DE19856621A1 - Determining location of transmitter using several radio direction finders involves forming arithmetic mean of directions per radio direction finder for use in maximum likelihood estimation - Google Patents

Determining location of transmitter using several radio direction finders involves forming arithmetic mean of directions per radio direction finder for use in maximum likelihood estimation

Info

Publication number
DE19856621A1
DE19856621A1 DE1998156621 DE19856621A DE19856621A1 DE 19856621 A1 DE19856621 A1 DE 19856621A1 DE 1998156621 DE1998156621 DE 1998156621 DE 19856621 A DE19856621 A DE 19856621A DE 19856621 A1 DE19856621 A1 DE 19856621A1
Authority
DE
Germany
Prior art keywords
radio direction
maximum likelihood
likelihood estimation
arithmetic mean
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1998156621
Other languages
German (de)
Inventor
Hans C Hoering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohde and Schwarz GmbH and Co KG
Original Assignee
Rohde and Schwarz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohde and Schwarz GmbH and Co KG filed Critical Rohde and Schwarz GmbH and Co KG
Priority to DE1998156621 priority Critical patent/DE19856621A1/en
Publication of DE19856621A1 publication Critical patent/DE19856621A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/045Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders

Abstract

The method involves using a number of radio direction finders located at different, known positions which remain unchanged at least for the duration of the measurement of each number of direction values using the maximum likelihood method. The arithmetic mean of the directions is formed for each radio direction finder and the maximum likelihood estimation method is conducted with these averaged direction values.

Description

Die Erfindung betrifft und geht aus von einem Verfahren laut Oberbegriff des Patentanspruches.The invention relates to and is based on a method according to the preamble of Claim.

Ein Verfahren dieser Art ist bekannt (M. Gavish, A. Weiss: Performance Analysis of Bearing-Only Target Location Algorithm. IEEE Transactions on Aerospance and Electronic Systems Vol. 28, No. 3, July 1992). Dabei wird im Sinne der Figur angenommen, daß insgesamt K Funkpeiler an verschiedenen Orten in der gleichen Ebene positioniert sind und mit jedem dieser Peiler jeweils vom gleichen Emitter M Peilwerte bestimmt werden, so daß insgesamt N = KM Meßwerte vorliegen. Die Standorte der Peiler werden als bekannt und wenigstens für die Dauer der je M Messungen unverändert angenommen.A method of this kind is known (M. Gavish, A. Weiss: Performance Analysis of Bearing-only target location algorithm. IEEE Transactions on Aerospance and Electronic Systems Vol. 28, No. 3, July 1992). It is in the sense of the figure assumed that a total of K radio direction finders at different locations in the same Are positioned level and with each of these direction finders from the same emitter M DF values are determined so that a total of N = KM measured values are available. The Locations of the direction finders are known and at least for the duration of the M Measurements accepted unchanged.

Aus den (fehlerbehafteten) Peilwerten wird ein konsistenter, wirksamer Schätzwert für den Ermitterstandort bestimmt. The (faulty) bearing values become a consistent, effective estimate for determines the location of the emitter.  

Die Peilwerte sind mit statistischen Fehlern behaftet, hervorgerufen beispielsweise durch das Emp­ fängerrauschen. Für die Peilfehler wird angenommen, daß sie additiv, mittelwertfrei, gaußverteilt und unkorreliert sind.The bearing values are associated with statistical errors, caused for example by the Emp catcher noise. The bearing errors are assumed to be additive, mean-free, Gaussian and are uncorrelated.

Für das Schätzverfahren werden die Varianzen der Peilfehler aller Peiler benötigt. Wenn diese K Varianzen nicht von vornherein bekannt sind (hiervon muß in der Praxis häufig ausgegangen wer­ den), müssen sie aus den Messungen geschätzt werden.The variances of the bearing errors of all direction finders are required for the estimation procedure. If this K Variances are not known from the outset (in practice, this must often be assumed by who ,) they have to be estimated from the measurements.

