • the various embodiments may also be used with other types of private communications systems and with other types of public telecommunications networks.
  • the various embodiments may be applied to voice networks, data networks and combined networks whether they are circuit switched or packet switched.
  • an embodiment of the present invention relates to a computer storage product with a computer-readable medium having computer code thereon for performing various computer-implemented operations.
  • the media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those having skill in the computer software arts.
  • Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media such as optical disks; and hardware devices that are specially configured to store and execute program code, such as application-specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”) and ROM and RAM devices.
  • ASICs application-specific integrated circuits
  • PLDs programmable logic devices
  • Examples of computer code include machine code, such as produced by a compiler, and files containing higher-level code that are executed by a computer using an interpreter.
  • machine code such as produced by a compiler
  • files containing higher-level code that are executed by a computer using an interpreter.
  • an embodiment of the invention may be implemented using Java, C++, or other object-oriented programming language and development tools.
  • Another embodiment of the invention may be implemented in hardwired circuitry in place of, or in combination with, machine-executable software instructions.

Abstract

Signaling regarding traffic and media types within a communications network control system is described. In one embodiment, the invention includes receiving an assignment request message from a call server of a communications network, the assignment request message including a description of a bearer connection between a subscriber and the communications network, sending a channel activation request to the subscriber, the channel activation request including at least a portion of the description of the bearer connection between the subscriber and the communications network, receiving connection information about a channel activated by the subscriber in response to the channel activation request, and sending the connection information to the call server to allow the call server to modify the bearer connection.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority of provisional patent application Ser. No. 60/564,566 filed Apr. 21, 2004 and entitled “A+ Interface Specification” and provisional patent application Ser. No. 60/651,312, filed Feb. 9, 2005, and entitled “An Improved Unlicensed Mobile Access Network (UMAN) System and Method.” This application is a Continuation in Part of and claims the priority of U.S. Nonprovisional application Ser. No. 11/013,883, entitled “Apparatus and Method for Extending the Coverage Area of A Licensed Wireless Communication System Using an Unlicensed Wireless Communication System,” filed Dec. 15, 2004, which is a Continuation in Part of U.S. Nonprovisional application Ser. No. 10/688,470, entitled “Apparatus and Method for Extending the Coverage Area of a Licensed Wireless Communication System Using an Unlicensed Wireless Communication System,” filed Oct. 17, 2003.
  • This application is also related to commonly owned U.S. Applications: Ser. No. 10/115,833, entitled “Unlicensed Wireless Communications Base Station to Facilitate Unlicensed and Licensed Wireless Communications with a Subscriber Device, and Method of Operation,” filed Apr. 2, 2002; and application Ser. No. 10/251,901, entitled “Apparatus for Supporting the Handover of a Telecommunication Session between a Licensed Wireless System and an Unlicensed Wireless System,” filed Sep. 20, 2002, the contents of each of which are hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • The present description relates to communications with a call server in a public land mobile network, and, in particular, to communicating information about traffic formats and parameters with a call server.
  • BACKGROUND INFORMATION
  • Licensed wireless systems provide mobile wireless communications to individuals using wireless transceivers. Licensed wireless systems refer to public cellular telephone systems and/or Personal Communication Services (PCS) telephone systems. Wireless transceivers include cellular telephones, PCS telephones, wireless-enabled personal digital assistants, wireless modems, and the like.
  • Licensed wireless systems utilize wireless signal frequencies that are licensed from governments. Large fees are paid for access to these frequencies. Expensive base station (BS) equipment is used to support communications on licensed frequencies. Base stations are typically installed approximately a mile apart from one another (e.g., cellular towers in a cellular network). The wireless transport mechanisms and frequencies employed by typical licensed wireless systems limit both data transfer rates and range. As a result, the quality of service (voice quality and speed of data transfer) in licensed wireless systems is considerably inferior to the quality of service afforded by landline (wired) connections. Thus, the user of a licensed wireless system pays relatively high fees for relatively low quality service.
  • Landline (wired) connections are extensively deployed and generally perform at a lower cost with higher quality voice and higher speed data services. The problem with landline connections is that they constrain the mobility of a user. Traditionally, a physical connection to the landline was required.
  • In the past few years, the use of unlicensed wireless communication systems to facilitate mobile access to landline-based networks have seen rapid growth. For example, such unlicensed wireless systems may support wireless communication based on the IEEE 802.11a, b or g standards (WiFi), or the Bluetooth™ standard. The mobility range associated with such systems is typically on the order of 100 meters or less. A typical unlicensed wireless communication system includes a base station comprising a wireless access point (AP) with a physical connection (e.g., coaxial, twisted pair, or optical cable) to a landline-based network. The AP has a RF (Radio Frequency) transceiver to facilitate communication with a wireless handset that is operative within a modest distance of the AP, wherein the data transport rates supported by the WiFi and Bluetooth™ standards are much higher than those supported by the aforementioned licensed wireless systems. Thus, this option provides higher quality services at a lower cost, but the services only extend a modest distance from the base station.
  • Currently, technology is being developed to integrate the use of licensed and unlicensed wireless systems in a seamless fashion, thus enabling a user to access, via a single handset, an unlicensed wireless system when within the range of such a system, while accessing a licensed wireless system when out of range of the unlicensed wireless system. In a conventional mobile communication system, the coding and format for voice and data traffic has a predetermined configuration. In order to communicate with equipment within the mobile communication system, any voice or data traffic must first be reconfigured to correspond to the predetermined norms.
  • Some portions of a mobile communications system may have transcoding equipment capable of changing voice or data encoding or formatting. However, since the transcoding equipment is designed only to work according to the predetermined norms, there may be no provision for reconfiguring the equipment to transcode into or out of other formats. In, for example, a GSM (Global System for Mobile Communication) base station subsystem, specialized media gateways (i.e., transcoder and rate adaptation units) are used to convert voice traffic from the coding and format of the cellular telephone to the PCM (Pulse Code Modulation) TDM (Time Division Multiplexed) format of the land network. To support other types of codecs, for example, those used in voice over IP, an additional TRAU is used to convert traffic between native voice over IP formats and native GSM formats. The additional components add complexity and expense to the system.
  • SUMMARY OF THE INVENTION
  • Signaling regarding traffic and media types within a communications network control system is described. In one embodiment, the invention includes receiving an assignment request message from a call server of a communications network, the assignment request message including a description of a bearer connection between a subscriber and the communications network, sending a channel activation request to the subscriber, the channel activation request including at least a portion of the description of the bearer connection between the subscriber and the communications network, receiving connection information about a channel activated by the subscriber in response to the channel activation request, and sending the connection information to the call server to allow the call server to modify the bearer connection.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified:
  • FIG. 1A provides an overview of the indoor access network (IAN) mobile service solution in accordance with one embodiment of the present invention;
  • FIG. 1B illustrates protocol layers of a mobile set in accordance with one embodiment;
  • FIG. 1C illustrates a method of protocol conversion in accordance with one embodiment;
  • FIG. 2A illustrates an overview of a level 1, level 2, and level 3 GSM-related protocol architecture for one embodiment of a mobile station that provides unlicensed radio links via Bluetooth signaling;
  • FIG. 2B illustrates an overview of a level 1, level 2, and level 3 GSM-related protocol architecture for one embodiment of a mobile station that provides unlicensed radio links via IEEE 802.11 signaling;
  • FIG. 3A illustrates the Up interface protocol architecture in support of CS Domain signaling, as well as UMA-specific signaling, according to one embodiment;
  • FIG. 3B shows Bluetooth lower layers employed by a mobile station and access point to facilitate physical layer communications;
  • FIG. 3C shows Bluetooth lower layers employed by a mobile station and access point to facilitate physical layer communications;
  • FIG. 3D illustrates the Up CS domain voice bearer protocol architecture in support of GSM voice transmission, according to one embodiment;
  • FIG. 3E illustrates the Up GPRS user plane protocol architecture, according to one embodiment;
  • FIG. 5 illustrates an enhanced UMA architecture in one embodiment also without packet data elements;
  • FIG. 6A illustrates an enhanced Up interface protocol architecture in support of CS Domain signaling, as well as UMA specific signaling in accordance with one embodiment;
  • FIG. 6B illustrates an enhanced Up Audio interface protocol architecture with direct passage of higher layers to a media gateway, according to one embodiment;
  • FIG. 7 is a message and data flow diagram illustrating messages and operations employed to establish a connection between a mobile station and a MSC Call Server, according to one embodiment;
  • FIG. 8 is a message and data flow diagram illustrating messages and operations employed to handover a call from a licensed base station to a mobile wireless LAN according to an embodiment;
  • FIG. 9 is a message and data flow diagram illustrating messages and operations employed to modify a bearer connection according to an embodiment; and
  • FIG. 10 is a message and data flow diagram illustrating messages and operations employed to indicate uplink quality according to an embodiment.
  • DETAILED DESCRIPTION
  • In the following description, numerous specific details are set forth to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
  • Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • In the present description the unlicensed wireless system may be a short-range wireless system, which may be described as an “indoor” solution. However, it will be understood through the application that the unlicensed wireless system includes unlicensed wireless systems that cover not only a portion of a building but also local outdoor regions, such as outdoor portions of a corporate campus serviced by an unlicensed wireless system. The mobile station may, for example, be a wireless phone, smart phone, personal digital assistant, or mobile computer. The “mobile station” may also, for example, be a fixed wireless device providing a set of terminal adapter functions for connecting Integrated Services Digital Network (ISDN) or Plain Old Telephone Service (POTS) terminals to the wireless system. Application of the present invention to this type of device enables the wireless service provider to offer so-called landline replacement service to users, even for user locations not sufficiently covered by the licensed wireless system. The present description is in the context of the UMA (Unlicensed Mobile Access) standardized architecture as promulgated by the UMA consortium. However, the invention is not so limited.
  • Throughout the following description, acronyms commonly used in the telecommunications industry for wireless services are utilized along with acronyms specific to the present invention. A table of acronyms specific to this application is included in Appendix I.
  • FIG. 1A illustrates an Unlicensed Mobile Access (UMA) architecture 100 in accordance with one embodiment of the present invention. UMA architecture 100 enables a user of a mobile station 102 to access a voice and telecommunications network 104 via either a licensed wireless communications session 106, or an unlicensed wireless communication session 108. The telecommunications network 104 includes a mobile switching center (MSC) 110, which provides access to a voice network 112, and a Serving GPRS (General Packet Radio Service) Support Node (SGSN) 114, which provides access to a data network 116. MSC 110 also provides an internal visitor location register (VLR) function.
  • In further detail, the licensed wireless communication session is facilitated by infrastructure provided by a licensed wireless network 118 that includes telecommunications network 104. In the illustrated embodiment, licensed wireless network 118 depicts components common to a GSM-(Global System for Mobile Communication) based cellular network that includes multiple base transceiver stations (BTS) 120 (of which only one is shown for simplicity) that facilitate wireless communication services for various mobile stations 102 via respective licensed radio links 122 (e.g., radio links employing radio frequencies within a licensed bandwidth). Typically, the multiple BTSs 120 are configured in a cellular configuration (one per each cell) that covers a wide service area. The various BTSs 120 for a given area or region are managed by a base station controller (BSC) 124, with each BTS 120 communicatively-coupled to its BSC 124 via a private trunk 126. In general, a large licensed wireless network, such as that provided by a regional or nationwide mobile services provider, will include multiple BSCs 124.
  • Each BSC 124 communicates with telecommunications network 104 through a standard base station controller interface 126. For example, a BSC 124 may communicate with MSC 110 via the GSM A-interface for circuit switched voice services and with SGSN 114 via the GSM Gb interface for packet data services (GPRS). Conventional licensed voice and data networks 104 include protocols to permit seamless handoffs from one recognized BSC 124 to another BSC (not shown).
  • An unlicensed communication session 108 is facilitated via an (wireless) access point (AP) 128 comprising an indoor base station 130. Typically, AP 128 will be located in a fixed structure, such as a home 132 or an office building 134. The service area of indoor base station 130 includes an indoor portion of a building, although it will be understood that the service area of an indoor base station may include an outdoor portion of a building or campus. As indicated by the arrow representing unlicensed communication session 108, the mobile station 102 may be connected to the telecommunications network 114 via a second data path that includes an unlicensed wireless channel 136, access point 128, an access network 138, and an unlicensed mobile access network controller (UNC) 140. The UNC 140 communicates with telecommunications network 104 using a base station controller interface 126B that is similar to base station controller interface 126A, and includes a GSM A interface and Gb interface. Indoor base station 128 and indoor network controller 132 may include software entities stored in memory and executing on one or more microprocessors (not shown in FIG. 1A) adapted to perform protocol conversion.
  • Indoor base station 128 and UMA network controller 140 may also include software entities stored in memory and executing on one or more microprocessors (not shown in FIG. 1A) adapted to perform protocol conversion.
  • The unlicensed wireless channel 136 is facilitated by a radio link employing a wavelength (or wavelength range) in an unlicensed, free spectrum (e.g., spectrum around 2.4 GHz, 5 GHz, 11-66 GHz). An unlicensed wireless service hosting unlicensed wireless channel 136 may have an associated communication protocol. As examples, the unlicensed wireless service may be a Bluetooth™ compatible wireless service, or a wireless local area network (LAN) (WiFi) service (e.g., the IEEE 802.11a, b, or g wireless standard). This provides the user with potentially improved quality of service in the service regions of the unlicensed wireless service (i.e., within the service range of a corresponding AP). Thus, when a subscriber is within range of the unlicensed AP, the subscriber may enjoy low cost, high speed, and high quality voice and data services. In addition, the subscriber enjoys extended service range since the handset can receive services deep within a building at locations that otherwise may not be reliably serviced by a licensed wireless system. At the same time, the subscriber can roam outside the range of the unlicensed AP without dropping communications. Instead, roaming outside the range of the unlicensed AP results in a seamless handoff (also referred to as a handover) wherein communication services are automatically provided by the licensed wireless system, as described in more detail in U.S. patent application Ser. No. 10/115,833, the contents of which are hereby incorporated by reference.
  • Mobile station 102 may include a microprocessor and memory (not shown) that stores computer program instructions for executing wireless protocols for managing communication sessions. As illustrated in FIG. 1B, in one embodiment the mobile station 102 includes a layer 1 protocol layer 142, layer 2 protocol layer 144, and a layer 3 signaling protocol layer for the licensed wireless service that includes a radio resource (RR) sublayer 146, a mobility management (MM) sublayer 148, and a call management (CM) layer 150. It will be understood that the level 1, level 2, and level 3 layers may be implemented as software modules, which may also be described as software “entities.” In accordance with a common nomenclature for licensed wireless services, layer 1 is the physical layer, i.e., the physical baseband for a wireless communication session. The physical layer is the lowest layer of the radio interface and provides functions to transfer bit streams over physical radio links. Layer 2 is the data link layer. The data link layer provides signaling between the mobile station and the base station controller. The RR sublayer is concerned with the management of an RR-session, which is the time that a mobile station is in a dedicated mode, as well as the configuration of radio channel, power controller, discontinuous transmission and reception, and handovers. The mobility management layer manages issues that arise from the mobility of the subscriber. The mobility management layer may, for example, deal with mobile station location, security functions, and authentication. The call control management layer provides controls for end-to-end call establishment. These functions for a licensed wireless system are well known by those in the art of wireless communication.
  • The mobile station may also include an unlicensed wireless service physical layer 152 (i.e., a physical layer for unlicensed wireless service such as Bluetooth, WiFi, or other unlicensed wireless channel (e.g., WiMAX)). The mobile station also includes an unlicensed wireless service level 2 link layer 154, and an unlicensed wireless service radio resource sublayer(s) 156. An access mode switch 160 is included for the mobile management 148 and call management layers 150 to access the unlicensed wireless service radio resource sublayer 156 and unlicensed wireless service link layer 154 when the mobile station 102 is within range of an unlicensed AP 128 and to support switching between licensed RR sublayer 146 and unlicensed wireless service RR sublayer 156.
