CN1252490C - 卫星定位参照系统与方法 - Google Patents

卫星定位参照系统与方法 Download PDF

Info

Publication number
CN1252490C
CN1252490C CNB998079340A CN99807934A CN1252490C CN 1252490 C CN1252490 C CN 1252490C CN B998079340 A CNB998079340 A CN B998079340A CN 99807934 A CN99807934 A CN 99807934A CN 1252490 C CN1252490 C CN 1252490C
Authority
CN
China
Prior art keywords
data
receiver
sps
satellite
digital processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB998079340A
Other languages
English (en)
Other versions
CN1307683A (zh
Inventor
M·默格林
L·希恩布莱特
N·F·克拉斯纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SnapTrack Inc
Original Assignee
SnapTrack Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SnapTrack Inc filed Critical SnapTrack Inc
Publication of CN1307683A publication Critical patent/CN1307683A/zh
Application granted granted Critical
Publication of CN1252490C publication Critical patent/CN1252490C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0045Transmission from base station to mobile station
    • G01S5/0054Transmission from base station to mobile station of actual mobile position, i.e. position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • G01S19/06Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data employing an initial estimate of the location of the receiver as aiding data or in generating aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/09Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing processing capability normally carried out by the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/009Transmission of differential positioning data to mobile
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • H03J7/047Automatic frequency control using an auxiliary signal, e.g. low frequency scanning of the locking range or superimposing a special signal on the input signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/11Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are pseudolites or satellite radio beacon positioning system signal repeaters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/252Employing an initial estimate of location in generating assistance data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/254Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to Doppler shift of satellite signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/258Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to the satellite constellation, e.g. almanac, ephemeris data, lists of satellites in view
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/001Transmission of position information to remote stations
    • G01S2205/008Transmission of position information to remote stations using a mobile telephone network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0045Transmission from base station to mobile station

Abstract

从看得到特定SPS参照接收机的SPS卫星接收卫星星历表数据。多个数据处理系统耦接到通信网接收通过通信网发射的卫星星历表数据。数字处理系统从SPS移动接收机接收伪距离数据,并根据伪距离数据和从通信网接收的星历表数据计算该SPS移动接收机的位置信息;该系统还从通信网接收伪距离校正值,并用该校正值校正伪距离数据。