Die insgesamt N Peilmeßwerte können in einem Meßvektor der Länge N zusammengefaßt werden:
The total of N bearing measurements can be summarized in a measurement vector of length N:

Θ = (θ12,. . .,θn)T (1)
Θ = (θ 1 , θ 2 ,..., Θ n ) T (1)

Wird der zu bestimmende Emitterort zunächst als bereits bekannt angesehen, kann die bedingte Wahrscheinlichkeitsdichte für das Auftreten des Meßvektors Θ bei gegebenem Ortsvektor x = (xt, yt) beschrieben werden:
If the emitter location to be determined is initially regarded as already known, the conditional probability density for the occurrence of the measurement vector Θ for a given location vector x = (x t , y t ) can be described:

Der Richtungsvektor der Länge N aus (2)
The direction vector of length N from (2)

g(x) = (g1(x),. . .,gN(x))T (3)
g (x) = (g 1 (x),..., g N (x)) T (3)

enthält die K Azimutwinkel des Emitters gegenüber den K Peilern
contains the K azimuth angles of the emitter compared to the K direction finders

jeweils in M-facher Wiederholung.each repeated M times.

Δxk, Δyk sind die Differenzen der Koordinaten des Emitters und des Peilers k.Δ xk , Δ yk are the differences in the coordinates of the emitter and direction finder k.

S aus (2) ist die Kovarianzmatrix der Peilfehler. Unter den gemachten Voraussetzungen ergibt sich S als eine quadratische Diagonalmatrix der Ordnung N.S from (2) is the covariance matrix of the bearing errors. Under the conditions made, S as a square diagonal matrix of order N.

Bei unbekanntem Emitterort besteht die Schätzmethode darin, den Ortsvektor x als dasjenige Argument der Kostenfunktion
If the emitter location is unknown, the estimation method consists of using the location vector x as the argument of the cost function

zu finden, bei dem die Wahrscheinlichkeitsdichte p(Θ|x) für das Auftreten des Meßvektors Θ maxi­ miert, die Kostenfunktion somit minimiert wird:
to be found at which the probability density p (Θ | x) for the occurrence of the measurement vector Θ is maximized, thus minimizing the cost function:

Dies ist gleichbedeutend mit einer wegen (4) nichtlinearen Minimierung nach der Methode der klein­ sten Quadrate, die iterativ nach Newton-Gauß durchgeführt werden kann:
This is equivalent to a (4) nonlinear minimization using the least squares method, which can be carried out iteratively according to Newton-Gauss:

(i = Schätzwert der Iterationsstufe i für den Emitterort)( i = estimate of iteration level i for the emitter location)

In (7) tritt die Ableitungsmatrix Gx = δg/δx für den Emitterort auf. Die Elemente einer Zeile von Gx ergeben sich aus den partiellen Ableitungen von (4) nach den Ortskoordinaten der Ebene x und y, genommen jeweils für eine der K Peilerpositionen:
In (7) the derivative matrix G x = δg / δx occurs for the emitter location. The elements of a line of G x result from the partial derivatives of (4) according to the location coordinates of the planes x and y, taken for one of the K direction finder positions:

Jede dieser K Zeilen wird M mal wiederholt. (Die Dimensionsvergrößerung durch Wiederholung der K Zeilen in Gx = und der K Elemente (4) in (3) ist zur Anpassung an die Dimension des Meßvektors (1) erforderlich.Each of these K lines is repeated M times. (The dimension enlargement by repeating the K lines in G x = and the K elements (4) in (3) is necessary to adapt to the dimension of the measurement vector (1).

Unter Berücksichtigung aller N Meßwerte ist G x bei der Ortung in der Ebene eine N×2-Matrix und bei der Iteration zu nehmen für den laufenden Schätzwert des Emitterortes x = i = [i, i].Taking into account all N measured values, G x is to be taken as an N × 2 matrix for the location in the plane and for the current estimate of the emitter location x = i = [ i , i ] for the iteration.

Das Verfahren erfordert die Kenntnis eines Startwertes x0 in der Nähe des Minimums der Kosten­ funktion. Solch ein Anfangswert kann entweder aus einer früheren Schätzung bereits vorliegen, oder durch eine einfache (aber suboptimale) Prozedur erhalten werden. Hierfür kann beispielsweise der Schwerpunkt des Polygons verwendet werden, das sich aus dem Schnitt der K von den Peilern aus­ gehenden Standlinien ergibt.The method requires knowledge of a starting value x 0 near the minimum of the cost function. Such an initial value can either already exist from an earlier estimate or can be obtained by a simple (but suboptimal) procedure. For example, the center of gravity of the polygon can be used for this, which results from the intersection of the K from the direction finders.

Das Verfahren konvergiert rasch, 2 bis 4 Iterationsschritte reichen in der Regel aus.The process converges quickly, 2 to 4 iteration steps are usually sufficient.