  • The unlicensed radio resource sublayer 156 and unlicensed link layer 154 may include protocols specific to the unlicensed wireless service utilized in addition to protocols selected to facilitate seamless handoff between licensed and unlicensed wireless systems. Consequently, the unlicensed radio resource sublayer 156 and unlicensed link layer 154 need to be converted into a format compatible with a conventional base station controller interface protocol 126 recognized by a MSC, SGSN, or other voice or data network.
  • Referring to FIG. 1C, in one embodiment of the present invention, the mobile station 102, AP 128 and UNC 140 provide an interface conversion function to convert the level 1, level 2, and level 3 layers of the unlicensed service into a conventional base station subnetwork (BSS) interface 126B (e.g., an A-interface or a Gb-interface). As a result of the protocol conversion, a communication session may be established that is transparent to the voice network/data network 104, i.e., the voice/data network 104 uses its standard interface and protocols for the communication session as it would with a conventional communication session handled by a conventional base transceiver station. For example, in some embodiments the mobile station 102 and UNC 140 are configured to initiate and forward location update and service requests. As a result, protocols for a seamless handoff of services that is transparent to voice/data network 104 are facilitated. This permits, for example, a single phone number to be used for both the licensed wireless service and the unlicensed wireless service. Additionally, the present invention permits a variety of services that were traditionally offered only through licensed wireless services to be offered through an unlicensed wireless service. The user thus gets the benefit of potentially higher quality service when their mobile station is located within the area serviced by a high bandwidth unlicensed wireless service while also having access to conventional phone services.
  • The licensed wireless service may comprise any licensed wireless service having a defined BSS interface protocol 126 for a voice/data network 104. In one embodiment, the licensed wireless service is a GSM/GPRS radio access network, although it will be understood that embodiments of the present invention include other licensed wireless services. For this embodiment, the UNC 140 interconnects to the GSM core network via the same base station controller interfaces 126 used by a standard GSM BSS network element. For example, in a GSM application, these interfaces are the GSM A-interface for circuit switched voice services and the GSM Gb interface for packet data services (GPRS). In a UMTS (Universal Mobile Telecommunications System) application of the invention, the UNC 140 interconnects to the UMTS network using a UMTS lu-cs interface for circuit switched voice services and the UMTS lu-ps interface for packet data services. In a CDMA application of the invention, the UNC 140 interconnects with the CDMA network using the CDMA A1 and A2 interfaces for circuit switched voice services and the CDMA A10 and A11 interfaces for packet data services.
  • In a GSM/GPRS embodiment, UNC 140 appears to the GSM/GPRS core network as a GSM BSS network element and is managed and operated as such. In this architecture the principle elements of transaction control (e.g., call processing) are provided by higher network elements; namely the MSC 110 visitor location register (VLR) and the SGSN 114. Authorized mobile stations are allowed access to the GSM/GPRS core network either directly through the GSM radio access network if they are outside of the service area of an AP 128 or via the UMA network system if they are within the service area of an AP.
  • Since a communication session hosted by the UMA architecture 100 is transparent to a voice network 112 or data network 116, the unlicensed wireless service may support all user services that are typically offered by a wireless service provider. In the GSM case, this typically includes the following basic services: Telephony; Emergency call (e.g., E911 calling in North America); Short message, mobile-terminated point-to-point (MT/PP); Short message, mobile-originated point-to-point (MO/PP); GPRS bearer services; Handover (outdoor-to-indoor, indoor-to-outdoor, voice, data, SMS, SS). Additionally, GSM may also support, various supplementary services that are well-known in the art.
  • FIG. 2A provides an overview of a level 1, level 2, and level 3 GSM-related protocol architecture for one embodiment of mobile station 102 that provides unlicensed radio links via Bluetooth signaling. As illustrated, there are two logical radio resource (RR) management entities: the GSM RR entity 202 and the UMA-RR entity 204. The protocol architecture includes a GSM baseband level 1 layer 206, GSM level 2 link layer (LAPDm) 208, Bluetooth baseband level 1 layer 210, Bluetooth level 2 layers 211 including a layer 2 connection access procedure (L2CAP) layer 212 and a BNEP layer 213, an access mode switch 214, and upper layer protocols 216. When the mobile station is operating in an UMA mode, the UMA-RR entity 204 is the current “serving” RR entity providing service to the mobility management (MM) sublayer via the designated service access point (RR-SAP). The GSM RR entity is detached from the MM sublayer in this mode. The UMA-RR entity 204 provides a new set of functions, and is responsible for several tasks. First the UMA-RR entity is responsible for discovery of UMA coverage and UMA registration. Second, the UMA-RR entity is responsible for emulation of the GSM RR layer to provide the expected services to the MM layer; i.e., create, maintain and tear down RR connections. All existing GSM 04.07 primitives defined for the RR-SAP apply. The plug-in of UMA-RR entity 204 is made transparent to the upper layer protocols in this way. Third, a UMA-RR entity 204 module is responsible for coordination with the GSM RR entity to manage access mode switching and handover, as described in further detail in application Ser. No. 10/688,470 referenced above.
  • FIG. 2B provides an overview of a level 1, level 2, and level 3 GSM-related protocol architecture for one embodiment of mobile station 102 that provides unlicensed radio links via IEEE 802.11 signaling. All of the entities and layers are the same as described above for FIG. 2A, except that the Bluetooth layers have been replaced with an 802.11 PHY layer 218 and an 802.11 MAC layer 220.
  • FIG. 3A illustrates the Up interface protocol architecture in support of circuit switched (CS) Domain signaling, as well as UMA-specific signaling, according to one embodiment. The MSC sublayers are conventional, well known features known in the art in regards to the message transfer part (MTP) interfaces MTP1 302, MTP2 304, and MTP3 306, signaling connection control part (SCCP) 308, base station system application part (BSSAP) 310, mobility management interface 312, and connection management interface 314.
  • The UMA-RR protocol supports the UMA “layer 3” signaling functions via UMA-RR layers 204 provided by each of the mobile station 102 and UNC 140. The UNC 140, acting like a BSC, terminates UMA-RR protocol messages and is responsible for the interworking between these messages and the analogous A-interface messages.
  • The layers below the UMA-RR layer 204 in each of mobile station 104 and UNC 140 include a TCP layer 316, a remote IP layer 318, and an IPSec (IP security) layer 320. As an option, a standard Secure Socket Layer (SSL) protocol running over TCP/IP (not shown) may be deployed in place of IPSec layer 320.
  • Lower-level IP connectivity between mobile station 102 and UNC 140 is supported by appropriate layers hosted by an intervening access point 128 and broadband IP network 138 (i.e., the access network 138 shown in FIG. 1A). The components for supporting the IP transport layer (i.e., the conventional network layer 3 under the seven-layer OSI model) include a transport IP layers 322 for each of the mobile station 104, AP 128, and IP network 138, and an IP layer 322A at UNC 140.
  • At the lowest layers (i.e., the physical and data link layers), mobile station 104 and AP 128 are depicted as providing unlicensed lower layers 324, while each of AP 128, IP network 138, and UNC 140 provide appropriate access layers 326. Typically, access layers 326 will include conventional Ethernet PHY and MAC layers (IEEE 802.3), although this is not limiting.
  • As shown in FIGS. 3A and 3B, the unlicensed layers lower layers 324 will depend on whether the unlicensed radio link uses Bluetooth signaling or IEEE 802.11 signaling. The Bluetooth lower layers depicted in FIG. 3A correspond to the mobile station architecture of FIG. 2A, and include a Bluetooth baseband layer 210, an L2CAP layer 212, and a BNEP layer 213. Meanwhile, the 801.11 lower layers shown in FIG. 3B correspond to the mobile station architecture of FIG. 2B, and include a 802.11 PHY layer 218 and in 802.11 MAC layer 220.
  • FIG. 3D illustrates the Up CS domain voice bearer protocol architecture in support of GSM voice transmission, according to one embodiment. In addition to the like named and referenced components common to the architectures of FIGS. 3D and 3C, facilities are provided for supporting GSM voice transmission. For the MSC 110, these components include conventional components for supporting GSM voice transmissions, and are depicted as physical layers 330 and audio 332, with similar components being deployed in UNC 140. Each of mobile station 102 and UNC 140 now include a GERAN (GSM Edge Radio Access Network) codec 334 and an RTP/UDP layer 336.
  • Under the architecture of FIG. 3D, audio flows over the Up interface according to the RTP framing format defined in RFC 3267 and RFC 3551. When operating in UMA mode, support for AMR FR as specified in TS 26.103 is supported. Other codecs may also be supported, such as G.711.
  • As noted above, the mobile station may be, for example, a wireless phone, smart phone, personal digital assistant, or mobile computer. The mobile station may also be, for example, a fixed wireless device providing a set of terminal adapter functions for connecting Integrated Services Digital Network (ISDN) or Plain Old Telephone Service (POTS) terminals to the wireless system.
  • Other terminal adapter types than those listed above may be employed with embodiments of the present invention. For example: (1) a terminal adapter that supports cordless telephones rather than POTS phones; (2) a terminal adapter that supports standard Session Initiation Protocol (SIP) telephones; and (3) a terminal adapter that also integrates a corded handset and user interface, such as one would find on a desk phone. In each case, the invention described herein describes how these terminal adapter functions can be connected to the wireless system via the unlicensed network.
  • The use of other standard Bluetooth capabilities together with embodiments of the present invention is possible. For example, there is a Bluetooth standard capability called “SIM Access Profile” that allows one Bluetooth device (e.g., an embedded cell phone subsystem in a car) to access the SIM that is in another Bluetooth device (e.g., the user's normal cell phone), allowing the first device to take on the “personality” associated with the SIM (i.e., that of the user's normal cell phone). The embodiments described above could make use of this standard capability to give the terminal adapter-attached devices (e.g., a POTS phone) the personality of the user's cell phone.
  • Media Signaling
  • In the present description, the GSM BSSMAP (Base Station Subsystem Management Application Part) protocol is modified for use over the interface between an UNC (UMA (Unlicensed Mobile Access) Network Controller) and an MSC (Mobile Switching Center) or a 3GPP (Third Generation Partnership Project) Release 4 MSC Server. This MSC server uses the “Release 4 distributed MSC Architecture” as defined in the 3GPP TS 23.002 standard. Modifications are made to the BSSMAP protocol and the A interface.
  • FIG. 4, shows a conventional context for an A Interface of a UNC and MSC system architecture. As shown in FIG. 4, customer premises equipment (CPE) 411 is coupled through a broadband access network 413, such as a wide area network or the Internet to a UNC 415. In the example of FIG. 4, the CPE is shown as a mobile station, such as a wireless or mobile phone shown as 102 in FIG. 1, coupled through an Up radio interface to a wireless access point (AP) shown as 128 in FIG. 1. A variety of types of CPE implementations may be used instead of the MS, AP combination shown. For example an IBS (Indoor Base Station), a VoIP (Voice over Internet Protocol) telephony modem, a UMA (Universal Mobile Access) modem or a private IP branch exchange may be used.
  • The UNC, which may be similar to the UNC shown as 140 in FIG. 1, is shown as including a security gateway 417 to terminate the secure tunnel between the MS and the UNC. The security gateway is coupled to a control server and to a media gateway 420 or TRAU (Transcoder and Rate Adaptation Unit). The control server handles signaling with a PLMN 421. In one embodiment, the UNC emulates a BSC (Base Station Controller) and uses signaling protocols, such as A interface protocols designed for communication between an MSC and a BSC. The UNC may also include other components depending on the particular implementation. In one embodiment, the UNC is in the form of an INC (Internet Protocol Network Controller)
  • FIG. 4 shows a few of the components of the PLMN 421 which, in this example, includes a telephony switching center 425, such as an MSC Call Server. The MSC Call Server has a DTAP (Direct Transfer Application Part) and BSSMAP connection to the UNC. The PLMN also has a media gateway 427 that is coupled to the media gateway 420 of the UNC and to the MSC Call Server. The media gateway and the MSC Call Server communicate with the UNC using the A interface. The MSC Call Server and media gateway are further coupled to the rest of the PLMN 429, which may include SGSNs, GGSNs, MSC servers, and media gateways as well as BSSs and other UNCs, etc. The PLMN may have further connections to the Internet, the PSTN (Public Switched Telephone Network), and other resources.
  • FIG. 5, shows the impact of modifications to the A Interface on the UNC and MSC system architecture. As shown in FIG. 5, the modifications allow traffic to be communicated between a UMA subscriber and a PLMN without a media gateway or TRAU (Transcoder and Rate Adaptation Unit) function in the UNC. This reduces the cost of the system and improves the system's quality.
  • As shown in FIG. 5, the mobile station and AP 511 are coupled through a broadband access network 513 to a UNC 515. The UNC includes a security gateway 517 and a control server 519, but no media gateway. The PLMN 521 includes an MSC Call Server 525 coupled to the UNC control server and a media gateway 527 which in this case is coupled to the security gateway 517 of the UNC 515. The MSC Call Server and media gateway are coupled to the rest of the PLMN 529, which may include many other resources.
  • In the enhanced UMA architecture of FIG. 5, the UNC and the MSC communicate with a modified set of messages that may be based on the standard BSSMAP messages used for communications between an MSC and a BSC. The MSC Call Server and the media gateway communicate using messages that may be based on the standard A interface messages. BSSMAP messages that may be modified include ASSIGNMENT REQUEST, ASSIGNMENT COMPLETE, HANDOVER REQUEST, and HANDOVER DETECT.
  • Message Structures
  • Capabilities may be added to the system by adding some additional messages in order to support UMA features. These messages may include CHANNEL MODE MODIFY REQUEST, CHANNEL MODE MODIFY ACKNOWLEDGE, and UPLINK QUALITY INDICATION. These messages and the modified messages are described in more detail below. These new messages may be supported within the existing BSSMAP message system by assigning new message type IE (information element) values to them. Examples of possible IE values are as follows:
  • TABLE 1
    Channel Mode Modify 10000000
    Channel Mode Modify Acknowledge 10001001
    Uplink Quality Indication 10001010
  • The ASSIGNMENT REQUEST message is sent from the MSC to the UNC via the relevant SCCP (Signaling Connection Control Part) connection in order to request the UNC to assign radio resources and to establish a terrestrial connection, the attributes of the connection in terms of signaling and of bearer traffic are defined within the message. The message is composed of a set of IEs (information elements) of various types. Some of this message's IEs are listed below.
  • TABLE 2
    CIC (Carrier This IE is an optional part of the BSSMAP message
    Identification Code) and is not needed with the modified BSSMAP
    message
    IP (Internet These IEs are used to describe the VoIP connection
    Protocol) Address parameters that have been allocated by the MSC.
    Sample Size
    RTP UDP Port
    RTCP UDP Port
    Payload Type The Payload Type IE can be used in a modified
    message if a payload with a dynamic type is used
    RTP Redundancy The RTP Redundancy Information IE is included if
    Configuration the speech codec FR AMR is signaled.
  • The ASSIGNMENT COMPLETE message is sent from the UNC to the MSC in response to the ASSIGNMENT REQUEST message and indicates that the requested assignment has been completed. Some of this message's IEs are listed below.
  • TABLE 3
    IP Address These IEs are used to describe the VoIP connection
    Sample Size parameters that have been allocated by the UNC
    RTP UDP Port
    Payload Type The Payload Type IE may be used if a dynamic payload
    type is used. It defines the Payload Type selected by the
    UMA MS
    RTP The RTP Redundancy Information IE may be used if the
    Redundancy speech codec FR AMR is specified. It defines RTP
    Configuration redundancy information adjusted based on the UMA MS
    capabilities
  • The HANDOVER REQUEST message is sent from the MSC to the UNC via the relevant SCCP connection to indicate that the UMA MS is to be handed over to the UMAN (UMA Network). This corresponds to situations in which a connection is handed over from another BSS handing over to the same MSC or another MSC rather than when a call is initiated and an assignment is requested. Some of this message's IEs are listed below.
  • TABLE 4
    Sample Size As with the ASSIGNMENT REQUEST, these
    IP Address elements may be used to describe the VoIP
    RTP UDP Port connection parameters that have been
    RTCP UDP Port allocated by the MSC
    Payload Type As with the ASSIGNMENT REQUEST, the Payload
    Type IE is included if a dynamic payload type is used
    Multi Rate As with the ASSIGNMENT REQUEST, the Multi-rate
    Configuration Configuration IE is included if the speech codec FR
    AMR is signaled
    RTP Redundancy As with the ASSIGNMENT REQUEST, the RTP
    Configuration Redundancy Information IE is included if the speech
    codec FR AMR is signaled
  • The HANDOVER DETECT message is sent by the UNC to the MSC in response to the HANDOVER REQUEST message and indicates that the UMA MS has successfully accessed the UMA system. This message's IEs are similar to that of the ASSIGNMENT COMPLETE message. Some of this message's IEs are listed below.
  • TABLE 5
    Sample Size As with the ASSIGNMENT COMPLETE message,
    RTP UDP Port these IEs describe the VoIP connection parameters
    IP Address that have been allocated by the UNC
    RTCP UDP Port
    Payload Type As with the ASSIGNMENT COMPLETE message, the
    Payload Type IE is used if a dynamic Payload Type is
    used. It defines the Payload Type selected by the MS
    RTP Redundancy As with the ASSIGNMENT COMPLETE message, the
    Configuration RTP Redundancy Information IE is used if the speech
    codec FR AMR is signaled. It defines RTP redundancy
    information adjusted based on the MS capabilities
  • The CHANNEL MODE MODIFY message is sent by the MSC to the UNC to request modifications related to an existing UMA bearer channel and associated RTP stream. Such an existing bearer channel and RTP stream would likely be established through the ASSIGNMENT REQUEST message or the HANDOVER REQUEST message. The IEs are similar to those described above and a list follows. In one embodiment, the message is shortened by including only IEs that describe requested modifications from the existing bearer channel and associated RTP stream.
  • TABLE 6
    Channel Mode These IEs are included if the modification of the
    Sample Size associated parameter is requested; i.e. Sample Size is