Description

卫星定位参照系统与方法
相关申请
本申请是Norman F.krasner于1997年4月15日提出的美国专利申请序号No.08/842,559的部分续展申请。
发明的技术背景
本发明涉及应用参照接收机的卫星定位系统,特别涉及一种卫星定位系统的参照接收机网络。
常规卫星定位系统(SPS),诸如美国的全球定位系统(GPS),都应用来自卫星的信号确定其位置。常规GPS接收机一般通过计算从绕地球轨道运行的许多GPS卫星同时发射的信号的相对到达时间来确定其位置。每颗卫星都发射作为其导航信息一部分的卫星定位数据与时钟计时数据,而时钟计时数据在一定进刻限定了其位置与时钟状态;出现在GPS导航信息子帧1-3中的这种数据往往被称为卫星时钟与星历表数据,也称为卫星星历表数据。常规GPS接收机通常搜索捕获GPS信号,从每个信号中读取导航信息,以对其各自的卫星获得卫星星历表数据,确定与这些卫星的伪距离,并根据伪距离与来自卫星的卫星星历表数据计算GPS接收机的位置。
应用某种已知的称为差分GPS的常规技术,可以提高定位精度。利用常规差分GPS,单个差分参照台对局部区域的用户广播不同的GPS校正,因而一般有三种常规差分GPS系统的主要组成部分。第一组成部分是在某一已知地点的参照台,在某一已知地点有一GPS接收机,通常能观察到所有卫星,而且该参照台选用的软件可置入GPS接收机,用于计算伪距离校正值并对特定的广播制式对其编码。另一个组成部分是将不同的校正值实时发送给移动GPS接收机的无线电链路。第三个组成部分是移动GPS接收机,它还包括一台用于接收来自参照台的差分校正广播的接收机。
移动GPS接收机以常规方式用差分GPS校正值校正伪距离数据,该数据是通过计算GPS卫星发射的GPS信号的相对到达时间而得到的。常规差分GPS不一定要实时完成工作或将校正值提供给移动GPS接收机,尽管常常是这么做的。在专利与非专利文献中,已经描述过许多对差分GPS的改进方法,主要集中于差分校正计算、应用算法和提供差分校正值的方法。在测量领域中(伪距离、累计增量距离和临近速度误差估算)。多半是差分校正。
如果参照接收机与参加的移动GPS接收机相互十分靠近,常规差分GPS能大大提高定位精度。然而,随着两接收机的分离距离增大,差分GPS的精度提高就变差了。一种补救办法是提供一个散布于某一地区的GPS参照接收机网络,其区域覆盖与移动GPS接收机可能工作的区域相一致,因而看得到同组的诸卫星。这样,移动GPS接收机可以拾取一个以上差分参照台的差分校正值,而移动GPS接收机可以根据它与两个或多个参照台之间的相对接近度,对观察的卫星选择这些差分校正值。有时把多个参照台应用于差分GPS系统称作宽区域差分GPS(WADGPS)。
WADGPS参照系统的另一种形式包括一个GPS参照接收机与主控台网络,主控台与诸参照台通信以接收它们的测量结果,并对参照台观察的每颗GPS卫星计算一组合并的星历表与时钟校正估计值。于是,该主控台可以通过发射机提供一种差分GPS信息,其校正值适用于某个传播范围。此类宽区域差分GPS参照系统的例子包括美国专利No.5,323,322和5,621,646所描述的例子。
不考虑特定差分参照系统的覆盖范围,差分GPS系统的主要目的在于提供差分服务,帮助移动GPS接收机消除GPS测量结果或测量导出的解中的误差。该网络试图消除的GPS系统误差与多个参照台、它们的空间位移和在中央处理机构执行的算法的复杂度有关。差分网络的第二个作用是通过测量与状态空间域的各种检查为差分服务提供完整性与可靠性。
上述系统虽然提高了移动GPS接收机的精度,但是这些系统与客户/服务器GPS结构不兼容。在客户/服务器GPS结构中,移动GPS接收机作为客户系统,向远地的服务器提供伪距离测量结果,服务器则利用从移动GPS接收机得到的该伪距离并利用星历表数据,对位置求解作计算。本发明提供一种改进的方法与设备,在定位服务器的定位方面具有灵活性,并且提高了客户/服务系统的效率,降低了成本。
发明内容
本发明提供的方法与设备适用于卫星定位系统参照系统。
本发明的一个方面是一种示例性方法,它使用至少两台SPS参照接收机处理卫星定位信息。根据本方法,第一数字处理系统从具有第一已知位置的第一SPS参照接收机接收第一卫星星历表数据,还从具有第二已知位置的第二SPS参照接收机接收第二卫星星历表数据,再从移动SPS接收机接收多个伪距离数据,然后利用多个伪距离数据和第一与第二卫星星历表数据中的至少一个数据,计算该移动SPS接收机的位置信息(如纬度、经度和高度)。在本发明一特定实施例中,第一与第二卫星星历表数据都是“原始(raw)”50bps卫星导航信息的子集,而卫星导航信息分别由第一与第二SPS参照接收机从看得到这两台参照接收机的卫星接收。在一个例子中,这种卫星导航信息可以是编码成GPS信号的50位/秒数据信息,GPS信号已被参照接收机接收和译码,并以实现或接近实行的方式发送给第一数字处理系统。
根据本发明的另一方面,卫星位置信息处理系统包括多台地点已知的卫星定位系统(SPS)参照接收机,还包括多个数字处理系统。多台SPS参照接收机散布在某一地区,每台接收机接收来自看得到该接收机的卫星发送的卫星星历表数据,并将接收的卫星星历表数据发射到通信网。该系统还包括多个数字处理系统,每个系统耦合至通信网接收至少某些经通信网发送的卫星星历表数据。在一个实施例中,至少有两个这样的数字处理系统。第一数字处理系统接收第一多个来自第一移动SPS接收机的伪距离,并根据这些伪距离数据和从通信网收到的卫星星历表数据,计算第一移动SPS的第一位置信息(如纬度与经度)。一般情况下,第一数字处理系统至少对看得见第一移动SPS接收机的那些卫星有选择地从网中接收合适的卫星星历表数据。第二数字处理系统接收来自第二移动SPS接收机的第二多个伪距离数据,并根据这些数据和从通信网收到的卫星星历表数据,计算第二移动SPS接收机的第二位置信息。在本发明一个例子中,第二数字处理系统对那些看得见第二移动SPS接收机的卫星,有选择地从该网接收合适的卫星星历表。在本发明另一例子中,第一与第二数字处理系统各自从该网中接收看得见该网的最新卫星星历表数据。
在本发明再一个实施例中,为了接收来自诸参照接收机的测量结果(如差分校正值)并产生一组网络差分校正值,可对通信网耦接另一个数字处理系统。下面进一步描述本发明的各其它方面和实施例。
附图简述
下面举例说明本发明内容,但不限于附图内容,图中同样的标号表示同类元件。
图1示出一种小区通信系统,它有多个小区,每个小区由区站服务,每个区站接至小区交换中心(有时称移动交换中心)。
图2示出本发明一实施例的定位服务器系统的实施方案。
图3A示出一例本发明一实施例的组合式SPS接收机与通信系统。
图3B示出一例本发明一实施例的GPS参照台。
图4示出本发明一实施例的SPS参照接收机网络。
图5A与5B是描绘本发明一实施例方法的流程图。
图6示出网络校正处理器的数据流,可用于本发明参照接收机网络的一实施例中。
图7示出一例数据流,它与本发明一实施例的定位服务器相关。
发明内容的详细描述
本发明提出的SPS参照接收机网络,至少提供一部分如卫星星历表数据等卫星导航信息,供数字处理系统按下述方式应用。在对该参照系统作各种细节描述之前,先描述一下这种参照接收机的一般使用情况。因此。在讨论本发明系统中的SPS参照接收机网络之前,先参照图1、2和3A作一初步讨论。
图1示出一例小区通信系统10,它包括多个区站,每个区站服务于特定的地理区域或地点。这类蜂窝或小区通信系统的例子,在本领域中是众所周知的,诸如小区电话系统。小区通信系统10包括两个小区12与14,二者都限于蜂窝服务区11内。此外,系统10还包括小区18与20。显然,在耦接到一个或多个蜂窝交换中心(如蜂窝交换中心24与24b)的系统10中,还可包括多个具有对应的区站和/或蜂窝服务区的其它小区。
在每个小区内,如小区12内,有一个无线区站或蜂窝点(如区站13),它包括的天线13a通过无线通信媒体与通信接收机通信,而该接收机可以与图1所示的接收机16等移动GPS接收机组合在一起。这种配有GPS接收要和通信系统的一例组合系统如图3A所示,可以包括GPS天线77和通信系统天线79。