Dieses bekannte Verfahren unter Anwendung der ML-Schätzung ist an sich optimal, es hat jedoch den Nachteil, daß die zu invertierende Kovarianzmatrix die Dimension N×N = (K.M)×(K.M) aufweist, die auch relativ groß sein kann und dann zu hohem Rechenaufwand führt: Bekanntlich erfordert die direkte Inversion einer N×N-Matrix N3 Multiplikationen und Additionen. Bei K = 3 Peilern und M = 10 Messungen je Peiler erfordert die direkte Matrizeninversion beispielsweise 303 = 27000 Multiplikationen und Additionen.This known method using the ML estimation is optimal in itself, but it has the disadvantage that the covariance matrix to be inverted has the dimension N × N = (KM) × (KM), which can also be relatively large and then too high Computational effort leads: As is known, the direct inversion of an N × N matrix requires N 3 multiplications and additions. With K = 3 direction finders and M = 10 measurements per direction finder, the direct matrix inversion requires, for example, 30 3 = 27000 multiplications and additions.

Aufgabe der Erfindung ist es daher, für den hier angesprochenen Fall der Ortung mit Hilfe von Peilern, deren Standorte für die Dauer der Bestimmung der M Meßwerte je Peiler konstant bleiben, die Zahl der erforderlichen Multiplikationen und Addition wesentlich zu reduzieren. The object of the invention is therefore, for the case mentioned here with the help of Direction finders whose locations remain constant for the duration of the determination of the M measured values per direction finder, significantly reduce the number of multiplications and additions required.  

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren nach dem Patentanspruch gelöst.This object is achieved by a method according to the claim.

Wenn die M Peilwerte für jeden der K Peiler vorliegen, wird bei der Schätzung der Varianz des Peilfehlers für jeden Peiler gemäß der Erfindung gleichzeitig auch der Mittelwert der Peilungen gebildet:If the M bearing values are available for each of the K direction finders, the variance of the Bearing error for each direction finder according to the invention also the mean value of the bearings educated:

Mittelwert:
Average:

Varianz:
Variance:

Damit hat der Meßvektor im Gegensatz zu (1) nur noch die Länge K:
In contrast to (1), the measurement vector now only has the length K:

Θ = (θ12, . . ., θK)T (11)
Θ = (θ 1 , θ 2 ,..., Θ K ) T (11)

und auch die Varianzen können in einem Vektor der Länge K zusammengefaßt werden:
and also the variances can be summarized in a vector of length K:

var = (σ2 1,...,σ2 K)T (12)
var = (σ 2 1 , ..., σ 2 K ) T (12)

Die Kovarianzmatrix wird hiermit eine quadratische Diagonalmatrix der Ordnung K
The covariance matrix thus becomes a square diagonal matrix of the order K

S = diag(var) (13)
S = diag (var) (13)

und hat damit die für die vorliegende Aufgabe kleinstmögliche Dimension.and thus has the smallest possible dimension for the task at hand.

Im Richtungsvektor g(x) müssen nun die Elemente nach (4) nicht M fach wiederholt werden, sondern g(x) ist reduziert auf die Länge K:
In the direction vector g (x) the elements according to (4) need not be repeated M times, but g (x) is reduced to the length K:

g(x) = (g1(x),...,gK(x))T (14)g (x) = (g 1 (x), ..., g K (x)) T (14)

Die Ableitungsmatrix Gx besteht in der gleichen Weise nicht mehr aus N = K.M, sondern nur noch aus K Zeilen mit den Elementen nach (8).In the same way, the derivation matrix G x no longer consists of N = KM, but only K lines with the elements according to (8).

Zur Ortsschätzung wird die Iterationsvorschrift nach (7) angewendet, nun aber mit der auf die minimale Dimension KxK reduzierten Kovarianmatrix. Bei drei Peilem ist S beispielsweise eine 3 × 3- Matrix und erfordert zur direkten Inversion nur 33 = 27 Multiplikationen und Additionen. Als Startwert 0 wird dabei der Schwerpunkt des Polygons aus den gemittelten Standlinien verwendet, die durch den Meßvektor (11) aus gemittelten Peilwerten geometrisch repräsentiert sind.The iteration rule according to (7) is used to estimate the location, but now with the covariant matrix reduced to the minimum dimension KxK. For example, with three bearings, S is a 3 × 3 matrix and only requires 3 3 = 27 multiplications and additions for direct inversion. The center of gravity of the polygon from the averaged standing lines is used as the starting value 0 , which is represented geometrically by the measurement vector (11) from averaged bearing values.