    IP Address included if Sample Size is modified and is not included if
    RTP UDP Port it remains the same
    RTCP UDP
    Port
    RTP
    Redundancy
    Configuration
    Multi Rate The Multi Rate Configuration IE may be used only when
    Configuration the speech codec signaled is FR AMR and when the RTP
    Redundancy configuration is modified
  • The CHANNEL MODE MODIFY ACKNOWLEDGE message is sent by the UNC to the MSC in response to the CHANNEL MODE MODIFY message to acknowledge modifications related to the existing UMA RR bearer channel and associated RTP stream. This message contains IEs similar to the response messages mentioned above. Some are listed below.
  • TABLE 7
    Channel Mode These IEs are included if the modification of the
    Sample Size associated parameter is requested; i.e. Sample Size is
    RTP Redundancy included if Sample Size is modified and is not
    Configuration included if it remains the same
    Multi Rate The Multi Rate Configuration IE is included when the
    Configuration speech codec signaled is FR AMR and when the RTP
    Redundancy configuration is modified
  • A further message, an UPLINK QUALITY INDICATION message can be sent by the MSC to the UNC as a notification that the uplink quality deteriorated below the threshold and can not be further improved with channel modification. This can be used instead of a CHANNEL MODE MODIFY ACKNOWLEDGE message or as a separate message sent on its own timing.
  • Modified Protocol Architectures
  • FIG. 6A illustrates a modification to the Up interface protocol architecture of FIG. 3A in support of circuit switched (CS) Domain signaling, as well as UMA-specific signaling, according to one embodiment. The MSC sublayers are similar to those described above for FIG. 3A. The BSSMAP protocol (part of BSSAP 610), however, is modified to support the modified and additional messages over the modified A interface between the UNC and the MSC. This may include use of the modified and additional A-interface messages described above. The layers below the Up interface protocols are not changed.
  • FIG. 6B illustrates a modification of Up Audio protocol architecture, according to an embodiment, that may be implemented in the architecture of FIG. 5. This Up Audio architecture allows audio bearer packets 372 to be carried straight through from the MS 102 to the R4 Media Gateway 527 of the PLMN 521. The same applies to remote IP packets 318 and above. In FIG. 6B, this includes RTP/UDP signaling 356.
  • As illustrated in FIG. 6B, the UNC 140 and media gateway 527 employ conventional facilities for supporting Up audio bearer data packets, including lower layers 370 that may include access layers 326, transport IP 322 and an IPSec ESP layer 320. However, the Remote IP layer 318, RTP/UDP layer 356 and Up audio layer 372 are not shared with the access point 128, IP network 138 or UNC 140. These are transmitted through these elements directly between the MS and the media gateway.
  • Under the architecture of FIG. 6B, Up audio does not need to be transcoded or repacketized for any of the intermediate elements in the communication chain. The transcoding, signaling and codecs of FIG. 3D are avoided. This eliminates the need for a media gateway in the UNC, reducing costs and increasing reliability.
  • Example Signaling Transactions
  • FIG. 7 shows one procedure associated with successfully establishing a voice channel between the MS 511 and the MSC (i.e., shown as consisting of a MSC Call Server 525 and a Media Gateway 527) for mobile-originated or mobile-terminated call purposes. FIG. 7 does not show any connection signaling associated with the call that is not directly related to the connection to the MS (e.g., ISUP (ISDN (Integrated Services Digital Network) User Part) signaling towards the other party.
  • Initially, a mobile-originated or mobile-terminated call establishment is in progress. The MSC Call Server determines that a speech channel to the target MS is required. Accordingly, at line A, the MSC Call Server requests that the media gateway (MG) 527 create a VoIP connection. The communication between the MSC Call Server and the MG may be in the form of a media gateway control protocol, such as H.248. Using this protocol, many different parameters for the VoIP connection may be set. This request includes an identification of the codec or codecs that are allowed for the connection. At line B, the MG creates the connection and returns a connection ID and a local connection description that includes the assigned MG IP address and port number for the connection.
  • At line C, the MSC Call Server sends an ASSIGNMENT-REQUEST message to the UNC. The ASSIGNMENT-REQUEST message may include any of the IEs mentioned above and may include information describing the connection to the MG encoded into a BSSMAP format.
  • Upon receiving the ASSIGNMENT-REQUEST message, the UNC at line D sends a URR-ACTIVATE-CHANNEL message to the MS at line D. This message includes the information received in the ASSIGNMENT-REQUEST message from the MSC Call Server. The URR-ACTIVATE CHANNEL message together with the other messages between the MS and the UNC, may be based on those defined in the UMA (Universal Mobile Access) standard, however other messages may be used to signal the CPE to activate a channel.
  • At line E, the MS establishes a VoIP connection to the IP address and port identified in the URR-ACTIVATE-CHANNEL message. The MS then returns a URR-ACTIVATE-CHANNEL-ACK message to the UNC, including the required connection information. This information may include such parameters as: RTP UDP Port number, sample size, payload type and RTCP UDP Port number. At line F, the UNC sends the URR-ACTIVATE-CHANNEL-COMPLETE message to the MS.
  • If the connection is not established, then the UNC may send a BSSMAP ASSIGNMENT-FAILURE message (not shown) to the MSC Call Server. The MSC Call Server then initiates call clearing using, for example, a BSSMAP CLEAR-COMMAND message.
  • Using the information received from the MS in the URR-ACTIVATE CHANNEL ACK message, the UNC can provide full connection information back to the MSC Call Server. At line G, the UNC signals the MSC Call Server that assignment is complete using an ASSIGNMENT-COMPLETE message, including the connection information received from the MS.
  • At line I, the MSC Call Server requests the MG to modify the previously-created VoIP connection to use the codec and remote IP address and port identified in the ASSIGNMENT-COMPLETE message. At line J the MG modifies the connection, and at line K, RTP packets are flowing in both directions between the MS and the MG, via the broadband IP network. Call establishment may then continue to any other terminals involved in the call.
  • FIG. 8 shows an example of messages that may be used to establish a voice channel between an MS 511 and the MSC 525, 527 for GSM-to-AP handover purposes. As in FIG. 7, the signaling not directly related to the MS to MSC Call Server connection is not shown (e.g., GSM signaling towards the other called party).
  • In FIG. 8, a GSM-to-UMA or AP handover is in progress. In other words, the MS 511 is in a call through a GSM air interface to a BTS (Base Transceiver Station). The MS is in the process of handing over that call to the UMAN. To accomplish the handover, a speech channel between the MS and the MSC may be used. Accordingly, at line A, the MSC Call Server 525 requests that the media gateway (MG) 527 create a VoIP connection. This request includes the parameters for the codec or codecs that are allowed for the connection. At line B, the MG creates the connection and returns a connection ID and a local connection description that includes the assigned MG IP address and port number for the connection.
  • Using the received information, the MSC Server encodes any required connection description information in a HANDOVER-REQUEST message as described above. At line C, this message is forwarded to the UNC, and at line D, the UNC responds with a standard BSSMAP HANDOVER-REQUEST-ACK message containing an encapsulated HANDOVER-COMMAND message formulated according to the standard GERAN (GSM EDGE (Enhanced Data Rate for GSM Evolution) Radio Access Network) procedure.
  • At line E, the MSC Server directs a GSM BSC (Base Station Controller) (not shown) to send a HANDOVER-COMMAND message to the MS via the GSM air interface (not shown). At line F, in response to the HANDOVER-COMMAND message, the MS sends an URR-HANDOVER-ACCESS message to the UNC containing the HANDOVER-COMMAND that it received through the GSM air interface. The UNC correlates this signal with the handover request that it responded to on line C.
  • Lines G-I show operations similar to those of lines D-F of FIG. 7. At line G the UNC sends an URR-ACTIVATE-CHANNEL message to the MS that includes the information received in the HANDOVER-REQUEST message from the MSC Call Server. At line H, the MS, returns a URR-ACTIVATE-CHANNEL-ACK message to the UNC including the required connection information such as: RTP UDP Port #, sample size, payload type and RTCP UDP Port #. At line I, the UNC sends the URR-ACTIVATE-CHANNEL-COMPLETE message to the MS, completing the connection between the MS and the UNC.
  • At line J, the UNC signals the MSC Call Server that the MS has accessed the UNC system via the HANDOVER-DETECT message described above, that includes the connection information received from the MS. Lines K-M show signaling similar to that of lines H-J in of FIG. 7. Line K shows RTP packets flowing in one direction from the MS to the MG, via the UNC 515. At line L, the MSC Call Server requests the MG to modify any previously created VoIP connection to use the codec and remote IP address and port identified in the HANDOVER-DETECT message. At line M, the MG modifies the connection, and at line N, RTP packets are flowing in both directions between the MS and the MG, via the access router.
  • At line 0, the MS signals the successful completion of the handover by sending the URR-HANDOVER-COMPLETE message to the UNC. At line P, the UNC signals successful completion of the handover by sending a BSSMAP HANDOVER-COMPLETE message to the MSC Call Server, and at line Q, the MSC Server responds by switching the call path from GSM public air interface to the UNC. This allows the call to continue uninterrupted at line R.
  • The handover may fail for any number of reasons which may result in the mobile retaining the connection with the GSM BTS, or it may result in the call being dropped. For example, if the MSC Server fails to create the MG connection, or if the UNC connection is not established, then the MSC Server may abort the handover. If the MSC Server fails to modify the MG connection, then the MSC Server may clear the call (e.g., send a BSSMAP CLEAR-COMMAND message).
  • FIG. 9 shows an example of modifying the bearer connection between the MS and the MSC. In the example of FIG. 9, a mobile originated or mobile terminated call is in progress and the MSC Call Server determines that the bearer connection has to be modified. This may be due, for example, to detecting the loss of too many RTP packets. One example of a modification of a bearer connection is to apply RTP Redundancy. At line A, the RTP session is established and RTP packets are exchanged in both directions. The MSC determines that a modification to the bearer connection is called for and determines what parameters need to be modified. Accordingly, at line B, the MSC prepares a CHANNEL-MODE-MODIFY message, as described above, specifying the parameters that need to be modified and sends this message to the UNC.
  • At line C, the UNC constructs a URR-CHANNEL-MODE-MODIFY message based on the request form the MSC and forwards it to the MS. At line D, the MS modifies the connection in accordance with the request and responds with an acknowledgment message, URR-CHANNEL-MODE-MODIFY ACKNOWLEDGMENT. The UNC forwards the acknowledgment to the MSC at line E. However, if the MS is not able to handle the requested modification, then the MS will so indicate in the acknowledgment message.
  • In the example of modifying the channel mode to include RTP redundancy, the MS can reply by sending an acknowledgment that does not include the requested modification to the IE corresponding to RTP redundancy. In another example, if the modification relates to IP addresses and UDP ports, then if the MS is not able to make the change, the call may continue on the original ports, or if these are unavailable then the call may be cleared. In parallel, the MS and MSC modify the RTP stream associated with this connection and, at line F, the modified RTP packets are now exchanged between the MS and MSC. The call continues at line G using the modified RTP stream.
  • FIG. 10 shows an example of providing an indication of the quality of the uplink channel from the MSC to the MS. These operations may be used by the MSC to notify the UNC when the uplink quality associated with a particular bearer connection falls below a predefined threshold or experiences a large change. It may also be used if the uplink quality degrades and is not improved by a channel mode modify procedure as shown in FIG. 9.
  • Initially, a mobile originated or mobile terminated call is in progress. At line A, an RTP session is established and RTP packets are exchanged in both directions. The MSC determines that an uplink quality indication is to be sent. This may occur, for example, because the uplink quality associated with the bearer connection is below a predefined threshold for uplink quality and all attempts to improve the quality have failed.
  • At line B, the MSC sends an UPLINK-QUALITY-INDICATION message, such as the one described above, to notify the UNC. At line C, the UNC constructs a URR-UPLINK-QUALITY-INDICATION message based on the indication from the MSC and forwards it to the UMA MS. Upon receiving such a message, the MS may take any appropriate measure. In the example of FIG. 10, at line D, the MS initiates a handover to a GERAN connection.
  • The particular equipment, services, sequences of events and types of signals are provided above as examples only. While the example of FIGS. 7, 8, 9, and 10 are presented in the context of a VoIP WLAN AP and a GSM cellular network, appropriate modifications may be made to comply with other types of networks and protocols. In addition to a wireless mobile station and a wireless access point, embodiments of the invention may be applied to other types of subscriber equipment including enterprise systems and networks, private and public switched networks and other wired, wireless and hybrid systems that may connect to a UNC or similar device through the Internet or through any other communications medium. In addition to a UNC, embodiments of the invention may be applied to other network devices that interface to a PLMN or PSTN. In addition to a GSM architecture, embodiments of the invention may be applied to other types of telecommunications networks, both wired and wireless, these may include those based on CDMA, TDMA, PCS (Personal Communication Services), PHS (Personal Handyphone System) and other standardized protocols. The protocol architecture diagrams described above are provided as examples only. Many of the layers may be grouped, divided or identified differently to suit a particular application. The components involved in communicating at any particular layer may also be modified to suit a particular application.
  • It is to be appreciated that a lesser or more equipped UNC, AP, mobile station, private network, and public network than the examples described above may be desirable for certain implementations. Additional or different components, interfaces, buses and capabilities may be used and additional devices may be added to any of these components. Some of the illustrated components may also be removed from the devices: The configuration of the UNC, AP, mobile station, private network, and public network may vary with different implementations depending upon numerous factors, such as price constraints, performance requirements, technological improvements, or other circumstances. It is not necessary that the licensed frequencies be used for a portion of the system nor that unlicensed frequencies be used for a portion of the system. It is further not necessary that a portion of the system be private and another portion be public.
  • Although the description of the various embodiments refers primarily to using location information in establishing a VoIP private network call through a GSM cellular telecommunications system, the various embodiments may also be used with other types of private communications systems and with other types of public telecommunications networks. The various embodiments may be applied to voice networks, data networks and combined networks whether they are circuit switched or packet switched.
  • It will be understood that an embodiment of the present invention relates to a computer storage product with a computer-readable medium having computer code thereon for performing various computer-implemented operations. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those having skill in the computer software arts. Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media such as optical disks; and hardware devices that are specially configured to store and execute program code, such as application-specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”) and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher-level code that are executed by a computer using an interpreter. For example, an embodiment of the invention may be implemented using Java, C++, or other object-oriented programming language and development tools. Another embodiment of the invention may be implemented in hardwired circuitry in place of, or in combination with, machine-executable software instructions.
  • The foregoing description, for purposes of explanation, use specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed; obviously, many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, they thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the following claims and their equivalents define the scope of the invention.
  • APPENDIX I
    Table Of Acronyms
    AP Access Point
    ARFCN Absolute RF Channel Number
    ATM Asynchronous Transfer Mode
    ATM VC ATM Virtual Circuit
    BCCH Broadcast Common Control Channel
    BSC Base Station Controller
    BSS Base Station Subsystem
    BSSGP Base Station System GPRS Protocol
    BSSMAP Base Station System Management Application Part
    BTS Base Transceiver Station
    CDMA Code Division Multiple Access
    CGI Cell Global Identification
    CIC Circuit Identity Code
    CM Connection Management
    CPE Customer Premises Equipment
    CS Circuit Switched
    DTAP Direct Transfer Application Part
    FR AMR Full Rate Adaptive Multi-Rate
    GERAN GSM Edge Radio Access Network
    GGSN Gateway GPRS Support Node
    GMSC Gateway MSC
    GSM Global System for Mobile Communication
    GPRS General Packet Radio Service
    GSN GPRS Support Node
    GTP GPRS Tunnelling Protocol
    HLR Home Location Register
    IAN Indoor Access Network (see also UMA Cell)
    IBS Indoor Base Station
    IETF Internet Engineering Task Force
    INC Internet Protocol Network Controller
    IP Internet Protocol
    ISDN Integrated Services Digital Network
    ISP Internet Service Provider
    ISUP ISDN User Part
    MAC Medium Access Control
    MAP Mobile Application Part
    MG Media Gateway
    MM Mobility Management
    MS Mobile Station
    MSC Mobile Switching Center
    MTP1 Message Transfer Part Layer 1
    MTP2 Message Transfer Part Layer 2
    MTP3 Message Transfer Part Layer 3
    PCM Pulse Code Modulation
    PCS Personal Communications Services
    PLMN Public Land Mobile Network
    POTS Plain Old Telephone Service
    PPP Point-to-Point Protocol
    PPPoE PPP over Ethernet protocol
    PSTN Public Switched Telephone Network
    QoS Quality of Service
    RF Radio Frequency
    RFC Request for Comment (IETF Standard)
    RLC Radio Link Control
    RR Radio Resource Management
    RTCP Real Time Control Protocol
    RTP Real Time Protocol
    SAP Service Access Point
    SCCP Signaling Connection Control Part
    SCO Synchronous Connection-Oriented
    SDCCH Standalone Dedicated Control Channel
    SGSN Serving GPRS Support Node
    SMC Short Message Service Centre
    SMS Short Message Service
    SS Supplementary Service
    SSL Secure Sockets Layer
    TCAP Transaction Capabilities Application Part
    TCP Transmission Control Protocol
    TRAU Transcoder and Rate Adaptation Unit
    UDP User Datagram Protocol
    UMA Unlicensed Mobile Access
    UMAN Unlicensed Mobile Access Network
    UMTS Universal Mobile Telecommunication System
    UNC UMA Network Controller (see also INC)
    VLR Visited Location Register
    WLAN Wireless Local Area Network