每个区站耦接至蜂窝交换中心。图1中,区站13、15与19分别通过接线13、15b与19b耦接到切换中心24,区站21通过接线21b耦接到不同的交换中心24b。这些接线通常是各区站与蜂窝交换中心24和24b之间的导线连接。各区站包括一根天线,用于与该区站服务的通信系统进行通信。在一实施例中,区站可以是一个蜂窝电话区站,与该区站服务区中的移动蜂窝电话通信。显然,一个小区内的通信系统,如小区4中的接收机22,由于阻塞(或区站21无法与接收机22通信的其它原因),实际上可以与小区18中的区站19通信。
在本发明一典型实施例中,移动GPS接收机16包括一个与GPS接收机集成起来的小区通信系统,故GPS接收机与通信系统装在同一机壳里。其一个例子是一种具有集成式GPS接收机的蜂窝电话,该接收机与蜂窝电话收发器共享公用电路。将这种组合式系统应用于蜂窝电话通信时,就在接收机16与区站13间实现传输。于是,从接收机16到区站13的传输就通过接线13b传播到蜂窝交换中心24,然后再传到该中心24服务的小区中的另一个蜂窝电话,或者通过接线30(通常为导线)经陆基电话系统/网络28传到另一个电话。显然,导线包括光纤和其它非无线接线(如铜质电缆等)。与接收机16正在通信的另一电话的传输,可用常规方法由蜂窝交换中心24经接线13b和区站13传回给接收机16。
系统10中包含的远程数据处理系统26(在有些实施例中可称为GPS服务器或定位服务器),可利用GPS接收机收到的GPS信号确定移动GPS接收机(如接收机16)的状态(如位置和/或速度和/或时间)。GPS服务器26可通过接线27耦接至陆基电话系统/网络28,也可通过接线25有选择地耦接至蜂窝交换中心24,还可通过接线25b选接到中心24b。显然,接线25和27一般是导线接线,当然也可以是无线连接。如图所示,系统10的一种选用元件是询问终端29,它可以包括通过网络28而耦接到GPS服务器26的另一个计算机系统。该询问终端29可向GPS服务器26发出请求,询问某一小区中特定GPS接收机的位置和/或速度,于是服务器26通过蜂窝交换中心与特定的GPS接收机通话,以确定该GPS接收机的位置和/或速度,并向询问终端29报告要询问的信息。在另一实施例中,可由移动GPS接收机用户对GPS接收机提出位置确定;例如,移动GPS接收机用户可在小区电话上按911,表示该移动GPS接收机地点的某种紧急状态,这就启动了以本文描述的方法所执行的定位处理。
应该指出,蜂窝或小区通信系统是一种具有一个以上发射机的通信系统,每个发射机都服务于按实时即时预定的不同地域。一般而言,每个发射机都是一种服务于一个小区的无线发射机,小区的地域半径小于20英里,尽管覆盖的区域取决于特定的蜂窝系统。蜂窝通信系统有多种类别,诸如蜂窝电话、PCS(个人通信系统)、SMR(专用移动电话)、单向与双向寻呼系统、RAM、ARDIS和无线信息包数据系统。一般而言,把预定的地域称为小区,多个小区合在一起称为蜂窝服务区,如图1所示的蜂窝服务区11,并把这类多个小区耦接到一个或多个蜂窝交换中心,再由这些中心连接到陆基电话系统和/或网络。服务区经常用于记帐。因此,可以将一个以上服务区的小区连接至一个交换中心。如图1中,小区1与2位于服务区11,小区3位于服务区13,但这三个小区都接至交换中心24。或在有些场合中,可将一个服务区内的诸小区接到不同的交换中心。在人口稠密区尤其如此。通常,一个服务区被定义为邻近地区内诸小区的集合。符合上述情况的另一类蜂窝系统则以卫星为基础,蜂窝基站或区站就是通常绕地球轨道运行的诸卫星。在这类系统中,小区扇区与服务区的移动是时间的函数。这类系统包括Ividium、Globalstar、Orbcomm、Odyssey等。
图2示出一例GPS服务器50,可用作图1的GPS服务器26,它包括一个数据处理单元51,可以是一种容错数字计算机系统,还包括调制解调器或其它通信接口52、调制解调器或其它通信接口53和54。这些通信接口为图2所示的定位服务器在三个不同网络60、62和64之间的信息交换提供接续。网络60包括蜂窝交换中心和/或陆基电话系统或区站。在图1的这种网络例子中,GPS服务器26代表图6的服务器50。因此,可以认为网络60包括蜂窝交换中心24与24b、陆基电话系统/网络28、网络服务区11以及小区18与20。可以认为网络64包括图1的询问终端29或“PSAP”,它是公共安全应答点,通常是应答911电话紧急呼叫的控制中心。在询问终端29的情况下。该终端可用来询问服务器26,以从位于小区通信系统中各小区内的某指定移动SPS接收机获得状态(如位置)信息。此时,定位操作由移动GPS接收机用户以外的人启动。在包括蜂窝电话的移动GPS接收机发出911电话呼叫的情况下,定位处理由蜂窝电话用户启动。代表图1中GPS参照网络32的网络62是一种GPS接收机网络,它是GPS参照接收机,用于向数据处理单元提供差分GPS校正信息,还提供GPS信号数据,包括至少一部分卫星星历表数据等卫星导航信息。当服务器50对极大的地区服务时,本地选择的GPS接收机如选用的GPS接收机56,可能无法观察在整个该地区看得到诸移动SPS接收机的所有GPS卫星。因此,在根据本发明一实施例的广阔范围内,网络62至少收集并提供部分卫星导航信息,如卫星星历表数据与差分GPS校正数据。
如图6所示,海量存储器55耦接至数据处理单元51。一般情况下,海量存储器55将包括用于存贮软件与数据的存储器,以便在接收来自移动GPS接收机(如图1的接收机16)的伪距离后执行GPS位置计算。这些伪距离通常通过区站、蜂窝交换中心和调制解调器或其它接口53接收。至少在一个实施例中,海量存储器55还包括了软件,用于接收和利用GPS参照网络32经调制解调器或另一接口54提供的卫星星历表数据。
在本发明一典型实施例中,选用的GPS接收机不必像图1中GPS参照网络32(图2中的网络62)那样提供差分GPS信息,而是从看得见GPS参照网络中各种参照接收机的诸卫星提供原始的卫星导航信息。显然,可以用常规方法将通过调制解调器或另一接口54从该网络获得的卫星星历表数据,同从移动GPS接收机获得的伪距离一起用于计算该移动GPS接收机的位置信息。接口52、53和54可以是调制解调器或其它合适的通信接口,用于将数据处理单元耦接到其它计算机系统(网络64的情况),耦接到蜂窝通信系统(网络60的情况),和耦接到发射装置,如网络62中的计算机系统。在一实施例中,网络62显然包括散布在某地域内的分散集中的GPS参照接收机。
图3A示出一种包括GPS接收机和通信系统收发机的一般组合系统。在一个例子中,通信系统收发机是一种蜂窝电话。系统75包括带GPS天线77的GPS接收机76和带通信天线79的通信收发机78。GPS接收机76经图3A的接线80耦接至通信收发机78。在一种工作模式中,通信系统收发机78经天线79接收近似多普勒信息,并将该信息经链路80提供给GPS接收机76,后者经GPS天线77从GPS卫星接收GPS信号而作伪距离确定。然后,通过通信系统收发机78将该伪距离发射给如图1所示GPS服务器的定位服务器(location server)。一般是通信系统发收机78通过天线79向区站发一信号,再由该区站将此信息传回如图1的GPS服务器26的GPS服务器。系统75各种实施例是本领域所共知的,如美国专利5,663,734描述了一例组合式GPS接收机与通信系统,它应用了一种改进的GPS接收机系统。另一例组合式GPS与通信系统已在1996年5月23日提出的共同待批专利申请No.08/652,833中作了描述。图3A的系统75及另一些具有SPS接收机的通信系统,都可应用本发明方法与本发明的GPS参照网络一起工作。
图3B示出GPS参照台的一个实施例。很显然,每个参照台都能以这种方式构制并耦接至通信网络或媒体。一般而言,每个GPS参照台(如图3B的GPS参照台90)将包括一种耦接至GPS天线91的单频或双频GPS参照接收机92,而天线91从看得见天线91的诸GPS卫星接收GPS信号。在本领域,GPS参照接收机是众所周知的。根据本发明一实施例,GPS参照接收机至少提供两类作为其输出的信息。将伪距离输出93提供给处理器与网络接口95,用于以常规方式对看得见GPS天线91的那些卫星计算伪距离校正值。在本领域中,处理器与网络接口95可以是一种常规数字计算计系统,具有用于从GPS参照接收机接收数据的接口,这是众所周知的。处理器95通常包括设计成处理为距离数据的软件,以对每颗看得见GPS天线91的卫星确定合适的伪距离校正值。然后,通过网络接口将这些伪距离校正值(和/或伪距离数据输出)发送给通信网络或媒体96,而该通信网络或媒体96还与其它GPS参照台耦接。在一个实施例中,GPS参照接收机92还包括至少一部分卫星导航信息(如卫星星历表数据输出94)的表示,并将该数据提供给处理器与网络接口95,再由后者将该数据发射到通信网络96上。