Die für die Berechnung notwendige Inversion der Kovarianzmatrix erfordert nun beim direkten Inver­ sionsverfahren nicht mehr (k.M)3, sondern nur noch K3 Multiplikationen und Additionen. Die Einspa­ rung an Rechenleistung beträgt den Faktor M3. Bei 10 Messungen je Peiler gewinnt man durch das vorgeschlagene Verfahren bei der direkten Matrizeninversion den Faktor 1000, bei 100 Meßwerten den Faktor 106 an Multiplikationen und Additionen.The inversion of the covariance matrix required for the calculation now no longer requires (kM) 3 in the direct inversion method, but only K 3 multiplications and additions. The saving in computing power is a factor of M 3 . In the case of 10 measurements per direction finder, the proposed method gives the factor 1000 for direct matrix inversion, and for 100 measured values the factor 10 6 in multiplications and additions.

Claims (1)

Verfahren zum Bestimmen des Standortes eines Emitters elektromagnetischer Wellen mit Hilfe einer Mehrzahl von Funkpeilern, die sich an unterschiedlichen, bekannten und mindestens für die Zeit der Bestimmung von je M Peilwerten unveränderten Standorten befinden, nach der Maximum-Likelihood-Schätzmethode, dadurch gekennzeichnet, daß für jeden Funkpeiler der arithmetische Mittelwert der M Peilungen gebildet wird und die Maximum-Likelihood-Schätzmethode mit diesen gemittelten Peilwerten durchgeführt wird.Method for determining the location of an emitter of electromagnetic waves with the aid of a plurality of radio direction finders, which are located at different, known and unchanged locations at least for the time of determining M bearing values, according to the maximum likelihood estimation method, characterized in that for the arithmetic mean of the M bearings is formed for each radio direction finder and the maximum likelihood estimation method is carried out with these averaged bearing values.
DE1998156621 1998-12-08 1998-12-08 Determining location of transmitter using several radio direction finders involves forming arithmetic mean of directions per radio direction finder for use in maximum likelihood estimation Withdrawn DE19856621A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1998156621 DE19856621A1 (en) 1998-12-08 1998-12-08 Determining location of transmitter using several radio direction finders involves forming arithmetic mean of directions per radio direction finder for use in maximum likelihood estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1998156621 DE19856621A1 (en) 1998-12-08 1998-12-08 Determining location of transmitter using several radio direction finders involves forming arithmetic mean of directions per radio direction finder for use in maximum likelihood estimation

Publications (1)

Publication Number Publication Date
DE19856621A1 true DE19856621A1 (en) 2000-06-15

Family

ID=7890395

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1998156621 Withdrawn DE19856621A1 (en) 1998-12-08 1998-12-08 Determining location of transmitter using several radio direction finders involves forming arithmetic mean of directions per radio direction finder for use in maximum likelihood estimation

Country Status (1)

Country Link
DE (1) DE19856621A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7660588B2 (en) 2002-10-17 2010-02-09 Qualcomm Incorporated Method and apparatus for improving radio location accuracy with measurements