Claims (16)

1-27. (canceled)
28. A method comprising:
receiving, at a network controller of a first communication network that communicatively couples at least one service region of the first communication network to a licensed wireless second communication network, a description of a bearer connection from a call server of the second communications network, the bearer connection to be established between the second communications network and a subscriber device;
sending the description of the bearer connection from the network controller to the subscriber device to allow the subscriber device to establish the bearer connection through the network controller to the second communications network;
receiving, at the network controller, connection information about the established bearer connection from the subscriber device;
sending the connection information from the network controller to the call server to allow the call server to modify the bearer connection;
before the bearer connection is modified by the call server, forwarding RTP packets in only one direction at the network controller from the subscriber device to a media gateway of the second communications network; and
after the bearer connection is modified by the call server, forwarding RTP packets at the network controller (i) from the subscriber device to the media gateway and (ii) from the media gateway to the subscriber device.
29. The method of claim 28, wherein the bearer connection is a VoIP connection.
30. The method of claim 28, wherein the description of the bearer connection comprises an RTP port number and an IP address of a media gateway of the second communications network.
31. The method of claim 30, wherein the connection information about the established bearer connection comprises an RTP port number and an IP address of the subscriber device.
32-41. (canceled)
42. A method comprising:
receiving, at a network controller of a first communications network that communicatively couples at least one service region of the first communications network to a licensed wireless second communications network, a message from a call server of the second communications network, the message comprising a request for modification of an established bearer connection between the second communications network and a subscriber device through the network controller;
sending a request from the network controller to the subscriber device to modify the bearer connection based on the message from the call server; and
when the subscriber device is able to modify the bearer connection, passing traffic packets through the network controller between the subscriber device and a mobile switching center (MSC) of the second communications network over the modified bearer connection; and
when the subscriber device is unable to modify the bearer connection, maintaining the bearer connection using an IP address and an UDP port associated with the bearer connection.
43. The method of claim 42 further comprising sending an acknowledgment from the subscriber device to the network controller in response to the request to modify the bearer connection.
44. The method of claim 43, wherein the modification of the bearer connection comprises applying RTP Redundancy.
45. The method of claim 44, wherein when the subscriber device is unable to modify the bearer connection, the acknowledgment comprises an indication that the subscriber device is unable to handle the requested modification.
46. The method of claim 42, wherein modification of the established bearer connection comprises modification to at least one of an IP address and a UDP port associated with the bearer connection.
47. (canceled)
48. For a network controller of a first communication network that communicatively couples at least one service region of the first communication network to a licensed wireless second communication network, a non-transitory computer readable medium storing a computer program for execution by the network controller, the computer program storing sets of instructions for:
receiving a message from a call server of the second communications network, the message comprising a request for modification of an established bearer connection between the second communications network and a subscriber device through the network controller;
sending a request to the subscriber device to modify the bearer connection based on the message from the call server;
passing traffic packets through the network controller between the subscriber device and a mobile switching center (MSC) of the second communications network over the modified bearer connection when the subscriber device is able to modify the bearer connection; and
clearing an ongoing call on the established connection when the subscriber device is unable to modify the bearer connection.
49-50. (canceled)
51. The non-transitory computer readable medium of claim 48, wherein the computer program further comprises a set of instructions for sending an acknowledgment from the subscriber device to the network controller in response to the request to modify the bearer connection.
52. The non-transitory computer readable medium of claim 51, wherein when the subscriber device is unable to modify the bearer connection, the acknowledgment comprises an indication that the subscriber device is unable to handle the requested modification.
US11/110,222 2004-04-21 2005-04-20 Method and system for signaling traffic and media types within a communications network switching system Active 2028-05-17 US7957348B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/110,222 US7957348B1 (en) 2004-04-21 2005-04-20 Method and system for signaling traffic and media types within a communications network switching system
PCT/US2005/013945 WO2005107297A1 (en) 2004-04-21 2005-04-21 A method and system for signaling traffic and media types within a communications network switching system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US56456604P 2004-04-21 2004-04-21
US65131205P 2005-02-09 2005-02-09
US11/110,222 US7957348B1 (en) 2004-04-21 2005-04-20 Method and system for signaling traffic and media types within a communications network switching system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/013,883 Continuation-In-Part US7640008B2 (en) 2002-10-18 2004-12-15 Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system

Publications (2)

Publication Number Publication Date
US7957348B1 US7957348B1 (en) 2011-06-07
US20110149838A1 true US20110149838A1 (en) 2011-06-23

Family

ID=44070915

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/110,222 Active 2028-05-17 US7957348B1 (en) 2004-04-21 2005-04-20 Method and system for signaling traffic and media types within a communications network switching system

Country Status (1)

Country Link
US (1) US7957348B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070167156A1 (en) * 2005-12-30 2007-07-19 Sukhdeep Hundal System and method for communicating over a data network or the PSTN using a hybrid cordless telephone device
US20080096553A1 (en) * 2006-10-20 2008-04-24 Sonus Networks, Inc. Mobile communication network
US20090185513A1 (en) * 2008-01-18 2009-07-23 Fleischman Eric W System and method for enabling wireless real time applications over a wide area network in high signal intermittence environments
US20100056152A1 (en) * 2007-03-13 2010-03-04 France Telecom Method of dynamically controlling the number of data streams traveling through a network architecture
US20100235516A1 (en) * 2009-03-11 2010-09-16 Hitachi, Ltd. Communication system and server
US20100284369A1 (en) * 2007-11-23 2010-11-11 Zte Corporation Optimization method of multiple service flows operation for WiMAX system
US20110051682A1 (en) * 2007-12-20 2011-03-03 Dirk Kampmann Assignment and Handover in a Radio Communication Network
US20110128967A1 (en) * 2008-08-11 2011-06-02 Nokia Siemens Networks Oy System, method, program element and computer-accessible medium for forwarding media control messages
US20120269082A1 (en) * 2009-10-22 2012-10-25 Nokia Siemens Networks Oy Determination of system performance parameters in heterogeneous network environments
US20130303196A1 (en) * 2005-07-18 2013-11-14 Telecommunication Systems, Inc. Integrated Services User Part (ISUP)/ Session Initiation Protocol (SIP) Gateway for Unlicensed Mobile Access (UMA) Emergency Services Call Flow

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606190B2 (en) 2002-10-18 2009-10-20 Kineto Wireless, Inc. Apparatus and messages for interworking between unlicensed access network and GPRS network for data services
US7940746B2 (en) 2004-08-24 2011-05-10 Comcast Cable Holdings, Llc Method and system for locating a voice over internet protocol (VoIP) device connected to a network
US11405846B2 (en) 2006-03-02 2022-08-02 Tango Networks, Inc. Call flow system and method for use in a legacy telecommunication system
US7890096B2 (en) 2006-03-02 2011-02-15 Tango Networks, Inc. System and method for enabling call originations using SMS and hotline capabilities
US8958346B2 (en) 2006-03-02 2015-02-17 Tango Networks, Inc. Calling line/name identification of enterprise subscribers in mobile calls
US8023479B2 (en) * 2006-03-02 2011-09-20 Tango Networks, Inc. Mobile application gateway for connecting devices on a cellular network with individual enterprise and data networks
US8165086B2 (en) * 2006-04-18 2012-04-24 Kineto Wireless, Inc. Method of providing improved integrated communication system data service
JP4995202B2 (en) * 2006-11-16 2012-08-08 株式会社エヌ・ティ・ティ・ドコモ Communication control device and communication control method
US8165090B2 (en) * 2008-05-15 2012-04-24 Nix John A Efficient handover of media communications in heterogeneous IP networks
JP4841675B2 (en) * 2010-02-09 2011-12-21 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system, network device, and mobile communication method
US9380077B2 (en) * 2013-08-08 2016-06-28 Iboss, Inc. Switching between networks
US8910263B1 (en) 2013-09-17 2014-12-09 Iboss, Inc. Mobile device management profile distribution
EP3515108A1 (en) * 2016-10-18 2019-07-24 Huawei Technologies Co., Ltd. Service communication method and device
EP3895395A1 (en) * 2018-12-10 2021-10-20 Telefonaktiebolaget LM Ericsson (publ) Network node, entity and methods performed therein for handling a communication session in a communication network