在一个实施例中,每台参照接收机以高于正常速率将整个导航信息发送入网。有些常规GPS接收机可以每隔6秒钟(可以认为是正常速率)输出原始(数字)导航信息数据;如某些NovAtel GPS接收机具有这种能力。这类接收机将一个子帧的导航信息数字数据(在标准GPS信号中为300位)汇集于缓冲器,然后每隔6秒移出该缓冲器的数据(缓冲全子帧300位后),在接收机输出端提供这一数据。然而,在本发明一实施例中,至少一部分数字导航信息的表示是以每隔600毫秒的速率发送入网的。这种高数据速率可以执行测量时间的方法。如1997年2月3日提出的共同待批美国专利申请No.08/794,649中描述的方法。在本发明该实施例中,通过只将一部分子帧(如30位)汇集在缓冲器里并在该部分汇集后移出,可以每隔600毫秒将一部分导航信息发射入网。因此,处理器95发射入网的数据包所含的导航信息部分,要小于一个全子帧(300位)缓冲器所建立的包能提供的信息部分。显然,一旦缓冲汇集了该部分子帧(如30位),就可将该数据移出而成为通过本发明网络以极高数据速率(如512Kbps)发射的包。然后在接收数字处理系统中从若干包中提取数据并将数据连在一起重建完整的子帧,就重新组装好这些包(少于全子帧)。
在本发明一实施例中,每个GPS参照台发射至少一部分卫星导航信息与伪距离数据(不是伪距离校正数据)的表示。伪距离校正数据可以从特定卫星的伪距离与星历表信息中导出。因此,GPS参照台可将伪距离校正数据或星历表(或二者)发射入网。然而,在一较佳实施例中,伪距离数据(代替伪距离校正数据)由每个GPS参照台发射入网,因为来自不同接收机的校正值可从不同组的星历表数据导出,造出不同接收机的校正值有差异。根据该较佳实施例,中央校正处理器(如图4的网络校正处理器110)使用一组一致的从任一GPS参照接收机收到的最新星历表数据,因而避免了这些差异。该组数据由于包括一批来自多颗卫星的星历表、距离测量结果(如伪距离)和/或校正值,因此是一致的,适用于实时的特定瞬间。只要每组的适用时间重叠,就可把该组与其它组的数据合并起来。
回过来参照图3B,卫星星历表数据输出94一般至少提供部分整个原始50波特导航二进制数据,这类数据已在从每颗GPS卫星收到的实际GPS信号里作了编码。卫星星历表数据是作为来自GPS卫星的GPS信号中每秒50位的数据流而广播的部分导航信息,在GPSICD-200文件中有详述。处理器与网络接口95接收这一卫星星历表数据输出94,并实时或接近实时的将它发送给通信网络96。如下面要描述的,根据本发明的诸方面,这一发射入通信网的卫星星历数据以后通过该网络被各定位服务器接收。
在本发明某些实施例中,为了对网络接口和通信网减低带宽要求,对定位服务器只发送某几段卫星导航信息。而且,不要求连续提供这种数据。例如,可将包含星历表信息的仅仅前三个子帧而不是所有5个子帧发送入通信网96,若这三个子帧包含更新信息的话。显然,在本发明一实施例中,定位服务器可用一个或多个GPS参照接收机发射的导航信息数据执行有关卫星数据信息的时间的测量方法,如共同待批的美国专利申请No.08/794,649中描述的方法,该申请由Norman F.Krasner于1997年2月3日提交。还可以理解,GPS参照接收机92对来自看得见该接收机92的不同GPS卫星的不同GPS信号作译码,以提供包含该卫星星历表数据的二进制数据输出94。
一般该数据包不提供给特定的定位服务器,且包括部分导航信息和从某颗卫星收到数据的标识符;在有些实施例中,该包还可以规定一个发射参照台的标识符。在有些实施例中,选用的GPS接收机56可能是主要的导航信息数据源,被当地的定位服务器所用,而本发明的网络可以按要求提供信息。
图4示出一例GPS参照接收机网络,整个系统101包括耦接到通信网或媒体103的两个定位服务器115和117,对应于图3B的通信网96。网络校正处理器110和112也耦接至通信网103。图4示出了五个GPS参照台104、105、106、107和108,全都耦接至通信网103。每个GPS参照台如台104对应于图3B中的示例性GPS参照台90,而通信网103对应于图3B的通信网96。显然,诸GPS参照台(如104-108)散布于某一地域,以便对同样可被移动GPS接收机接收的GPS信号提供接收机覆盖。相邻参照台间的这种覆盖一般相重叠,从而完全覆盖了整个地域。整个参照台网的地域可以扩展到全世界或其任一子集,如城市、州、图家或大陆。每个GPS参照台(如台104)都将伪距离校正数据提供给通信网103,而且还提供被定位服务器(如服务器115)使用的原始导航数据信息。如下面要描述的,定位服务器的数量可能少于参照台,所以将要处理来自广泛分布的移动GPS接收机的伪距离数据。例如,一个定位服务器可能正在处理来自加州的一台移动GPS接收机和加州的一台参照台的伪距离数据,而同一个定位服务器可能正在处理来自纽约的一台移动GPS接收机和纽约的一台参照台的伪距离数据,因而单个定位服务器可能正在接收来自分布广泛的两个或多个参照台的导航信息。如图4所示,通信网可以是诸如帧中继的数据网或ATM网,或是其它高速数字通信网。
图4还示出两个网络校正处理器110和112;在一实施例中,这些处理器对多个参照台提供并网校正值,也可对定位服务器提供电离层数据。下面再描述一个网络校正处理器实施例的工作情况。这些处理器通常根据具有同一适用时间的伪距离与星成表确定合适的伪距离校正值,并把相关的各组校正值与星历表数据合并成具有同一或重叠适用时间的一组,然后在网上再次发送该合并值,以供耦接于该网的诸定位服务器接收。
图5A与5B以流程图形式示出本发明一实施例的方法。在该方法200中,每个GPS参照接收机接收来自看得到特定参照接收机的卫星的卫星星历表数据,并将该数据(导航信息)发射入通信网,诸如图4所示的分组数据网103。在这一步骤201的典型实施例中,对来自看得见该特定参照接收机的GPS卫星的每个GPS信号译码,以便提供该GPS信号中存在的每秒50位二进制数据流,并以实时或接近实时的方式将它发射入通信网。在另一实施例中,如上述那样,只将部分这种数据流发射入网。在步骤203中,每个GPS参照接收机对看得见该参照接收机的诸GPS卫星确定伪距离的校正值;执行这一操作可以常规方式应用控制器计算机,诸如图3B的处理器与网络接口95。然后,将这些来自每个GPS参照接收机的伪距离校正值发射入通信网,如图4的通信网96或103。在步骤205中,耦接至通信网(如图103)的处理器(如网络校正处理器110)接收卫星星历表数据和伪距离校正值。网络校正处理器可按下述那样产生一组合并的伪距离校正值并执行其它操作。然后将这些合并的伪距离校正值发射入通信网(如网103),以便让同样耦接至该通信网的各种定位服务器接收。