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3422738A1 (en) * 1984-06-19 1985-12-19 Fa. C. Plath, 2000 Hamburg Method and device for measuring a true bearing with high accuracy on a moving vehicle
DE3422729C2 (en) * 1984-06-19 1986-07-10 Prakla-Seismos Gmbh, 3000 Hannover Method and device for high-precision measurement of a vehicle course and a true bearing on a moving vehicle
US4852056A (en) * 1986-06-20 1989-07-25 The University Of Michigan Multiple sensor position locating system
US5045860A (en) * 1990-06-27 1991-09-03 R & D Associates Method and arrangement for probabilistic determination of a target location
EP0531566B1 (en) * 1991-09-11 1994-07-06 Siemens Aktiengesellschaft Method of rapid localization with the "maximum-likelihood-estimator" in a gamma camera
DE3712866C2 (en) * 1987-04-15 1995-10-19 Daimler Benz Aerospace Ag Signal detection method for a direction finder
US5590043A (en) * 1993-06-17 1996-12-31 Trimble Navigation Limited Satellite positioning system filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3422738A1 (en) * 1984-06-19 1985-12-19 Fa. C. Plath, 2000 Hamburg Method and device for measuring a true bearing with high accuracy on a moving vehicle
DE3422729C2 (en) * 1984-06-19 1986-07-10 Prakla-Seismos Gmbh, 3000 Hannover Method and device for high-precision measurement of a vehicle course and a true bearing on a moving vehicle
US4852056A (en) * 1986-06-20 1989-07-25 The University Of Michigan Multiple sensor position locating system
DE3712866C2 (en) * 1987-04-15 1995-10-19 Daimler Benz Aerospace Ag Signal detection method for a direction finder
US5045860A (en) * 1990-06-27 1991-09-03 R & D Associates Method and arrangement for probabilistic determination of a target location
EP0531566B1 (en) * 1991-09-11 1994-07-06 Siemens Aktiengesellschaft Method of rapid localization with the "maximum-likelihood-estimator" in a gamma camera
US5590043A (en) * 1993-06-17 1996-12-31 Trimble Navigation Limited Satellite positioning system filter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FIELD,Christopher A., HAMPEL,Frank R.: Small- sample asymptotic distributions of M-estimators of location. In: Biometrika, 1982, 69, 1, S.29-46 *
GAVISH,Motti, WEISS,Anthony J.: Performance Analysis of Bearing-Only Target Location Algorithms. In: IEEE Transactions On Aerospace And Electronic Systems, Vol.28, No.3, July 1992, S.817-827 *
GRABAU,Rudolf: Funküberwachung und Elektronische Kampfführung, Franckh'sche Verlagshandlung, Stuttgart, ISBN 3-440-05667-8, S.309-319 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7660588B2 (en) 2002-10-17 2010-02-09 Qualcomm Incorporated Method and apparatus for improving radio location accuracy with measurements
RU2494411C2 (en) * 2002-10-17 2013-09-27 Квэлкомм Инкорпорейтед Method and apparatus for improving accuracy of radar location using measurements
US8583140B2 (en) 2002-10-17 2013-11-12 Qualcomm Incorporated Method and apparatus for improving radio location accuracy with measurements
US8588811B2 (en) 2002-10-17 2013-11-19 Qualcomm Incorporated Method and apparatus for improving radio location accuracy with measurements
US9014719B2 (en) 2002-10-17 2015-04-21 Qualcomm Incorporated Method and apparatus for improving radio location accuracy with measurements

Similar Documents

Publication Publication Date Title
DE1766173B1 (en) ARRANGEMENT FOR SUPPRESSION OF DENSE VIDEO QUANTUM ZONES IN A PULSE RADAR SYSTEM WITH THRESHOLD CALCULATION
DE3408404C2 (en) Device for radar simulation
DE3017797A1 (en) METHOD FOR DETERMINING THE DIRECTIONS
DE69532877T2 (en) radar
DE4441056B4 (en) Method for determining position
DE10129726A1 (en) Procedure for determining target data
DE2554301A1 (en) PROCEDURE FOR DETERMINING THE POSITION OF AN AIRPLANE AND WIRING ARRANGEMENT FOR PERFORMING THIS PROCEDURE
DE19856621A1 (en) Determining location of transmitter using several radio direction finders involves forming arithmetic mean of directions per radio direction finder for use in maximum likelihood estimation
DE3744691A1 (en) Assessing method for received radar pulses
CN108847829A (en) It is a kind of that uncertain and quantization measurement non-linear filtering method occurring with random
EP0837334A2 (en) Procedure and apparatus for determining incident receiver power or energy of at least one signal
EP0199107B1 (en) Process and device for the suppression of rain echos in a terrain-following radar
DE60223355T2 (en) METHOD OF EVALUATING ELECTRIC FIELD LEVELS NEAR THE TRANSMITTERS
DE3832678C2 (en) DF method and device for carrying it out
Srikanthan et al. Log Pearson III distribution—An empirically-derived plotting position
EP0683399B1 (en) Antenna for sky-wave direction finder
DE102005037628B3 (en) Method for detecting an object by means of radar
DE112021006383T5 (en) RADAR DEVICE, RADAR SYSTEM AND RADAR METHOD
EP4044141B1 (en) Method for determining a distance between two terminals, computer program, storage medium and terminal
Quinn The effect of group size on line transect estimators of abundance
DE3916954B3 (en) A method for target analysis and improved false alarm suppression in a radar, apparatus for performing the method and radar, in which the method is used
DE4142906A1 (en) METHOD FOR DETECTING AND DIFFERENTIATING DISTANCE HELICOPTERS FROM OTHER VEHICLES
DE2842051A1 (en) METHOD FOR DISTINATING BETWEEN YOUR LOCATION CHANGING TARGETS AND THE WATER SURFACE
DE4407716A1 (en) Resolving coherent wave fields using high resolution spectral estimation techniques
DE202023100675U1 (en) An H-shaped unified linear array-based multiple signal classification system for direction of arrival estimation

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8139 Disposal/non-payment of the annual fee