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327578A (en) * 1990-09-10 1994-07-05 Motorola, Inc. Radio telephone system supporting automatic busy and out-of-range indications
US5333175A (en) * 1993-01-28 1994-07-26 Bell Communications Research, Inc. Method and apparatus for dynamic power control in TDMA portable radio systems
US5488649A (en) * 1994-05-06 1996-01-30 Motorola, Inc. Method for validating a communication link
US5509052A (en) * 1994-05-25 1996-04-16 Motorola, Inc. Base storage of handset's base registrations
US5515420A (en) * 1993-11-29 1996-05-07 Sanyo Electric Co. Ltd. Cordless telephone apparatus
US5659598A (en) * 1993-10-08 1997-08-19 Nokia Telecommunications Oy Dual mode subscriber terminal and a handover procedure of the dual mode subscriber terminal in a mobile telecommunication network
US5812522A (en) * 1995-03-31 1998-09-22 Airtouch Communications, Inc. Location-ruled radio-integrated network
US5822767A (en) * 1995-04-12 1998-10-13 Intel Corporation Method and apparartus for sharing a signal line between agents
US5862345A (en) * 1996-02-07 1999-01-19 Nec Corporation System for location multicasting and database management for mobile sessions in any computer subnetworks without using a home router of a home subnetwork
US5960361A (en) * 1996-10-22 1999-09-28 Qualcomm Incorporated Method and apparatus for performing a fast downward move in a cellular telephone forward link power control system
US5960364A (en) * 1996-11-08 1999-09-28 Ericsson Inc. Satellite/cellular phone using different channel spacings on forward and return links
US5987010A (en) * 1997-05-15 1999-11-16 Advanced Micro Devices, Inc. System and method for providing FDD and TDD modes of operation for a wireless communications device
US5995500A (en) * 1997-07-18 1999-11-30 Telefonaktiebolaget Lm Ericsson Method and apparatus for direct communication between mobile stations
US6229792B1 (en) * 1993-11-01 2001-05-08 Xircom, Inc. Spread spectrum communication system
US20020009199A1 (en) * 2000-06-30 2002-01-24 Juha Ala-Laurila Arranging data ciphering in a wireless telecommunication system
US20020036983A1 (en) * 2000-05-22 2002-03-28 Ina Widegren Application influenced policy
US20020051463A1 (en) * 2000-10-31 2002-05-02 Mamoru Higuchi Media communication system, and terminal apparatus and signal conversion apparatus in said system
US20020059516A1 (en) * 2000-11-16 2002-05-16 Esa Turtiainen Securing Voice over IP traffic
US6393007B1 (en) * 1997-10-16 2002-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Method of and a system for voice and data radio communication providing improved interference diversity
US20020065099A1 (en) * 1998-02-11 2002-05-30 Per Bjorndahl System, method and apparatus for secure transmission of confidential information
US20020077584A1 (en) * 1999-12-16 2002-06-20 Wei-Qi Lin Device and method for enhancing transdermal flux of agents being sampled
US20020075844A1 (en) * 2000-12-15 2002-06-20 Hagen W. Alexander Integrating public and private network resources for optimized broadband wireless access and method
US20020080797A1 (en) * 2000-12-23 2002-06-27 Lg Electronic, Inc. Method and system of relaying calls with a tone provision function in the next generation mobile communication network
US6415410B1 (en) * 1995-05-09 2002-07-02 Nokia Telecommunications Oy Sliding-window data flow control using an adjustable window size
US20020086682A1 (en) * 1999-05-05 2002-07-04 Siamak Naghian Method for positioning a mobile station
US20020095599A1 (en) * 2001-01-12 2002-07-18 Hyungkeun Hong VoIP call control proxy
US6426819B1 (en) * 1996-03-22 2002-07-30 Wireless Communications Products, Llc Method and apparatus for cordless infrared communication
US20020101848A1 (en) * 2000-12-05 2002-08-01 Ivan Lee Systems and methods for on-location, wireless access of web content
US6438383B1 (en) * 1998-03-20 2002-08-20 Telefonaktiebolaget Lm Ericsson (Publ) System and method relating to packet data communication
US20020114322A1 (en) * 2001-02-20 2002-08-22 Innomedia Pte Ltd. System and method for providing real time connectionless communication of media data through a firewall
US20020120749A1 (en) * 2000-11-06 2002-08-29 Widegren Ina B. Media binding to coordinate quality of service requirements for media flows in a multimedia session with IP bearer resources
US20020123325A1 (en) * 2001-03-01 2002-09-05 Cooper Gerald M. Method and apparatus for increasing the security of wireless data services
US20020131387A1 (en) * 2001-03-19 2002-09-19 Pitcher Gary J. Cellular system with cybercells
US20020142761A1 (en) * 2001-02-01 2002-10-03 Wallstedt Yngve Kenneth Handoff between digital wireless office system (DWOS) radio-infrastructure units using a conference call
US20020143874A1 (en) * 2001-03-30 2002-10-03 Brian Marquette Media session framework using a control module to direct and manage application and service servers
US20020147016A1 (en) * 2000-04-07 2002-10-10 Commil Ltd Was Filed In Parent Case Wireless private branch exchange (WPBX) and communicating between mobile units and base stations
US20020147008A1 (en) * 2001-01-29 2002-10-10 Janne Kallio GSM Networks and solutions for providing seamless mobility between GSM Networks and different radio networks
US20020150091A1 (en) * 2001-04-17 2002-10-17 Jussi Lopponen Packet mode speech communication
US20020161905A1 (en) * 2001-04-26 2002-10-31 Nokia Corporation IP security and mobile networking
US20020174335A1 (en) * 2001-03-30 2002-11-21 Junbiao Zhang IP-based AAA scheme for wireless LAN virtual operators
US20020172209A1 (en) * 2001-05-18 2002-11-21 Masami Ohta Method of controlling change-over of connection route between media gateway apparatuses, and call agent apparatus
US20030003060A1 (en) * 1998-01-15 2003-01-02 Mcdaniels Pellom Method for lubricating and protecting the oral cavity
US20030007475A1 (en) * 2001-06-07 2003-01-09 Kabushiki Kaisha Toshiba Mobile terminal using priority processing for packets that require urgency in communications
US20030018480A1 (en) * 2001-07-19 2003-01-23 Ofir Mecayten Method and apparatus for transmitting voice over internet
US20030026269A1 (en) * 2001-07-31 2003-02-06 Paryani Harish P. System and method for accessing a multi-line gateway using cordless telephony terminals
US20030092445A1 (en) * 2001-11-15 2003-05-15 Nokia Corporation Method and apparatus for providing immediate ciphering after an inter-system UTRAN-GSM handover
US20030114158A1 (en) * 2001-12-18 2003-06-19 Lauri Soderbacka Intersystem handover of a mobile terminal
US6600925B1 (en) * 1996-05-02 2003-07-29 Detemobil Deutsche Telekom Mobilnet Gmbh Process for integrating cordless telephone networks into cellular mobile telephone networks
US20030172264A1 (en) * 2002-01-28 2003-09-11 Hughes Electronics Method and system for providing security in performance enhanced network
US20030176181A1 (en) * 2000-11-17 2003-09-18 Boesjes Eimar M. Distributed wireless online access system
US6633614B1 (en) * 1999-09-15 2003-10-14 Telcordia Technologies, Inc. Multicarrier personal access communication system
US20030202486A1 (en) * 2002-04-29 2003-10-30 Hereuare Communications, Inc. Method and system for simulating multiple independent client devices in a wired or wireless network
US20030217132A1 (en) * 2002-05-16 2003-11-20 International Business Machines Corporation System and method for remotely managing a computer system by a wireless communications device
US6654610B1 (en) * 2000-05-05 2003-11-25 Lucent Technologies Inc. Two-way packet data protocol methods and apparatus for a mobile telecommunication system
US20030219022A1 (en) * 2002-01-28 2003-11-27 Hughes Electronics Method and system for utilizing virtual private network (VPN) connections in a performance enhanced network
US20040010620A1 (en) * 1999-11-10 2004-01-15 Randy Salo Secure remote access to enterprise networks employing enterprise gateway servers
US6683853B1 (en) * 1999-12-01 2004-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic upgrade of quality of service in a packet switched network
US20040025018A1 (en) * 2002-01-23 2004-02-05 Haas Zygmunt J. Secure end-to-end communication in mobile ad hoc networks
US20040057408A1 (en) * 2002-09-19 2004-03-25 Gray William H. Method and system of providing bandwidth on demand to WAN user from WLAN access point
US20040063451A1 (en) * 2002-09-27 2004-04-01 Bonta Jeffrey D. Relaying information within an ad-hoc cellular network
US20040068653A1 (en) * 2002-10-08 2004-04-08 Fascenda Anthony C. Shared network access using different access keys
US20040072593A1 (en) * 2002-10-10 2004-04-15 Robbins Barry R. Extension of a local area phone system to a wide area network
US20040077346A1 (en) * 2002-10-22 2004-04-22 Krenik William R. Wired control channel for supporting wireless communication in non-exclusive spectrum
US20040077354A1 (en) * 2002-10-21 2004-04-22 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Systems and methods for managing wireless communications using link space information
US20040116120A1 (en) * 2002-10-18 2004-06-17 Gallagher Michael D. Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US20040147077A1 (en) * 1997-04-10 2004-07-29 Kozo Watanabe Semiconductor integrated circuitry and method for manufacturing the circuitry
US6842621B2 (en) * 2001-12-21 2005-01-11 Motorola, Inc. Method and apparatus for splitting control and media content from a cellular network connection
US6850503B2 (en) * 2002-08-06 2005-02-01 Motorola, Inc. Method and apparatus for effecting a handoff between two IP connections for time critical communications
US6853851B1 (en) * 1998-03-18 2005-02-08 Nokia Mobile Phones Limited Dual mode terminal for accessing a cellular network directly or via a wireless intranet
US20050070288A1 (en) * 2003-09-29 2005-03-31 Motorola, Inc. Handover method and apparatus
US6910074B1 (en) * 2000-07-24 2005-06-21 Nortel Networks Limited System and method for service session management in an IP centric distributed network
US6925074B1 (en) * 2000-11-17 2005-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Mobile communication network
US20050239441A1 (en) * 2004-04-26 2005-10-27 Pasi Eronen Subscriber authentication for unlicensed mobile access signaling
US20050239453A1 (en) * 2000-11-22 2005-10-27 Vikberg Jari T Mobile communication network
US20060019667A1 (en) * 2003-06-06 2006-01-26 Hicks John A Iii System and method for providing integrated voice and data services utilizing wired cordless access with unlicensed spectrum and wired access with licensed spectrum
US6993359B1 (en) * 2000-04-28 2006-01-31 Cisco Technology, Inc. Method and apparatus for inter-cell handover in wireless networks using multiple protocols
US7028186B1 (en) * 2000-02-11 2006-04-11 Nokia, Inc. Key management methods for wireless LANs
US7039025B1 (en) * 2000-09-29 2006-05-02 Siemens Communications, Inc. System and method for providing general packet radio services in a private wireless network
US20060094416A1 (en) * 2003-10-21 2006-05-04 Anritsu Corporation Mobile communication terminal test system capable of visually recognizing communication condition and response signal
US20060094431A1 (en) * 2004-11-01 2006-05-04 Nokia Corporation Method, system and mobile station for handing off communications from a cellular radio access network to an unlicensed mobile access network
US20060111113A1 (en) * 2002-10-17 2006-05-25 Heikki Waris Virtual private network with mobile nodes
US7065353B1 (en) * 1998-06-23 2006-06-20 Siemens Aktiengesellschaft Method for controlling the handover of telecommunication connections between mobile parts and base stations in cellular telecommunications systems having wireless telecommunication
US20060166687A1 (en) * 2002-09-26 2006-07-27 Lars Edman Direct cellular communication
US20060209799A1 (en) * 2005-02-09 2006-09-21 Gallagher Michael D Unlicensed mobile access network (UMAN) system and method
US20070041360A1 (en) * 2005-08-10 2007-02-22 Gallagher Michael D Mechanisms to extend UMA or GAN to inter-work with UMTS core network
US7200112B2 (en) * 2002-01-02 2007-04-03 Winphoria Networks, Inc. Method, system, and apparatus for a mobile station to sense and select a wireless local area network (WLAN) or a wide area mobile wireless network (WWAN)
US7231046B1 (en) * 1998-12-16 2007-06-12 Nokia Corporation Method for controlling connections to a mobile station
US20070242672A1 (en) * 2006-04-18 2007-10-18 Mark Grayson Unlicensed mobile access (UMA) communications using decentralized security gateway
US20080043669A1 (en) * 2006-07-14 2008-02-21 Gallagher Michael D Generic Access to the Iu Interface
US20080102801A1 (en) * 2003-01-16 2008-05-01 Mihal Lazaridis System and method of exchanging identification information for mobile stations
US20080130568A1 (en) * 2002-10-18 2008-06-05 Gallagher Michael D Channel activation messaging in an unlicensed mobile access telecommunications system
US7389412B2 (en) * 2001-08-10 2008-06-17 Interactive Technology Limited Of Hk System and method for secure network roaming
US20080181204A1 (en) * 2006-07-14 2008-07-31 Gallagher Michael D Method and Apparatus for Activating Transport Channels in a Packet Switched Communication System
US7420964B2 (en) * 2000-12-15 2008-09-02 Nokia Corporation Arranging packet data connections in office system
US7474655B2 (en) * 2004-09-06 2009-01-06 International Business Machines Corporation Restricting communication service