该方法继续到步骤207,其中第一定位服务器至少接收一部分来自该网络的导航信息(如卫星星历表数据)和合并的伪距离校正值。这样,例如定位服务器115可以接收各个GPS参照台已经发射入网的导航信息数据。这种数据通常以接近实时的方式提供,而每个定位服务器一般将至少接收来自两个和往往更多个参照台的卫星星历表数据。一般定位服务器对收到的卫星导航信息数据作译码,以提供卫星时钟与星历表数据并存贮在该服务器里,让定位服务器根据要求计算卫星位置和时钟状态。这种星历表数据用来计算某移动GPS接收机的位置,之后接收机向看得见该移动GPS接收机的诸卫星提供伪距离。这样,在步骤209,第一定位服务器接收来自第一移动GPS接收机的伪距离,并根据自该网格收到的卫星星历表数据和源于第一移动GPS接收机的伪距离,确定第一移动GPS接收机的位置。应用参照台网络能让定位服务器计算散布于相当GPS参照接收机网络覆盖区的区域内诸移动GPS接收机的位置。因此,不是拥有位于定位服务器的单个GPS接收机和向某个定位服务器提供星历表数据,图4所示的分散的GPS参照台网可以让定位服务器为广泛分布的诸移动GPS接收机提供位置计算。如图4所示,第二定位服务器也可耦接到通信网103而对诸移动GPS接收机提供位置求解运算。显然,在一实施例中,在定位服务器115故障时,服务器117可以是该服务器115的冗余/备用服务器。一般而言,每个定位服务器都应是一个容错计算机系统。在因定位服务器覆盖区内人口稠密而对特定的该定位服务器提供高数据处理需求的情况下,除了冗余的定位服务器以外,还可将若干定位服务器布署在该地区。步骤211和213示出在本发明方法中应用的第二定位服务器。在步骤211,第二定位服务器从通信网接收卫星星历表数据和经校正的伪距离校正值。显然,从该网接收的卫星星历表数据,对于看得见定位服务器117服务的相应区域内诸参照台那些卫星而言,可能是卫星专用的。通过将首部分组(header packet)或其它寻址数据与某一参照台发射的卫星星历表数据和经校正的伪距离校正值放在一起而将该数据提交给特定的定位服务器,就能实现这一目的。在步骤213,第二定位服务器从第二移动GPS接收机接收伪距离,并根据从该网接收的卫星导航信息数据和第二移动GPS接收机始发的伪距离,确定第二移动GPS接收机的状态(如位置)。
图6示出一例数据流,它与网络校正处理器(如图4的处理器110)有关。每个网络校正处理器都将来自多个参照台的校正值合并成一组校正值(和调节值),对定位服务器应用具有基本上同样的适用时间。在一实施例中,若一个特定的定位服务器无法从一特定网络校正处理器接收校正数据,它可向不同地点的备用网络处理器请求同样的信息。一旦到达某个网络校正处理器,每个校正组就在存储器中缓存供查找。需要时可使用。大气误差消除后,请校正值合并起来对卫星时钟与位置误差(包括SA抖动)引起的测距误差作最佳评估。然后将这些合并的网络校正值与关键的电离层数据和最新的导航信息一起发射给有关观察的卫星。在一特定实施例中,将该信息发送给所有指定的定位服务器(已被指定为来自网络校正处理器的诸校正值的地址)。由于每个卫星载体在一实施例中由一台以上参照接收机跟踪,所以可以检查每组网络校正值来保证内部一致性。这样,可将来自第一参照台的伪距离校正值对同一颗卫星对比来自邻近参照台的伪距离校正值而保证内部一致性。如图6所示,参照台301代表在地域上分散的参照台,如图4的台104-108。在一实施例中,将伪距离校正数据303和至少包括一部分包含在GPS信号里的50位数据流发送给网络校正数据器,后者提出电离参数310并对单信号出现时间(single epoch)309建立一校正组。消除大气延迟,建立合并校正值316。这里描述的各种操作的数据流还示于图6。
图7示出一侧有关定位服务器的数据流,它示出相对该定位服务器位于远地的系统的至少三个不同部分。参照接收机网401对应于图4的参照台104-108。这些参照台经通信网(如图4的网103)耦接至该定位服务器。参照接收机网401经数据网403提供校正值和/或伪距离数据,还经该数据网提供至少一部分导航信息405。该导航信息一般包括所谓的卫星星历表数据,在一实施例中为来自每颗GPS卫星的GPS信号里的50波特数据流。校正值在校正处理器中经合并和内部一致性检查,作为校正值408或选用的地域校正值,经通信网传到定位服务器。导航信息数据407用于提取星历表数据,以对移动GPS接收机作状态(如位置)计算。可用来自地域海拔数据库411的高度估算帮助状态(如位置)计算410。定位服务器通常以连续为基础经通信网(如网103)接收校正数据和导航信息数据。因此,卫星星历表数据源既非来自与定位服务器一同定位的地方GPS接收机,也非来自图4中参照台104-108的GPS参照接收机网。在此方法中,定位服务器服务于很大一块地域,这是与该定位服务器一同定位的参照GPS接收机做不到的。
定位服务器在不断从GPS参照接收机网接收至少一部分卫星导航信息数据和校正数据的同时,还接受对移动GPS接收机(示为客户424)位置的请求。与移动GPS接收机的联系通常始于数据交换。一般而言,多谱勒数据423提供给移动GPS接收机424(基于来自该移动接收机或蜂窝元件的近似位置数据),然后移动GPS接收机将伪距离数据425提供给定位服务器上的客户接口420。如上所述,这种定位处理可以由移动GPS接收机通过按911而启动(在蜂窝电话情况下),或可由被认为对应于图1的访问终端29的远地操作员422启动。如图7所示,通过客户接口420将多普勒测算414从定位服务器提供给移动GPS接收机424。而后者一般以伪距离数据425作出响应,并与星历表数据一起确定其位置。可用普通GPS接收机中任一种常规位置算法作位置计算,然后将示为导航求解414的这一位置提供给客户接口420,而后者可通过执行模块421(通常为软件模块)再把这一信息传递给远地操作员422。在一实施例中,远地操作员422是PSAP(公共安全应答点),它是应答911电话呼叫的控制中心。
客户接口420管理定位服务器与客户(如移动GPS接收机)间的通信链路。在一实施例中,执行接口把一个客户接口目标分配给每个移动GPS接收机。客户接口一般可在地方服务上由软件操作实现。通常也在定位服务器上软件操作的执行模块421,分配诸接口解决远地操作请求,还控制与外部数据库的接口,执行网络管理和其它必需的外部交互作用。特定的定位服务器通常提供多个远地操作员接口,例如可以提供标准帧中继、x.25和TCP/IP网接续,以满足远地操作员的要求。
虽然上述已经设想了一种特定的结构(其中移动SPS接收机从SPS卫星接收SPS信号,并对这些卫星确定伪距离,再将伪距离连同时间标记发送给定位服务器,由后者确定该移动接收机的位置),但是本发明显然可以采用其它结构。例如,移动SPS接收机可通过接收SPS信号并确定伪距离,而且接收和应用卫星星历表数据(如来自定位服务器的数据,该服务器根据由与该移动SPS接收机通信的区站所确定的该接收机的近似位置,发送有关的卫星星历表数据),可以确定其自己的位置。在本例中,定位服务器从参照网的诸接收机接收卫星星历表数据,根据对移动接收机定位的请求,通过小区通信系统(如蜂窝电话系统)向该移动接收机发射有关的卫星星历表数据。有关的卫星星历表数据一般根据该移动接收机的近似位置确定;该近似地点可由与该移动接收机建立了小区无线通信链路的区站的地点确定。定位服务器可用区站提供的标识符确定近似地点;在Norman F.Krasner于1997年4月15日提交的共同待批美国专利申请No.08/842,559中,描述了各种确定和应用该近似定位的技术,该申请包括在此作参照。近似定位将确定在观察范围内的诸卫星,然后定位服务器通过移动交换中心与区站向该移动接收机发射这些卫星的卫星星历表数据。本例中,定位服务器还可向移动SPS接收机发射多普勒测算数据和/或卫星年历和/或伪距离校正值。
虽然已参照GPS卫星描述了本发明的方法和设备,但是它们显然同样适用于利用准卫星或卫星与准卫星(pseudolites)组合的定位系统。准卫星是广播以L波段载波信号调制的PN码(类似于GPS信号)的地面发射机,通常与GPS时间同步,每台发射机可分配一种独特的PN码而被远地接收机识别。在无法得到绕地球轨道运行的卫星的GPS信号的场合中,如隧道、矿井、大数或其它封闭区,Pseudolites是有用的。这里的术语“卫星”试图包括准卫星或其等效物,而GPS信号试图包括来自准卫星或其等效的GPS类信号。
在上述讨论中,已参照专利申请“美国全球定位卫星(GPS)”系统描述了本发明。然而很清楚,这些方法同样适用于类似的卫星定位系统,特别是俄国的Glonass系统。Glonass系统与GPS系统的主要差异在于,通过应用略微不同的载频而不是应用不同的伪随机码,使不同卫星的发射相互区分开来。在此情况下,基本上上述所有的电路与算法都适用,只是在处理新的卫星的发射时,要用对应于不同载频的不同指数乘法器对数据作预处理。这里的术语“GPS”包括此类卫星定位系统,其中包括俄国的Glonass系统。
在上述说明书中,已参照特定的示例性实施例描述了本发明,显然,在不背离权利要求书所限定的本发明的广义精神与范围的情况下,可对本发明作各种修正和变化。因此,本说明书和附图被视作示例而并非有限制的意义。

Claims (46)

1.一种在卫星定位系统SPS中处理卫星位置信息的方法,所述方法包括:
在第一数字处理系统处接收来自具有第一已知位置的第一SPS接收机的第一卫星星历表数据;
在所述第一数字处理系统处接收来自具有第二已知位置的第二SPS接收机的第二卫星星历表数据;
在所述第一数字处理系统处接收来自移动SPS接收机的多个伪距离数据;
用所述多个伪距离数据和所述第一与第二卫星星历表数据中的至少一种数据计算所述移动SPS接收机的位置信息。
2.如权利要求1所述的方法,其特征在于,所述第一数字处理系统计算所述位置信息。
3.如权利要求1所述的方法,其特征在于,所述第一数字处理系统相对于所述第一已知位置位于远端,其中所述第一SPS接收机是第一参照接收机。
4.如权利要求3所述的方法,其特征在于,所述第一数字处理系统相对于所述第二已知位置位于远端,其中所述第二SPS接收机是第二参照接收机。
5.如权利要求1所述的方法,其中所述第一卫星星历表数据是从看得到所述第一SPS接收机的第一组SPS卫星接收的,其中,所述第二卫星星历表数据是从看得到所述第二SPS接收机的第二组SPS卫星接收的。
6.如权利要求1所述的方法,其特征在于,所述方法还包括:
在所述第一数字处理系统处接收来自所述第一SPS接收机的第一伪距离校正数据;
在所述第一数字处理系统处接收来自所述第二SPS接收机的第二伪距离校正数据。
7.如权利要求6所述的方法,其特征在于,所述第一与第二伪距离校正数据中至少有一个用来校正来自所述移动SPS接收机的所述多个伪距离数据,以提供经校正的多个伪距离数据。
8.如权利要求7所述的方法,其特征在于,所述位置信息是根据所述校正的多个伪距离数据和所述第一与第二卫星星历表数据中至少一个数据计算的。
9.如权利要求5所述的方法,其特征在于,所述第一卫星星历表数据包括来自所述第一组SPS卫星的导航信息,所述第二卫星星历表数据包括来自所述第二组SPS卫星的导航信息。
10.如权利要求1所述的方法,其特征在于,所述方法还包括:
在第二数字处理系统处接收来自所述第一SPS接收机的第一伪距离数据;
在所述第二数字处理系统处接收来自所述第二SPS接收机的第二伪距离数据;
用所述第一伪距离数据作校正以提供合并的第一伪距离校正数据,并用所述第二伪距离数据作校正以提供合并的第二伪距离校正数据;
向所述第一数字处理系统发射所述合并的第一伪距离校正数据与第二伪距离校正数据中的至少一个数据。
11.如权利要求10所述的方法,其特征在于,所述合并的第一与第二伪距离数据中的至少一个用来校正来自所述移动SPS接收机的所述多个伪距离数据,以提供多个校正的伪距离数据。
12.如权利要求11所述的方法,其特征在于,所述位置信息是根据所述校正的多个伪距离数据和所述第一与第二卫星星历表数据二者中的至少一个数据计算的。
13.如权利要求12所述的方法,其特征在于,所述第一星历表数据是从来自第一组看得到所述第一SPS接收机的SPS卫星的导航信息中导出的,而所述第二卫星星历表数据是从来自第二组看得到所述第二SPS接收机的SPS卫星的导航信息中导出的。
14.如权利要求13所述的方法,其特征在于,所述第一卫星星历表数据是通过所述第二数字处理系统从所述第一SPS接收机收到的,所述第二卫星星历表数据是通过所述第二数字处理系统从所述第二SPS接收机接收到的。
15.如权利要求12所述的方法,其特征在于,所述第一数字处理系统包括第一容错计算机系统,而所述第二数字处理系统包括第二容错计算机系统,其中所述第一伪距离数据包括相对于看得到所述第一SPS接收机的卫星的第一伪距离和相对于看得到所述第一SPS接收机的卫星的第一伪距离校正值中的至少一个。
16.如权利要求12所述的方法,其特征在于,所述第一数字处理系统通过小区无线通信系统耦接至所述移动SPS接收机。
17.如权利要求16所述的方法,其特征在于,所述小区无线通信系统包括移动交换中心。
18.如权利要求17所述的方法,其特征在于,所述第一与第二SPS接收机和所述第一与第二数字处理系统都通过分组数据网耦接在一起。
19.如权利要求10所述的方法,其特征在于,所述方法还包括:
在第三数字处理系统处从所述第一SPS接收机接收所述第一伪距离数据;
在所述第三数字处理系统处从所述第二SPS接收机接收所述第二伪距离数据;
在所述第三数字处理系统处用所述第一伪距离数据作校正,以提供所述合并的第一伪距离校正数据,并用所述第二伪距离校正数据作校正,以提供所述合并的第二伪距离校正数据,其中,所述第一数字处理系统能从所述第三数字处理系统接收所述合并的第一与第二伪距离校正数据。
20.一种处理卫星位置信息的系统,其特征在于,所述系统包括:
多个卫星定位系统SPS参照接收机,各自有一已知的位置,所述多个SPS参照接收机散布于某一地域,所述多个SPS参照接收机中的每一个将从看得到多个所述SPS参照接收机的卫星接收到的卫星星历表数据发射入通信网;
多个数字处理系统,各自耦接到所述通信网,以接收通过所述通信网发射的卫星星历表数据,所述多个数字处理系统包括第一与第二数字处理系统,所述第一数字处理系统从第一移动SPS接收机接收第一多个伪距离数据,并根据所述第一多个伪距离数据和从所述通信网接收到的卫星星历表数据计算所述第一移动SPS接收机的第一位置信息,所述第二数字处理系统从第二移动SPS接收机接收第二多个伪距离数据,并根据所述第二多个伪距离数据和从所述通信网接收到的卫星星历表数据计算所述第二移动SPS接收机的第二位置信息。
21.如权利要求20所述的系统,其特征在于,所述第一数字处理系统通过小区无线通信系统以通信方式耦接至所述第一移动SPS接收机,所述第二数字处理系统通过所述小区无线通信系统以通信方式耦接至所述第二移动SPS接收机。
22.如权利要求21所述的系统,其特征在于,所述通信网是一种分组数据网。
23.如权利要求21所述的系统,其特征在于,所述第一数字处理系统相对于所述多个SPS参照接收机中的至少一些接收机来说位于远端。
24.如权利要求21所述的系统,其特征在于,所述多个SPS参照接收机包括第一与第二SPS参照接收机,其中,所述第一与第二SPS参照接收机分别将第一与第二卫星星历表数据发射入所述通信网,所述第一卫星星历表数据从看得到所述第一SPS参照接收机的第一组SPS卫星接收的导航信息中得到,而所述第二卫星星历表数据从看得到所述第二SPS参照接收机的第二组SPS卫星发出的导航信息中得到。
25.如权利要求24所述的系统,其特征在于,所述第一数字处理系统能用所述第一与第二卫星星历表数据计算所述第一移动SPS接收机的所述第一位置信息,所述第二数字处理系统能用所述第一与第二卫星星历表数据计算所述第二移动SPS接收机的所述第二位置信息。
26.如权利要求24所述的系统,其特征在于,所述第一与第二数字处理系统接收由来自所述第一SPS参照接收机的数据导出的第一伪距离校正数据和由来自所述第二SPS参照接收机的数据导出的第二伪距离校正数据。
27.如权利要求26所述的系统,其特征在于,所述第一SPS参照接收机将所述第一伪距离校正数据发射入所述通信网,所述第二SPS参照接收机将所述第二伪距离校正数据发射入所述通信网。
28.如权利要求27所述的系统,其特征在于,至少一个所述第一与第二伪距离校正数据用来校正所述第一多个伪距离数据,以提供合并的第一多个伪距离数据,而其中所述第一位置由所述合并的第一多个伪距离数据和所述第一与第二卫星星历表数据二者中的至少一个来确定。
29.如权利要求24所述的系统,其特征在于,它还包括:
耦接到所述通信网的再一个数字处理系统,所述再一个数字处理系统接收来自所述第一SPS参照接收机的第一伪距离数据和来自所述第二SPS参照接收机的第二伪距离数据,并对所述第一伪距离数据进行校正以提供合并的第一伪距离校正数据,对所述第二伪距离数据进行校正以提供合并的第二伪距离校正数据,所述再一个数字处理系统再将所述第一合并的伪距离校正数据与第二合并的伪距离校正数据发送给所述第一数字处理系统。
30.一种处理卫星位置信息的系统,其特征在于,所述系统包括:
通信媒体;
具有第一已知位置和耦接至所述通信媒体的第一通信接口的第一卫星定位系统SPS参照接收机,所述第一SPS参照接收机把第一卫星星历表数据发射入所述通信媒体;
具有第二已知位置和耦接至所述通信媒体的第二通信接口的第二SPS参照接收机,所述第二SPS参照接收机把第二卫星星历表数据发射入所述通信媒体;及
耦接到所述通信媒体的第一数字处理系统,用于接收所述第一与第二卫星星历表数据中的至少一个,并向移动SPS接收机提供卫星信息,以对所述移动SPS接收机确定位置信息的导航解,其中所述移动SPS接收机耦接于无线蜂窝接收机,所述无线蜂窝接收机接收所述卫星信息并向所述移动SPS接收机提供所述卫星信息。
31.如权利要求30所述的系统,其特征在于,所述第一卫星星历表数据是从看得到所述第一SPS参照接收机的第一组SPS卫星接收的,其中所述第二卫星星历表数据是从看提到所述第二SPS参照接收机的第二组SPS卫星接收的。
32.如权利要求31所述的系统,其特征在于,所述通信媒体包括一分组数据网,其中所述第一通信接口和所述第二通信接口分别以分组数据形式提供所述第一与第二卫星星历表数据。
33.如权利要求31所述的系统,其特征在于,所述第一与第二SPS接收机分别把第一与第二伪距离数据发射入所述通信媒体,其中所述第一伪距离数据包括至少一个相对于看得到所述第一SPS参照接收机的诸卫星的第一伪距离以及相对于看得到所述第一SPS参照接收机的诸卫星的第一伪距离校正值。
34.如权利要求33所述的系统,其特征在于,所述系统还包括:
耦接至所述通信媒体的第二数字处理系统,所述第一数字处理系统接收所述第一和第二伪距离数据,并校正所述第一伪距离数据以提供发射入所述通信媒体的第一校正的伪距离校正数据,且校正所述第二伪距离数据以提供发射入所述通信媒体的第二校正的伪距离校正数据。
35.如权利要求30所述的系统,其特征在于,所述卫星信息包括至少一个看得到所述移动SPS接收机的诸卫星的卫星星历表数据或所述看得到的诸卫星的多谱勒测算数据或卫星年历数据,其中所述卫星信息从所述第一数字处理系统发射到所述移动SPS接收机,而且其中看得到所述移动SPS接收机的诸卫星的所述卫星星历表数据是从所述第一与第二卫星星历表数据中的至少一个得到的。
36.如权利要求35所述的系统,其特征在于,所述移动SPS接收机确定所述导航解。
37.一种发送卫星星历信息的系统,其特征在于,所述系统包括:
通信媒体;
具有第一已知位置和耦接至所述通信媒体的第一通信接口的第一卫星定位系统SPS参照接收机,所述第一SPS参照接收机把第一卫星星历表数据的第一分组发射入所述通信媒体,每个所述第一分组少于卫星星历表数据的一个子帧;
具有第二已知位置和耦接至所述通信媒体的第二通信接口的第二SPS参照接收机,所述第二SPS参照接收机把第二卫星星历表数据的第二分组发射入所述通信媒体,每个所述第二分组少于卫星星历表数据的一个子帧。
38.如权利要求37所述的系统,其特征在于,所述第一卫星星历表数据是从看得到所述第一SPS参照接收机的第一组SPS卫星接收的,其中所述第二卫星星历表数据是从看提到所述第二SPS参照接收机的第二组SPS卫星接收的。
39.如权利要求38所述的系统,其特征在于,所述通信媒体包括一分组数据网,其中所述第一通信接口以分组数据形式提供所述第一卫星星历表数据。
40.如权利要求39所述的系统,其特征在于,所述第二通信接口以分组数据形式提供所述第二卫星星历表数据。
41.如权利要求38所述的系统,其特征在于,所述第一SPS接收机把第一伪距离数据发射入所述通信媒体,而其中所述第一伪距离数据包括至少一个相对于看得到所述第一SPS参照接收机的诸卫星的第一伪距离以及相对于看得到所述第一SPS参照接收机的诸卫星的第一伪距离校正值。
42.如权利要求41所述的系统,其特征在于,所述第二SPS接收机把第二伪距离数据发射入所述通信媒体。
43.如权利要求42所述的系统,其特征在于,所述系统还包括:
耦接至所述通信媒体的第一数字处理系统,所述第一数字处理系统接收所述第一伪距离数据,并校正所述第一伪距离数据以提供发射入所述通信媒体的第一校正的伪距离校正数据。
44.如权利要求43所述的系统,其特征在于,所述第一数字处理系统接收所述第二伪距离数据,并校正所述第二伪距离数据,以提供被发射入所述通信媒体的第二校正的伪距离校正数据。
45.如权利要求37所述的系统,其特征在于,所述第一卫星星历表数据是从看得到所述第一SPS参照接收机的第一组SPS卫星接收的。
46.一种处理卫星位置信息的系统,其特征在于,所述系统包括:
通信媒体;
具有第一已知位置和耦接至所述通信媒体的第一通信接口的第一卫星定位系统SPS参照接收机,所述第一SPS参照接收机把第一卫星星历表数据的第一分组发射入所述通信媒体,每个所述第一分组少于卫星星历表数据的一个子帧,从而所述第一分组以大于每隔6秒一个分组的每秒分组速率发射入所述通信媒体。
CNB998079340A 1998-04-28 1999-04-13 卫星定位参照系统与方法 Expired - Lifetime CN1252490C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/067,407 US6215441B1 (en) 1997-04-15 1998-04-28 Satellite positioning reference system and method
US09/067,407 1998-04-28