Family Cites Families (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8802229D0 (en) 1988-06-14 1988-06-14 Ericsson Telefon Ab L M MOBILE RADIO STATION PROCEDURE
US5367558A (en) 1988-09-23 1994-11-22 Motorola, Inc. Cellular cordless telephone
US5101501A (en) 1989-11-07 1992-03-31 Qualcomm Incorporated Method and system for providing a soft handoff in communications in a cdma cellular telephone system
SE465992B (en) 1990-04-10 1991-11-25 Ericsson Telefon Ab L M MOBILE PHONE SYSTEM PROVIDED TO USE BY SUBSCRIBERS INDOOR AND OUTDOOR
US6359872B1 (en) 1997-10-28 2002-03-19 Intermec Ip Corp. Wireless personal local area network
GB2246490A (en) 1990-07-23 1992-01-29 Philips Electronic Associated Fdm-tdd cordless telephone system measures channel quality for handover
JPH0494228A (en) 1990-08-09 1992-03-26 Matsushita Electric Ind Co Ltd Dynamic channel allocation method
WO1992004796A1 (en) 1990-09-04 1992-03-19 Motorola, Inc. Cordless telephone system for residential, business and public telepoint operation
US5887020A (en) 1991-05-13 1999-03-23 Omnipoint Corporation Multi-band, multi-mode spread-spectrum communication system
US5815525A (en) 1991-05-13 1998-09-29 Omnipoint Corporation Multi-band, multi-mode spread-spectrum communication system
US5260988A (en) 1992-02-06 1993-11-09 Motorola, Inc. Apparatus and method for alternative radiotelephone system selection
US5353331A (en) 1992-03-05 1994-10-04 Bell Atlantic Network Services, Inc. Personal communications service using wireline/wireless integration
US5267261A (en) 1992-03-05 1993-11-30 Qualcomm Incorporated Mobile station assisted soft handoff in a CDMA cellular communications system
SE470036B (en) 1992-03-24 1993-10-25 Ericsson Telefon Ab L M Method of locating a mobile station in a mobile telephone system
US5448619A (en) 1992-04-14 1995-09-05 Orion Industries, Inc. Apparatus and a method of allowing private cellular operation within an existing public cellular system
US5226045A (en) 1992-05-07 1993-07-06 Bell Communications Research, Inc. Method and apparatus for autonomous selective routing during radio access in TDMA portable radio systems
WO1994000946A1 (en) 1992-06-23 1994-01-06 Motorola Inc. Dual system cellular cordless radiotelephone apparatus with sub-data channel timing monitor
EP0657077A4 (en) 1992-08-25 1999-02-24 Motorola Inc Method and apparatus for performing a hand-off in a wireless communication system.
US5870677A (en) 1992-10-05 1999-02-09 Ntt Mobile Communications Network Inc. Private mobile communication system easily connecting portable or mobile radio telephone equipment to public network
SE516173C2 (en) 1993-02-16 2001-11-26 Ericsson Telefon Ab L M Device for telecommunications
US5796727A (en) 1993-04-30 1998-08-18 International Business Machines Corporation Wide-area wireless lan access
US5507035A (en) 1993-04-30 1996-04-09 International Business Machines Corporation Diversity transmission strategy in mobile/indoor cellula radio communications
GB2282735B (en) 1993-06-04 1998-11-18 Mercury Personal Communication Autorouting system for mobile telephones
SE518649C2 (en) 1993-06-22 2002-11-05 Ericsson Telefon Ab L M Procedure for telecommunications access in a multi-network environment
US5406615A (en) 1993-08-04 1995-04-11 At&T Corp. Multi-band wireless radiotelephone operative in a plurality of air interface of differing wireless communications systems
US5390233A (en) 1993-08-31 1995-02-14 At&T Corp. Telephone call transfer between a wireless and wired telephone
JPH07154859A (en) 1993-11-29 1995-06-16 Mitsubishi Electric Corp Mobile equipment, switchboard and mobile communication system
US5673307A (en) 1994-02-17 1997-09-30 Spectralink Corporation Handoff method for indoor cellular phone system
US5594782A (en) 1994-02-24 1997-01-14 Gte Mobile Communications Service Corporation Multiple mode personal wireless communications system
JP3093273B2 (en) 1994-05-06 2000-10-03 モトローラ・インコーポレーテッド Call routing system for wireless data devices
JPH089042A (en) 1994-06-24 1996-01-12 Matsushita Electric Ind Co Ltd Radio telephone system
US5602903A (en) 1994-09-28 1997-02-11 Us West Technologies, Inc. Positioning system and method
US5825759A (en) 1994-10-26 1998-10-20 Telefonaktiebolaget Lm Ericsson Distributing network services and resources in a mobile communications network
US5592533A (en) 1994-12-23 1997-01-07 Bell Atlantic Mobile Systems, Inc. Personal communication service registration system and method
US5475677A (en) 1994-12-29 1995-12-12 Bell Communications Research Inc. Compatible licensed and unlicensed band portable handset unit for TDMA wireless communications system
JPH08307937A (en) 1995-04-28 1996-11-22 Sony Corp Radio communication system and its communication terminal equipment
JPH10506775A (en) 1995-05-31 1998-06-30 ジーメンス アクティエンゲゼルシャフト Cellular wireless communication system
JP3123900B2 (en) 1995-06-30 2001-01-15 三洋電機株式会社 Digital cordless telephone equipment
US5890055A (en) 1995-07-28 1999-03-30 Lucent Technologies Inc. Method and system for connecting cells and microcells in a wireless communications network
US5926760A (en) 1995-07-31 1999-07-20 Lucent Technologies, Inc. System for providing features for a land-line supported private base station operable in a cellular system
US5745852A (en) 1995-07-31 1998-04-28 Lucent Technologies Land-line supported private base station operable in a cellular system
US5724658A (en) 1995-08-21 1998-03-03 Mci Communications Corporation Call routing to wireless roamers in mobile telecommunication systems
JPH0984095A (en) 1995-09-08 1997-03-28 Sony Corp Mobile communication equipment, stationary communication equipment, communication system and communication method
US5675629A (en) 1995-09-08 1997-10-07 At&T Cordless cellular system base station
US5903834A (en) 1995-10-06 1999-05-11 Telefonaktiebolaget L/M Ericsson Distributed indoor digital multiple-access cellular telephone system
US5732076A (en) 1995-10-26 1998-03-24 Omnipoint Corporation Coexisting communication systems
US6134227A (en) 1995-12-04 2000-10-17 Advanced Micro Devices Secondary channel for radio frequency communications
WO1997024004A1 (en) 1995-12-22 1997-07-03 Mci Communications Corporation Integrated cellular and wireline telephone service
US6658250B1 (en) 1996-01-05 2003-12-02 Hughes Electronics Corporation System and method for a wide area wireless personal communication system incorporating advanced messaging
US5822681A (en) 1996-01-24 1998-10-13 Bell Communications Research, Inc. Method for assigning band port channels in an unlicensed personal communications system
GB2310342A (en) 1996-02-16 1997-08-20 Northern Telecom Ltd Dual mode radio transceiver front end
US5890064A (en) 1996-03-13 1999-03-30 Telefonaktiebolaget L M Ericsson (Publ) Mobile telecommunications network having integrated wireless office system
US6167279A (en) 1996-03-13 2000-12-26 Telcordia Technologies, Inc. Method and system for supporting PACS using a GSM mobile switching center
US5796729A (en) 1996-05-09 1998-08-18 Bell Communications Research, Inc. Integrated telecommunication system architecture for wireless and wireline access featuring PACS radio technology
DE69728079T2 (en) 1996-05-03 2005-01-20 Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto Method and device for tracking the change of the identification code in a mobile communication system
JP2877199B2 (en) 1996-06-21 1999-03-31 日本電気株式会社 Roaming method
US6035193A (en) 1996-06-28 2000-03-07 At&T Wireless Services Inc. Telephone system having land-line-supported private base station switchable into cellular network
US6088591A (en) 1996-06-28 2000-07-11 Aironet Wireless Communications, Inc. Cellular system hand-off protocol
JPH1032610A (en) 1996-07-12 1998-02-03 Nec Corp Virtual private network constituting method in mobile data communication
US6101176A (en) 1996-07-24 2000-08-08 Nokia Mobile Phones Method and apparatus for operating an indoor CDMA telecommunications system
US6112088A (en) 1996-08-30 2000-08-29 Telefonaktiebolaget, L.M. Ericsson Radio communications system and method for mobile assisted handover between a private network and a public mobile network
US5936949A (en) 1996-09-05 1999-08-10 Netro Corporation Wireless ATM metropolitan area network
US5946622A (en) 1996-11-19 1999-08-31 Ericsson Inc. Method and apparatus for providing cellular telephone service to a macro-cell and pico-cell within a building using shared equipment
FI106605B (en) 1997-04-16 2001-02-28 Nokia Networks Oy authentication method
US6327470B1 (en) 1997-11-07 2001-12-04 Ericsson Inc. Handover between fixed and mobile networks for dual mode phones
US6587444B1 (en) 1997-11-14 2003-07-01 Ericsson Inc. Fixed frequency-time division duplex in radio communications systems
DE69904146T2 (en) 1998-02-02 2003-05-08 Ericsson Inc SECTORIZATION FOR AREA COVERAGE IN A COMMUNICATION SYSTEM WITH TIME MULTIPLEXING AND FREQUENCY TIME DUPLEX
DE69817145T2 (en) 1998-02-13 2004-06-09 Lucent Technologies Inc. Integrated system of cordless telecommunications and a local network
US6269086B1 (en) 1998-02-27 2001-07-31 Legerity, Inc. Arrangement and method for selectable time/frequency division multiplex communication
US5949773A (en) 1998-03-31 1999-09-07 Motorola, Inc. Method for transferring a data signal in a wireless communications system
SE514190C2 (en) 1998-04-09 2001-01-22 Ericsson Telefon Ab L M Procedure and arrangement of a communication system
FI108103B (en) 1998-04-15 2001-11-15 Nokia Mobile Phones Ltd Intermediary level for implementing protocol adaptations in a digital wireless communication system
US6463307B1 (en) 1998-08-14 2002-10-08 Telefonaktiebolaget Lm Ericsson Method and apparatus for power saving in a mobile terminal with established connections
US6320873B1 (en) 1998-08-27 2001-11-20 Qualcomm Incorporated CDMA transmission of packet-switched data
US6263211B1 (en) 1998-09-24 2001-07-17 Telefonaktiebolaget L M Ericsson (Publ) System and method of automatically conveying a Wireless Office System (WOS) frequency set to mobile stations
US6539237B1 (en) 1998-11-09 2003-03-25 Cisco Technology, Inc. Method and apparatus for integrated wireless communications in private and public network environments
WO2000028762A1 (en) 1998-11-09 2000-05-18 Nortel Networks Corporation System and method for controlling, maintaining and sharing calls and call data between networks
ATE505047T1 (en) 1998-12-08 2011-04-15 British Telecomm METHOD FOR OPERATING A CELLULAR MOBILE TELEPHONE NETWORK WITH A SUBSET OF BASE STATIONS WHICH ARE ACCESSIBLE ONLY TO SOME SUBSCRIBERS
US6236852B1 (en) 1998-12-11 2001-05-22 Nortel Networks Limited Authentication failure trigger method and apparatus
US6243581B1 (en) 1998-12-11 2001-06-05 Nortel Networks Limited Method and system for seamless roaming between wireless communication networks with a mobile terminal
US6842462B1 (en) 1998-12-18 2005-01-11 Lucent Technologies Inc. Wireless access of packet based networks
US6374102B1 (en) 1998-12-31 2002-04-16 At+T Corp. User proactive call handling
US6415158B1 (en) 1999-02-01 2002-07-02 Lucent Technologies Inc. Dual mode mobile phone operating as a two-way radio
CN1348664A (en) 1999-02-24 2002-05-08 诺基亚移动电话有限公司 Telecommunication services identification in a gateway
US6498934B1 (en) 1999-03-24 2002-12-24 Telefonaktiebologet Lm Ericsson (Publ) Channel allocation using enhanced pathloss estimates
GB2348778A (en) 1999-04-08 2000-10-11 Ericsson Telefon Ab L M Authentication in mobile internet access
SE514264C2 (en) 1999-05-07 2001-01-29 Ericsson Telefon Ab L M A communication system
US6947469B2 (en) 1999-05-07 2005-09-20 Intel Corporation Method and Apparatus for wireless spread spectrum communication with preamble processing period
US6574266B1 (en) 1999-06-25 2003-06-03 Telefonaktiebolaget Lm Ericsson (Publ) Base-station-assisted terminal-to-terminal connection setup
AU5283799A (en) 1999-07-15 2001-02-05 Nokia Corporation Method and network element for establishing a connection to local service
US6643512B1 (en) 1999-09-14 2003-11-04 Motorola, Inc. Method and apparatus for spanning operation of a cellular telephone
US6909705B1 (en) 1999-11-02 2005-06-21 Cello Partnership Integrating wireless local loop networks with cellular networks
EP1143758B1 (en) 1999-11-09 2006-03-22 Sony Corporation Information transmission system and method
US6445921B1 (en) 1999-12-20 2002-09-03 Koninklijke Philips Electronics N.V. Call re-establishment for a dual mode telephone
US20010029186A1 (en) 2000-01-24 2001-10-11 James Canyon Massively parallel cordless telephone network
GB2358771B (en) 2000-01-27 2003-08-06 Phillip Jarrett Multi-purpose mobile cordless phone system
US6556825B1 (en) 2000-02-08 2003-04-29 Sharp Laboratories Of America, Inc. Method and apparatus for automatic adaptation of communications systems to regional spectrum variations
US6665276B1 (en) 2000-02-24 2003-12-16 The United States Of America As Represented By The Secretary Of The Navy Full duplex transceiver
FI109443B (en) 2000-03-16 2002-07-31 Nokia Corp Updating subscriber data
US6801519B1 (en) 2000-04-11 2004-10-05 Sprint Communications Company, L.P. Traffic distribution in a wireless communication system
US6766160B1 (en) 2000-04-11 2004-07-20 Nokia Corporation Apparatus, and associated method, for facilitating authentication of communication stations in a mobile communication system
US6714797B1 (en) 2000-05-17 2004-03-30 Nokia Corporation System and method for the transfer of digital data to a mobile device
US6680923B1 (en) 2000-05-23 2004-01-20 Calypso Wireless, Inc. Communication system and method
KR100362569B1 (en) 2000-05-24 2002-11-29 삼성전자 주식회사 Call originating service method of public and private common mobile communication system and apparatus therefor
US6725036B1 (en) 2000-05-30 2004-04-20 Nokia Telecommunications Ojy System and method of controlling application level access of a subscriber to a network
US6970719B1 (en) 2000-06-15 2005-11-29 Sprint Spectrum L.P. Private wireless network integrated with public wireless network
US7099339B1 (en) 2000-06-22 2006-08-29 Nokia Corporation Apparatus, and associated method, for integrating operation of packet radio communication systems
GB0015715D0 (en) 2000-06-27 2000-08-16 Nokia Networks Oy Maintaining association in a communications network
US6633761B1 (en) 2000-08-11 2003-10-14 Reefedge, Inc. Enabling seamless user mobility in a short-range wireless networking environment
US6545643B1 (en) 2000-09-08 2003-04-08 3Com Corporation Extendable planar diversity antenna
JP2002124916A (en) 2000-10-13 2002-04-26 Nec Corp Point-to-multipoint radio access system
TW532040B (en) 2000-10-20 2003-05-11 Koninkl Philips Electronics Nv Method and system for transferring a communication session
US6895255B1 (en) 2000-10-20 2005-05-17 Symbol Technologies, Inc. Dual mode wireless data communications
US7035932B1 (en) 2000-10-27 2006-04-25 Eric Morgan Dowling Federated multiprotocol communication
US6829227B1 (en) 2000-10-27 2004-12-07 Lucent Technologies Inc. Dual polling media access control protocol for packet data in fixed wireless communication systems
AU2002239249A1 (en) 2000-11-13 2002-06-03 Ecutel, Inc System and method for secure network mobility
WO2002045456A1 (en) 2000-11-28 2002-06-06 Telefonaktiebolaget Lm Ericsson (Publ) Release of user equipment using a page procedure in a cellular communication system
US7039027B2 (en) 2000-12-28 2006-05-02 Symbol Technologies, Inc. Automatic and seamless vertical roaming between wireless local area network (WLAN) and wireless wide area network (WWAN) while maintaining an active voice or streaming data connection: systems, methods and program products
NO20006720L (en) 2000-12-29 2002-07-01 Ericsson Telefon Ab L M Procedure for maintaining connection in GPRS networks
US6885869B2 (en) 2001-01-26 2005-04-26 Ericsson Inc. Method for mating a mobile terminal with a cordless phone system
DE60131572T2 (en) 2001-02-06 2008-10-23 Nokia Corp. ACCESS SYSTEM FOR A CELLULAR NETWORK
US6675009B1 (en) 2001-02-15 2004-01-06 Sprint Communications Company, L.P. Automated configuration of a wireless communication device
US20020118674A1 (en) 2001-02-23 2002-08-29 Faccin Stefano M. Key distribution mechanism for IP environment
US7308263B2 (en) 2001-02-26 2007-12-11 Kineto Wireless, Inc. Apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system
US6922559B2 (en) 2001-02-26 2005-07-26 Kineto Wireless, Inc. Unlicensed wireless communications base station to facilitate unlicensed and licensed wireless communications with a subscriber device, and method of operation
US20040009749A1 (en) 2001-03-20 2004-01-15 Nitzan Arazi Wireless private branch exchange(wpbx) and communicating between mobile units and base stations
US6941152B2 (en) 2001-04-24 2005-09-06 Ipr Licensing, Inc. Wireless subscriber network registration system for configurable services
US20020160811A1 (en) 2001-04-25 2002-10-31 Jannette Michele Ann Radius profiles at a base station and methods of using the radius profiles
US6845095B2 (en) 2001-04-27 2005-01-18 Telefonaktiebolaget Lm Ericsson (Publ) Efficient header handling involving GSM/EDGE radio access networks
US7089586B2 (en) 2001-05-02 2006-08-08 Ipr Licensing, Inc. Firewall protection for wireless users
US6826154B2 (en) 2001-05-24 2004-11-30 3Com Corporation Method and apparatus for seamless mobility between different access technologies
US7009952B1 (en) 2001-05-24 2006-03-07 3Com Corporation Method and apparatus for seamless mobility with layer two assistance
EP1405475A4 (en) 2001-06-18 2008-07-23 Tatara Systems Inc Method and apparatus for converging local area and wide area wireless data networks
US20020197984A1 (en) 2001-06-22 2002-12-26 Tadlys Ltd. Flexible wireless local networks
US20040003060A1 (en) 2001-07-13 2004-01-01 International Business Machines Corporation Method and apparatus for network connection registration and selection
US20030031151A1 (en) 2001-08-10 2003-02-13 Mukesh Sharma System and method for secure roaming in wireless local area networks
US20030043773A1 (en) 2001-08-31 2003-03-06 Hyokang Chang Multilink wireless access scheme for multiband operation in wireless mobile networks
US7184789B2 (en) 2001-10-03 2007-02-27 Qualcomm, Incorporated Method and apparatus for data packet transport in a wireless communication system using an internet protocol
US6744753B2 (en) 2001-11-01 2004-06-01 Nokia Corporation Local service handover
GB2382502B (en) 2001-11-23 2005-10-19 Actix Ltd Network testing systems
US6801777B2 (en) 2001-11-27 2004-10-05 Intel Corporation Device and method for intelligent wireless communication selection
US20030139180A1 (en) 2002-01-24 2003-07-24 Mcintosh Chris P. Private cellular network with a public network interface and a wireless local area network extension
US6973086B2 (en) 2002-01-28 2005-12-06 Nokia Corporation Method and system for securing mobile IPv6 home address option using ingress filtering
US20030193952A1 (en) 2002-02-04 2003-10-16 O'neill Alan Mobile node handoff methods and apparatus
FI113329B (en) 2002-02-15 2004-03-31 Validitas Oy A device for testing a packet switched cellular radio network
JP3697217B2 (en) 2002-03-08 2005-09-21 キヤノン株式会社 Image forming apparatus
US7233791B2 (en) 2002-04-02 2007-06-19 X-Cyte, Inc. Cell phone feature for downloading information via a telecommunications network
KR100465208B1 (en) 2002-04-02 2005-01-13 조광선 System, Apparatus, and Method for Wireless Mobile Communication in association with Mobile AD-HOC Network Support
US7623497B2 (en) 2002-04-15 2009-11-24 Qualcomm, Incorporated Methods and apparatus for extending mobile IP
US7400903B2 (en) 2002-04-16 2008-07-15 Texas Instruments Incorporated Wireless communications system using both licensed and unlicensed frequency bands
EP1498000B1 (en) 2002-04-24 2007-06-13 Telefonaktiebolaget LM Ericsson (publ) Bypassing transcoding operations in a communication network
US6937605B2 (en) 2002-05-21 2005-08-30 Nokia Corporation Wireless gateway, and associated method, for a packet radio communication system
US7529933B2 (en) 2002-05-30 2009-05-05 Microsoft Corporation TLS tunneling
KR100453350B1 (en) * 2002-06-17 2004-10-15 엘지전자 주식회사 Routing Device and Method of Using BICC in the Next Generation Open Network
AU2003245633A1 (en) 2002-06-21 2004-01-06 Thomson Licensing S.A. Registration of a wlan as a umts routing area for wlan-umts interworking
US20030235186A1 (en) 2002-06-25 2003-12-25 Park Sang Gyu Internet cordless phone
US7212537B2 (en) 2002-07-10 2007-05-01 Samsung Electronics Co., Ltd. Apparatus and method for recovering communication sessions in a wireless network gateway
US20040037312A1 (en) 2002-08-23 2004-02-26 Spear Stephen L. Method and communication network for operating a cross coding element
US7006481B2 (en) 2002-10-10 2006-02-28 Interdigital Technology Corporation System and method for integrating WLAN and 3G
US7873015B2 (en) 2002-10-18 2011-01-18 Kineto Wireless, Inc. Method and system for registering an unlicensed mobile access subscriber with a network controller
US7634269B2 (en) 2002-10-18 2009-12-15 Kineto Wireless, Inc. Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7606190B2 (en) 2002-10-18 2009-10-20 Kineto Wireless, Inc. Apparatus and messages for interworking between unlicensed access network and GPRS network for data services
US7953423B2 (en) 2002-10-18 2011-05-31 Kineto Wireless, Inc. Messaging in an unlicensed mobile access telecommunications system
US7640008B2 (en) 2002-10-18 2009-12-29 Kineto Wireless, Inc. Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7349698B2 (en) 2002-10-18 2008-03-25 Kineto Wireless, Inc. Registration messaging in an unlicensed mobile access telecommunications system
US7369859B2 (en) 2003-10-17 2008-05-06 Kineto Wireless, Inc. Method and system for determining the location of an unlicensed mobile access subscriber
US7565145B2 (en) 2002-10-18 2009-07-21 Kineto Wireless, Inc. Handover messaging in an unlicensed mobile access telecommunications system
US20040203737A1 (en) 2002-10-24 2004-10-14 John Myhre System and method for delivering data services in integrated wireless networks
US20040203800A1 (en) 2002-10-24 2004-10-14 John Myhre System and method for content delivery using alternate data paths in a wireless network
US20040203346A1 (en) 2002-10-24 2004-10-14 John Myhre System and method for integrating local-area and wide-area wireless networks
KR100735225B1 (en) 2003-07-12 2007-07-03 삼성전자주식회사 Method for Managing Vocoder Resource in a Mobile Communication System
US20070293222A1 (en) 2004-02-18 2007-12-20 Vikberg Jari T Mobile Communications With Unlicensed-Radio Access Networks
WO2005107297A1 (en) 2004-04-21 2005-11-10 Kineto Wireless, Inc. A method and system for signaling traffic and media types within a communications network switching system
US8041385B2 (en) 2004-05-14 2011-10-18 Kineto Wireless, Inc. Power management mechanism for unlicensed wireless communication systems
US20060098598A1 (en) 2004-11-10 2006-05-11 Michael Gallagher Seamless transitions of active calls between enterprise telecommunications networks and licensed public telecommunications networks
US8380167B2 (en) 2005-05-10 2013-02-19 Network Equipment Technologies, Inc. LAN-based UMA network controller with proxy connection
US7974270B2 (en) 2005-09-09 2011-07-05 Kineto Wireless, Inc. Media route optimization in network communications
US7680478B2 (en) 2006-05-04 2010-03-16 Telefonaktiebolaget Lm Ericsson (Publ) Inactivity monitoring for different traffic or service classifications