Publications (2)

Publication Number Publication Date
CN1307683A CN1307683A (zh) 2001-08-08
CN1252490C true CN1252490C (zh) 2006-04-19

Family

ID=22075799

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998079340A Expired - Lifetime CN1252490C (zh) 1998-04-28 1999-04-13 卫星定位参照系统与方法

Country Status (17)

Country Link
US (1) US6215441B1 (zh)
EP (1) EP1075665B1 (zh)
JP (6) JP2002513159A (zh)
KR (1) KR100644112B1 (zh)
CN (1) CN1252490C (zh)
AT (1) ATE458202T1 (zh)
AU (1) AU4181299A (zh)
BR (1) BR9909982B1 (zh)
CA (1) CA2330575C (zh)
DE (1) DE69942023D1 (zh)
ES (1) ES2339197T3 (zh)
FI (1) FI109842B (zh)
HK (1) HK1036106A1 (zh)
ID (1) ID27876A (zh)
IL (1) IL139253A (zh)
MX (1) MXPA00010615A (zh)
WO (1) WO1999056145A1 (zh)

Families Citing this family (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
WO1995018977A1 (en) * 1994-01-03 1995-07-13 Trimble Navigation A network for code phase differential gps corrections
US5884214A (en) * 1996-09-06 1999-03-16 Snaptrack, Inc. GPS receiver and method for processing GPS signals
US6473099B1 (en) * 1996-06-03 2002-10-29 Webtv Networks, Inc. Automatically upgrading software over a satellite link
US6215441B1 (en) * 1997-04-15 2001-04-10 Snaptrack, Inc. Satellite positioning reference system and method
US6816710B2 (en) * 1998-05-06 2004-11-09 Snaptrack, Inc. Method and apparatus for signal processing in a satellite positioning system
US7711038B1 (en) 1998-09-01 2010-05-04 Sirf Technology, Inc. System and method for despreading in a spread spectrum matched filter
US7545854B1 (en) * 1998-09-01 2009-06-09 Sirf Technology, Inc. Doppler corrected spread spectrum matched filter
US7904187B2 (en) 1999-02-01 2011-03-08 Hoffberg Steven M Internet appliance system and method
US9020756B2 (en) * 1999-04-23 2015-04-28 Global Locate, Inc. Method and apparatus for processing satellite positioning system signals
US7053824B2 (en) 2001-11-06 2006-05-30 Global Locate, Inc. Method and apparatus for receiving a global positioning system signal using a cellular acquisition signal
US6453237B1 (en) * 1999-04-23 2002-09-17 Global Locate, Inc. Method and apparatus for locating and providing services to mobile devices
US6411892B1 (en) 2000-07-13 2002-06-25 Global Locate, Inc. Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris
FI108895B (fi) * 2000-01-04 2002-04-15 Nokia Corp Menetelmä sijainnin määrityksen suorittamiseksi ja elektroniikkalaite
AU2001249343A1 (en) * 2000-03-24 2001-10-08 Locate Networks, Inc. Location detection system
US7546395B2 (en) * 2002-10-10 2009-06-09 Sirf Technology, Inc. Navagation processing between a tracker hardware device and a computer host based on a satellite positioning solution system
US6778136B2 (en) * 2001-12-13 2004-08-17 Sirf Technology, Inc. Fast acquisition of GPS signal
US7929928B2 (en) * 2000-05-18 2011-04-19 Sirf Technology Inc. Frequency phase correction system
US8116976B2 (en) 2000-05-18 2012-02-14 Csr Technology Inc. Satellite based positioning method and system for coarse location positioning
US8078189B2 (en) * 2000-08-14 2011-12-13 Sirf Technology, Inc. System and method for providing location based services over a network
US7813875B2 (en) * 2002-10-10 2010-10-12 Sirf Technology, Inc. Layered host based satellite positioning solutions
US6389291B1 (en) * 2000-08-14 2002-05-14 Sirf Technology Multi-mode global positioning system for use with wireless networks
US7970411B2 (en) * 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7970412B2 (en) * 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US6704650B1 (en) * 2000-05-31 2004-03-09 Skynetix, Llc Technique for accurate distance and velocity calculations using the global positioning system (GPS)
US7126527B1 (en) * 2000-06-23 2006-10-24 Intel Corporation Method and apparatus for mobile device location via a network based local area augmentation system
US7616705B1 (en) 2000-07-27 2009-11-10 Sirf Technology Holdings, Inc. Monolithic GPS RF front end integrated circuit
US6856794B1 (en) * 2000-07-27 2005-02-15 Sirf Technology, Inc. Monolithic GPS RF front end integrated circuit
US6961019B1 (en) * 2000-08-10 2005-11-01 Sirf Technology, Inc. Method and apparatus for reducing GPS receiver jamming during transmission in a wireless receiver
US7436907B1 (en) 2000-08-24 2008-10-14 Sirf Technology, Inc. Analog compression of GPS C/A signal to audio bandwidth
US6529829B2 (en) * 2000-08-24 2003-03-04 Sirf Technology, Inc. Dead reckoning system for reducing auto-correlation or cross-correlation in weak signals
US6331836B1 (en) 2000-08-24 2001-12-18 Fast Location.Net, Llc Method and apparatus for rapidly estimating the doppler-error and other receiver frequency errors of global positioning system satellite signals weakened by obstructions in the signal path
EP1914562A3 (en) 2000-08-25 2008-07-02 QUALCOMM Incorporated Method and apparatus for using satellite status information in satellite positioning systems
US6665612B1 (en) * 2000-08-29 2003-12-16 Sirf Technology, Inc. Navigation processing for a satellite positioning system receiver
US7463893B1 (en) 2000-09-22 2008-12-09 Sirf Technology, Inc. Method and apparatus for implementing a GPS receiver on a single integrated circuit
AT4838U1 (de) * 2000-10-04 2001-12-27 Steyr Daimler Puch Ag Achsantriebsblock für ein kraftfahrzeug
US7574215B1 (en) * 2000-11-06 2009-08-11 Trimble Navigation Limited System and method for distribution of GPS satellite information
US6992617B2 (en) 2003-11-13 2006-01-31 Global Locate, Inc. Method and apparatus for monitoring the integrity of satellite tracking data used by a remote receiver
US7196660B2 (en) * 2000-11-17 2007-03-27 Global Locate, Inc Method and system for determining time in a satellite positioning system
US20070200752A1 (en) * 2001-06-06 2007-08-30 Global Locate, Inc. Method and apparatus for maintaining integrity of long-term orbits in a remote receiver
US6937187B2 (en) 2000-11-17 2005-08-30 Global Locate, Inc. Method and apparatus for forming a dynamic model to locate position of a satellite receiver
US7443340B2 (en) 2001-06-06 2008-10-28 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information
US6799116B2 (en) * 2000-12-15 2004-09-28 Trimble Navigation Limited GPS correction methods, apparatus and signals
US7671489B1 (en) 2001-01-26 2010-03-02 Sirf Technology, Inc. Method and apparatus for selectively maintaining circuit power when higher voltages are present
US7747257B2 (en) * 2001-02-16 2010-06-29 Motorola, Inc. GPS assistance messages in cellular communications networks and methods therefor
US6703971B2 (en) * 2001-02-21 2004-03-09 Sirf Technologies, Inc. Mode determination for mobile GPS terminals
JP2002311123A (ja) * 2001-04-11 2002-10-23 Mitsui & Co Ltd 衛星測位システム
US7769076B2 (en) * 2001-05-18 2010-08-03 Broadcom Corporation Method and apparatus for performing frequency synchronization
US7006556B2 (en) * 2001-05-18 2006-02-28 Global Locate, Inc. Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference
US8244271B2 (en) * 2001-05-21 2012-08-14 Csr Technology Inc. Distributed data collection of satellite data
US8358245B2 (en) * 2001-06-06 2013-01-22 Broadcom Corporation Method and system for extending the usability period of long term orbit (LTO)
US20080186229A1 (en) * 2001-06-06 2008-08-07 Van Diggelen Frank Method and Apparatus for Monitoring Satellite-Constellation Configuration To Maintain Integrity of Long-Term-Orbit Information In A Remote Receiver
US8212719B2 (en) * 2001-06-06 2012-07-03 Global Locate, Inc. Method and apparatus for background decoding of a satellite navigation message to maintain integrity of long term orbit information in a remote receiver
US7548816B2 (en) 2001-06-06 2009-06-16 Global Locate, Inc. Method and apparatus for generating and securely distributing long-term satellite tracking information
US20080125971A1 (en) * 2001-06-06 2008-05-29 Van Diggelen Frank Method and apparatus for improving accuracy and/or integrity of long-term-orbit information for a global-navigation-satellite system
US9052374B2 (en) 2001-07-18 2015-06-09 Fast Location.Net, Llc Method and system for processing positioning signals based on predetermined message data segment
US6628234B2 (en) 2001-07-18 2003-09-30 Fast Location.Net, Llc Method and system for processing positioning signals in a stand-alone mode
US6529160B2 (en) 2001-07-18 2003-03-04 Fast Location.Net, Llc Method and system for determining carrier frequency offsets for positioning signals
US6515620B1 (en) 2001-07-18 2003-02-04 Fast Location.Net, Llc Method and system for processing positioning signals in a geometric mode
US6651000B2 (en) 2001-07-25 2003-11-18 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information in a compact format
US7451205B2 (en) * 2001-10-01 2008-11-11 Hewlett-Packard Development Company, L.P. Multimedia stream pre-fetching and redistribution in servers to accommodate mobile clients