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327578A (en) * 1990-09-10 1994-07-05 Motorola, Inc. Radio telephone system supporting automatic busy and out-of-range indications
US5333175A (en) * 1993-01-28 1994-07-26 Bell Communications Research, Inc. Method and apparatus for dynamic power control in TDMA portable radio systems
US5659598A (en) * 1993-10-08 1997-08-19 Nokia Telecommunications Oy Dual mode subscriber terminal and a handover procedure of the dual mode subscriber terminal in a mobile telecommunication network
US6229792B1 (en) * 1993-11-01 2001-05-08 Xircom, Inc. Spread spectrum communication system
US5515420A (en) * 1993-11-29 1996-05-07 Sanyo Electric Co. Ltd. Cordless telephone apparatus
US5488649A (en) * 1994-05-06 1996-01-30 Motorola, Inc. Method for validating a communication link
US5509052A (en) * 1994-05-25 1996-04-16 Motorola, Inc. Base storage of handset's base registrations
US5812522A (en) * 1995-03-31 1998-09-22 Airtouch Communications, Inc. Location-ruled radio-integrated network
US5822767A (en) * 1995-04-12 1998-10-13 Intel Corporation Method and apparartus for sharing a signal line between agents
US6415410B1 (en) * 1995-05-09 2002-07-02 Nokia Telecommunications Oy Sliding-window data flow control using an adjustable window size
US5862345A (en) * 1996-02-07 1999-01-19 Nec Corporation System for location multicasting and database management for mobile sessions in any computer subnetworks without using a home router of a home subnetwork
US6426819B1 (en) * 1996-03-22 2002-07-30 Wireless Communications Products, Llc Method and apparatus for cordless infrared communication
US6600925B1 (en) * 1996-05-02 2003-07-29 Detemobil Deutsche Telekom Mobilnet Gmbh Process for integrating cordless telephone networks into cellular mobile telephone networks
US5960361A (en) * 1996-10-22 1999-09-28 Qualcomm Incorporated Method and apparatus for performing a fast downward move in a cellular telephone forward link power control system
US5960364A (en) * 1996-11-08 1999-09-28 Ericsson Inc. Satellite/cellular phone using different channel spacings on forward and return links
US20040147077A1 (en) * 1997-04-10 2004-07-29 Kozo Watanabe Semiconductor integrated circuitry and method for manufacturing the circuitry
US5987010A (en) * 1997-05-15 1999-11-16 Advanced Micro Devices, Inc. System and method for providing FDD and TDD modes of operation for a wireless communications device
US5995500A (en) * 1997-07-18 1999-11-30 Telefonaktiebolaget Lm Ericsson Method and apparatus for direct communication between mobile stations
US6393007B1 (en) * 1997-10-16 2002-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Method of and a system for voice and data radio communication providing improved interference diversity
US20030003060A1 (en) * 1998-01-15 2003-01-02 Mcdaniels Pellom Method for lubricating and protecting the oral cavity
US20020065099A1 (en) * 1998-02-11 2002-05-30 Per Bjorndahl System, method and apparatus for secure transmission of confidential information
US6853851B1 (en) * 1998-03-18 2005-02-08 Nokia Mobile Phones Limited Dual mode terminal for accessing a cellular network directly or via a wireless intranet
US6438383B1 (en) * 1998-03-20 2002-08-20 Telefonaktiebolaget Lm Ericsson (Publ) System and method relating to packet data communication
US7065353B1 (en) * 1998-06-23 2006-06-20 Siemens Aktiengesellschaft Method for controlling the handover of telecommunication connections between mobile parts and base stations in cellular telecommunications systems having wireless telecommunication
US7231046B1 (en) * 1998-12-16 2007-06-12 Nokia Corporation Method for controlling connections to a mobile station
US20020086682A1 (en) * 1999-05-05 2002-07-04 Siamak Naghian Method for positioning a mobile station
US6633614B1 (en) * 1999-09-15 2003-10-14 Telcordia Technologies, Inc. Multicarrier personal access communication system
US20040010620A1 (en) * 1999-11-10 2004-01-15 Randy Salo Secure remote access to enterprise networks employing enterprise gateway servers
US6957249B2 (en) * 1999-11-10 2005-10-18 Qualcomm, Inc. Secure remote access to enterprise networks employing enterprise gateway servers
US6683853B1 (en) * 1999-12-01 2004-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic upgrade of quality of service in a packet switched network
US20020077584A1 (en) * 1999-12-16 2002-06-20 Wei-Qi Lin Device and method for enhancing transdermal flux of agents being sampled
US7028186B1 (en) * 2000-02-11 2006-04-11 Nokia, Inc. Key management methods for wireless LANs
US20020147016A1 (en) * 2000-04-07 2002-10-10 Commil Ltd Was Filed In Parent Case Wireless private branch exchange (WPBX) and communicating between mobile units and base stations
US6993359B1 (en) * 2000-04-28 2006-01-31 Cisco Technology, Inc. Method and apparatus for inter-cell handover in wireless networks using multiple protocols
US6654610B1 (en) * 2000-05-05 2003-11-25 Lucent Technologies Inc. Two-way packet data protocol methods and apparatus for a mobile telecommunication system
US20020036983A1 (en) * 2000-05-22 2002-03-28 Ina Widegren Application influenced policy
US20020009199A1 (en) * 2000-06-30 2002-01-24 Juha Ala-Laurila Arranging data ciphering in a wireless telecommunication system
US6910074B1 (en) * 2000-07-24 2005-06-21 Nortel Networks Limited System and method for service session management in an IP centric distributed network
US7039025B1 (en) * 2000-09-29 2006-05-02 Siemens Communications, Inc. System and method for providing general packet radio services in a private wireless network
US20020051463A1 (en) * 2000-10-31 2002-05-02 Mamoru Higuchi Media communication system, and terminal apparatus and signal conversion apparatus in said system
US20020120749A1 (en) * 2000-11-06 2002-08-29 Widegren Ina B. Media binding to coordinate quality of service requirements for media flows in a multimedia session with IP bearer resources
US20020059516A1 (en) * 2000-11-16 2002-05-16 Esa Turtiainen Securing Voice over IP traffic
US20030176181A1 (en) * 2000-11-17 2003-09-18 Boesjes Eimar M. Distributed wireless online access system
US6925074B1 (en) * 2000-11-17 2005-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Mobile communication network
US20050239453A1 (en) * 2000-11-22 2005-10-27 Vikberg Jari T Mobile communication network
US20020101848A1 (en) * 2000-12-05 2002-08-01 Ivan Lee Systems and methods for on-location, wireless access of web content
US7420964B2 (en) * 2000-12-15 2008-09-02 Nokia Corporation Arranging packet data connections in office system
US20020075844A1 (en) * 2000-12-15 2002-06-20 Hagen W. Alexander Integrating public and private network resources for optimized broadband wireless access and method
US20020080797A1 (en) * 2000-12-23 2002-06-27 Lg Electronic, Inc. Method and system of relaying calls with a tone provision function in the next generation mobile communication network
US20020095599A1 (en) * 2001-01-12 2002-07-18 Hyungkeun Hong VoIP call control proxy
US20020147008A1 (en) * 2001-01-29 2002-10-10 Janne Kallio GSM Networks and solutions for providing seamless mobility between GSM Networks and different radio networks
US20020142761A1 (en) * 2001-02-01 2002-10-03 Wallstedt Yngve Kenneth Handoff between digital wireless office system (DWOS) radio-infrastructure units using a conference call
US20020114322A1 (en) * 2001-02-20 2002-08-22 Innomedia Pte Ltd. System and method for providing real time connectionless communication of media data through a firewall
US20020123325A1 (en) * 2001-03-01 2002-09-05 Cooper Gerald M. Method and apparatus for increasing the security of wireless data services
US20020131387A1 (en) * 2001-03-19 2002-09-19 Pitcher Gary J. Cellular system with cybercells
US20020143874A1 (en) * 2001-03-30 2002-10-03 Brian Marquette Media session framework using a control module to direct and manage application and service servers
US20020174335A1 (en) * 2001-03-30 2002-11-21 Junbiao Zhang IP-based AAA scheme for wireless LAN virtual operators
US20020150091A1 (en) * 2001-04-17 2002-10-17 Jussi Lopponen Packet mode speech communication
US20020161905A1 (en) * 2001-04-26 2002-10-31 Nokia Corporation IP security and mobile networking
US20020172209A1 (en) * 2001-05-18 2002-11-21 Masami Ohta Method of controlling change-over of connection route between media gateway apparatuses, and call agent apparatus
US20030007475A1 (en) * 2001-06-07 2003-01-09 Kabushiki Kaisha Toshiba Mobile terminal using priority processing for packets that require urgency in communications
US20030018480A1 (en) * 2001-07-19 2003-01-23 Ofir Mecayten Method and apparatus for transmitting voice over internet
US20030026269A1 (en) * 2001-07-31 2003-02-06 Paryani Harish P. System and method for accessing a multi-line gateway using cordless telephony terminals
US7389412B2 (en) * 2001-08-10 2008-06-17 Interactive Technology Limited Of Hk System and method for secure network roaming
US20030092445A1 (en) * 2001-11-15 2003-05-15 Nokia Corporation Method and apparatus for providing immediate ciphering after an inter-system UTRAN-GSM handover
US20030114158A1 (en) * 2001-12-18 2003-06-19 Lauri Soderbacka Intersystem handover of a mobile terminal
US6842621B2 (en) * 2001-12-21 2005-01-11 Motorola, Inc. Method and apparatus for splitting control and media content from a cellular network connection
US7200112B2 (en) * 2002-01-02 2007-04-03 Winphoria Networks, Inc. Method, system, and apparatus for a mobile station to sense and select a wireless local area network (WLAN) or a wide area mobile wireless network (WWAN)
US20040025018A1 (en) * 2002-01-23 2004-02-05 Haas Zygmunt J. Secure end-to-end communication in mobile ad hoc networks
US20030172264A1 (en) * 2002-01-28 2003-09-11 Hughes Electronics Method and system for providing security in performance enhanced network
US20030219022A1 (en) * 2002-01-28 2003-11-27 Hughes Electronics Method and system for utilizing virtual private network (VPN) connections in a performance enhanced network
US20030202486A1 (en) * 2002-04-29 2003-10-30 Hereuare Communications, Inc. Method and system for simulating multiple independent client devices in a wired or wireless network
US20030217132A1 (en) * 2002-05-16 2003-11-20 International Business Machines Corporation System and method for remotely managing a computer system by a wireless communications device
US6850503B2 (en) * 2002-08-06 2005-02-01 Motorola, Inc. Method and apparatus for effecting a handoff between two IP connections for time critical communications
US20040057408A1 (en) * 2002-09-19 2004-03-25 Gray William H. Method and system of providing bandwidth on demand to WAN user from WLAN access point
US20060166687A1 (en) * 2002-09-26 2006-07-27 Lars Edman Direct cellular communication
US20040063451A1 (en) * 2002-09-27 2004-04-01 Bonta Jeffrey D. Relaying information within an ad-hoc cellular network
US20040068653A1 (en) * 2002-10-08 2004-04-08 Fascenda Anthony C. Shared network access using different access keys
US20040072593A1 (en) * 2002-10-10 2004-04-15 Robbins Barry R. Extension of a local area phone system to a wide area network
US20060111113A1 (en) * 2002-10-17 2006-05-25 Heikki Waris Virtual private network with mobile nodes
US7245916B2 (en) * 2002-10-18 2007-07-17 Kineto Wireless, Inc. Radio resources messaging in an unlicensed wireless communication system
US20090082012A1 (en) * 2002-10-18 2009-03-26 Gallagher Michael D Mobile station messaging for registration in an unlicensed wireless communication system
US20040116120A1 (en) * 2002-10-18 2004-06-17 Gallagher Michael D. Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US20080130568A1 (en) * 2002-10-18 2008-06-05 Gallagher Michael D Channel activation messaging in an unlicensed mobile access telecommunications system
US7283821B2 (en) * 2002-10-18 2007-10-16 Kineto Wireless, Inc. Radio resources messaging for a mobile station in an unlicensed wireless communication system
US20040077354A1 (en) * 2002-10-21 2004-04-22 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Systems and methods for managing wireless communications using link space information
US20040077346A1 (en) * 2002-10-22 2004-04-22 Krenik William R. Wired control channel for supporting wireless communication in non-exclusive spectrum
US20080102801A1 (en) * 2003-01-16 2008-05-01 Mihal Lazaridis System and method of exchanging identification information for mobile stations
US20060019667A1 (en) * 2003-06-06 2006-01-26 Hicks John A Iii System and method for providing integrated voice and data services utilizing wired cordless access with unlicensed spectrum and wired access with licensed spectrum
US20050070288A1 (en) * 2003-09-29 2005-03-31 Motorola, Inc. Handover method and apparatus
US20060094416A1 (en) * 2003-10-21 2006-05-04 Anritsu Corporation Mobile communication terminal test system capable of visually recognizing communication condition and response signal
US20050239441A1 (en) * 2004-04-26 2005-10-27 Pasi Eronen Subscriber authentication for unlicensed mobile access signaling
US7474655B2 (en) * 2004-09-06 2009-01-06 International Business Machines Corporation Restricting communication service
US20060094431A1 (en) * 2004-11-01 2006-05-04 Nokia Corporation Method, system and mobile station for handing off communications from a cellular radio access network to an unlicensed mobile access network
US20060209799A1 (en) * 2005-02-09 2006-09-21 Gallagher Michael D Unlicensed mobile access network (UMAN) system and method
US20070041360A1 (en) * 2005-08-10 2007-02-22 Gallagher Michael D Mechanisms to extend UMA or GAN to inter-work with UMTS core network
US20070242672A1 (en) * 2006-04-18 2007-10-18 Mark Grayson Unlicensed mobile access (UMA) communications using decentralized security gateway
US20080181204A1 (en) * 2006-07-14 2008-07-31 Gallagher Michael D Method and Apparatus for Activating Transport Channels in a Packet Switched Communication System
US20080043669A1 (en) * 2006-07-14 2008-02-21 Gallagher Michael D Generic Access to the Iu Interface

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8954029B2 (en) * 2005-07-18 2015-02-10 Telecommunication Systems, Inc. Integrated services user part (ISUP)/ session initiation protocol (SIP) gateway for unlicensed mobile access (UMA) emergency services call flow
US20130303196A1 (en) * 2005-07-18 2013-11-14 Telecommunication Systems, Inc. Integrated Services User Part (ISUP)/ Session Initiation Protocol (SIP) Gateway for Unlicensed Mobile Access (UMA) Emergency Services Call Flow
US8315624B2 (en) * 2005-12-30 2012-11-20 Vtech Telecommunications Limited System and method for communicating over a data network or the PSTN using a hybrid cordless telephone device
US20070167156A1 (en) * 2005-12-30 2007-07-19 Sukhdeep Hundal System and method for communicating over a data network or the PSTN using a hybrid cordless telephone device
US20080096553A1 (en) * 2006-10-20 2008-04-24 Sonus Networks, Inc. Mobile communication network
US20100056152A1 (en) * 2007-03-13 2010-03-04 France Telecom Method of dynamically controlling the number of data streams traveling through a network architecture
US8937857B2 (en) * 2007-03-13 2015-01-20 Orange Method of dynamically controlling the number of data streams traveling through a network architecture
US20100284369A1 (en) * 2007-11-23 2010-11-11 Zte Corporation Optimization method of multiple service flows operation for WiMAX system
US8254334B2 (en) * 2007-11-23 2012-08-28 Zte Corporation Optimization method of multiple service flows operation for WiMAX system
US9439109B2 (en) * 2007-12-20 2016-09-06 Telefonaktiebolaget Lm Ericsson (Publ) Assignment and handover in a radio communication network
US10645620B2 (en) * 2007-12-20 2020-05-05 Telefonaktiebolaget Lm Ericsson (Publ) Assignment and handover in a radio communication network
US20110051682A1 (en) * 2007-12-20 2011-03-03 Dirk Kampmann Assignment and Handover in a Radio Communication Network
US10075884B2 (en) 2007-12-20 2018-09-11 Telefonaktiebolaget Lm Ericsson (Publ) Assignment and handover in a radio communication network
US8213431B2 (en) * 2008-01-18 2012-07-03 The Boeing Company System and method for enabling wireless real time applications over a wide area network in high signal intermittence environments
US20090185513A1 (en) * 2008-01-18 2009-07-23 Fleischman Eric W System and method for enabling wireless real time applications over a wide area network in high signal intermittence environments
US20110128967A1 (en) * 2008-08-11 2011-06-02 Nokia Siemens Networks Oy System, method, program element and computer-accessible medium for forwarding media control messages
US20100235516A1 (en) * 2009-03-11 2010-09-16 Hitachi, Ltd. Communication system and server
US9485281B2 (en) 2009-03-11 2016-11-01 Hitachi, Ltd. Communication system and server
US8706892B2 (en) * 2009-03-11 2014-04-22 Hitachi, Ltd. Communication system and server
US9654371B2 (en) * 2009-10-22 2017-05-16 Nokia Solutions And Networks Oy Determination of system performance parameters in heterogeneous network environments
US20120269082A1 (en) * 2009-10-22 2012-10-25 Nokia Siemens Networks Oy Determination of system performance parameters in heterogeneous network environments

Also Published As

Publication number Publication date
US7957348B1 (en) 2011-06-07

Similar Documents

Publication Publication Date Title
US7957348B1 (en) Method and system for signaling traffic and media types within a communications network switching system
WO2005107297A1 (en) A method and system for signaling traffic and media types within a communications network switching system
US7974270B2 (en) Media route optimization in network communications
US7171205B2 (en) Architecture of an unlicensed wireless communication system with a generic access point
EP1741238B1 (en) A method and system for registering an unlicensed mobile access subscriber with a network controller
EP2271173A1 (en) Messages for interworking between unlicensed access network and GPRS network to faciliate data services
US20110143756A1 (en) Method and system for registering an unlicensed mobile access subscriber with a network controller
US7089011B1 (en) Method and system for selective call routing for transcoder free operation
US8059663B1 (en) Gateway-based system and method for tandem free operation

Legal Events

Date Code Title Description
AS Assignment

Owner name: KINETO WIRELESS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GALLAGHER, MICHAEL D.;GOEL, PUNEET;MARKOVIC, MILAN;SIGNING DATES FROM 20050711 TO 20050718;REEL/FRAME:016911/0179

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: BUSINESS DEVELOPMENT CORPORATION OF AMERICA, AS AD

Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN INTELLECTUAL PROPERTY;ASSIGNOR:KINETO WIRELESS, LLC;REEL/FRAME:033492/0826

Effective date: 20140731

AS Assignment

Owner name: KINETO WIRELESS, LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:KINETO WIRELESS, INC.;REEL/FRAME:033809/0952

Effective date: 20140731

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: KINETO WIRELESS, LLC, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BUSINESS DEVELOPMENT CORPORATION OF AMERICA, AS ADMINISTRATIVE AGENT;REEL/FRAME:040173/0114

Effective date: 20160926

AS Assignment

Owner name: SONUS NETWORKS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KINETO WIRELESS, LLC;REEL/FRAME:040351/0102

Effective date: 20161013

AS Assignment

Owner name: SONUS NETWORKS, INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:SONUS, INC.;REEL/FRAME:044957/0213

Effective date: 20171128

Owner name: SONUS, INC., MASSACHUSETTS

Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:SOLSTICE SAPPHIRE, INC.;SONUS NETWORKS, INC.;SONUS NETWORKS, INC.;REEL/FRAME:044957/0243

Effective date: 20171027

AS Assignment

Owner name: SILICON VALLEY BANK, AS ADMINISTRATIVE AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNORS:GENBAND US LLC;SONUS NETWORKS, INC.;REEL/FRAME:044978/0801

Effective date: 20171229

Owner name: SILICON VALLEY BANK, AS ADMINISTRATIVE AGENT, CALI

Free format text: SECURITY INTEREST;ASSIGNORS:GENBAND US LLC;SONUS NETWORKS, INC.;REEL/FRAME:044978/0801

Effective date: 20171229

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: RIBBON COMMUNICATIONS OPERATING COMPANY, INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:SONUS NETWORKS, INC.;REEL/FRAME:048078/0036

Effective date: 20181220

Owner name: RIBBON COMMUNICATIONS OPERATING COMPANY, INC., MAS

Free format text: CHANGE OF NAME;ASSIGNOR:SONUS NETWORKS, INC.;REEL/FRAME:048078/0036

Effective date: 20181220

AS Assignment

Owner name: CITIZENS BANK, N.A., AS ADMINISTRATIVE AGENT, MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNOR:RIBBON COMMUNICATIONS OPERATING COMPANY, INC.;REEL/FRAME:052076/0905

Effective date: 20200303

AS Assignment

Owner name: RIBBON COMMUNICATIONS OPERATING COMPANY, INC. (F/K/A GENBAND US LLC AND SONUS NETWORKS, INC.), MASSACHUSETTS

Free format text: TERMINATION AND RELEASE OF PATENT SECURITY AGREEMENT AT R/F 044978/0801;ASSIGNOR:SILICON VALLEY BANK, AS ADMINISTRATIVE AGENT;REEL/FRAME:058949/0497

Effective date: 20200303

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12