US7656350B2 (en) * 2001-11-06 2010-02-02 Global Locate Method and apparatus for processing a satellite positioning system signal using a cellular acquisition signal
AU2002360755A1 (en) * 2001-12-27 2003-07-24 Qualcomm, Incorporated Creating and using base station almanac information in a wireless communication system having a position location capability
US20030125045A1 (en) * 2001-12-27 2003-07-03 Riley Wyatt Thomas Creating and using base station almanac information in a wireless communication system having a position location capability
US8918073B2 (en) * 2002-03-28 2014-12-23 Telecommunication Systems, Inc. Wireless telecommunications location based services scheme selection
US7426380B2 (en) 2002-03-28 2008-09-16 Telecommunication Systems, Inc. Location derived presence information
US8027697B2 (en) * 2007-09-28 2011-09-27 Telecommunication Systems, Inc. Public safety access point (PSAP) selection for E911 wireless callers in a GSM type system
US9154906B2 (en) 2002-03-28 2015-10-06 Telecommunication Systems, Inc. Area watcher for wireless network
US8290505B2 (en) 2006-08-29 2012-10-16 Telecommunications Systems, Inc. Consequential location derived information
US20030186699A1 (en) * 2002-03-28 2003-10-02 Arlene Havlark Wireless telecommunications location based services scheme selection
US8126889B2 (en) * 2002-03-28 2012-02-28 Telecommunication Systems, Inc. Location fidelity adjustment based on mobile subscriber privacy profile
US7522588B2 (en) * 2002-05-13 2009-04-21 Qualcomm Incorporated System and method for reference data processing in network assisted position determination
US6738013B2 (en) * 2002-06-20 2004-05-18 Sirf Technology, Inc. Generic satellite positioning system receivers with selective inputs and outputs
WO2004001439A1 (en) * 2002-06-20 2003-12-31 Sirf Technology, Inc. Generic satellite positioning system receivers with programmable inputs and selectable inputs and outputs
KR100722350B1 (ko) 2002-08-15 2007-05-29 서프 테크놀러지, 인코포레이티드 위치 측정 시스템을 위한 인터페이스
US7239271B1 (en) 2002-08-15 2007-07-03 Sirf Technology, Inc. Partial almanac collection system
US7595752B2 (en) * 2002-10-02 2009-09-29 Global Locate, Inc. Method and apparatus for enhanced autonomous GPS
US7158080B2 (en) * 2002-10-02 2007-01-02 Global Locate, Inc. Method and apparatus for using long term satellite tracking data in a remote receiver
US7945387B2 (en) * 2003-03-19 2011-05-17 Broadcom Corporation Method and apparatus for distribution of satellite navigation data
US8560629B1 (en) * 2003-04-25 2013-10-15 Hewlett-Packard Development Company, L.P. Method of delivering content in a network
US7123928B2 (en) * 2003-07-21 2006-10-17 Qualcomm Incorporated Method and apparatus for creating and using a base station almanac for position determination
US7117417B2 (en) * 2003-07-30 2006-10-03 Navcom Technology, Inc. Method for generating clock corrections for a wide-area or global differential GPS system
EP1664824B1 (en) 2003-09-02 2015-01-14 SiRF Technology, Inc. Satellite positioning receiver and method of communicating between the signal processing and FFT subsystems of said satellite positioning receiver
US7822105B2 (en) 2003-09-02 2010-10-26 Sirf Technology, Inc. Cross-correlation removal of carrier wave jamming signals
FI20031417A0 (fi) * 2003-09-30 2003-09-30 Nokia Corp Sijainninavustustiedon välittäminen matkaviestimeen
US20050234643A1 (en) * 2003-11-21 2005-10-20 Charles Abraham Method and apparatus for managing network elements in a satellite navigation data distribution system
US7424293B2 (en) 2003-12-02 2008-09-09 Telecommunication Systems, Inc. User plane location based service using message tunneling to support roaming
US7260186B2 (en) 2004-03-23 2007-08-21 Telecommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
US20080126535A1 (en) 2006-11-28 2008-05-29 Yinjun Zhu User plane location services over session initiation protocol (SIP)
US20080090546A1 (en) 2006-10-17 2008-04-17 Richard Dickinson Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
US7365680B2 (en) * 2004-02-10 2008-04-29 Sirf Technology, Inc. Location services system that reduces auto-correlation or cross-correlation in weak signals
US9137771B2 (en) * 2004-04-02 2015-09-15 Qualcomm Incorporated Methods and apparatuses for beacon assisted position determination systems
US7113128B1 (en) * 2004-10-15 2006-09-26 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US6985105B1 (en) * 2004-10-15 2006-01-10 Telecommunication Systems, Inc. Culled satellite ephemeris information based on limiting a span of an inverted cone for locating satellite in-range determinations
US7411546B2 (en) 2004-10-15 2008-08-12 Telecommunication Systems, Inc. Other cell sites used as reference point to cull satellite ephemeris information for quick, accurate assisted locating satellite location determination
US7629926B2 (en) 2004-10-15 2009-12-08 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
TWI269561B (en) * 2005-04-13 2006-12-21 Mitac Int Corp System and method for dynamically receiving the packet of an assisted global positioning system (AGPS)
US8660573B2 (en) 2005-07-19 2014-02-25 Telecommunications Systems, Inc. Location service requests throttling
US20070049288A1 (en) * 2005-08-24 2007-03-01 Lamprecht Leslie J Creating optimum temporal location trigger for multiple requests
US9282451B2 (en) 2005-09-26 2016-03-08 Telecommunication Systems, Inc. Automatic location identification (ALI) service requests steering, connection sharing and protocol translation
US7825780B2 (en) * 2005-10-05 2010-11-02 Telecommunication Systems, Inc. Cellular augmented vehicle alarm notification together with location services for position of an alarming vehicle
US7907551B2 (en) 2005-10-06 2011-03-15 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) location based 911 conferencing
US8467320B2 (en) 2005-10-06 2013-06-18 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) multi-user conferencing
US8107446B2 (en) * 2005-11-07 2012-01-31 Radiofy Llc Wireless RFID networking systems and methods
JP5228276B2 (ja) * 2006-01-12 2013-07-03 沖電気工業株式会社 位置推定システム
US20070189270A1 (en) * 2006-02-15 2007-08-16 Borislow Daniel M Network adapter
US8150363B2 (en) 2006-02-16 2012-04-03 Telecommunication Systems, Inc. Enhanced E911 network access for call centers
US8059789B2 (en) 2006-02-24 2011-11-15 Telecommunication Systems, Inc. Automatic location identification (ALI) emergency services pseudo key (ESPK)
US9167553B2 (en) 2006-03-01 2015-10-20 Telecommunication Systems, Inc. GeoNexus proximity detector network
US7471236B1 (en) 2006-03-01 2008-12-30 Telecommunication Systems, Inc. Cellular augmented radar/laser detector
US7899450B2 (en) 2006-03-01 2011-03-01 Telecommunication Systems, Inc. Cellular augmented radar/laser detection using local mobile network within cellular network
US7492258B1 (en) 2006-03-21 2009-02-17 Radiofy Llc Systems and methods for RFID security
US20070243851A1 (en) * 2006-04-18 2007-10-18 Radiofy Llc Methods and systems for utilizing backscattering techniques in wireless applications
US8208605B2 (en) 2006-05-04 2012-06-26 Telecommunication Systems, Inc. Extended efficient usage of emergency services keys
EP2035995B1 (en) * 2006-06-22 2018-09-26 Nokia Technologies Oy Enforcing geographic constraints in content distribution
US8121238B2 (en) * 2006-06-30 2012-02-21 Csr Technology Inc. System and method for synchronizing digital bits in a data stream
WO2008005904A2 (en) * 2006-06-30 2008-01-10 Sirf Technology, Inc. Enhanced aiding in gps systems
CN1921703B (zh) * 2006-09-19 2010-05-19 华为技术有限公司 Gps信息交换过程中小区id绑定的方法及系统
US7966013B2 (en) 2006-11-03 2011-06-21 Telecommunication Systems, Inc. Roaming gateway enabling location based services (LBS) roaming for user plane in CDMA networks without requiring use of a mobile positioning center (MPC)
CN1975458B (zh) * 2006-12-12 2011-03-23 深圳市赛格导航科技股份有限公司 冗余gps系统及其方法
US8314736B2 (en) * 2008-03-31 2012-11-20 Golba Llc Determining the position of a mobile device using the characteristics of received signals and a reference database
US8838481B2 (en) 2011-07-26 2014-09-16 Golba Llc Method and system for location based hands-free payment
US8193978B2 (en) * 2007-11-14 2012-06-05 Golba Llc Positioning system and method using GPS with wireless access points
US8838477B2 (en) 2011-06-09 2014-09-16 Golba Llc Method and system for communicating location of a mobile device for hands-free payment
US20080143584A1 (en) * 2006-12-18 2008-06-19 Radiofy Llc, A California Limited Liability Company Method and system for determining the distance between an RFID reader and an RFID tag using phase
US8294554B2 (en) 2006-12-18 2012-10-23 Radiofy Llc RFID location systems and methods
US8344949B2 (en) 2008-03-31 2013-01-01 Golba Llc Wireless positioning approach using time-delay of signals with a known transmission pattern
US7466209B2 (en) * 2007-01-05 2008-12-16 Sirf Technology, Inc. System and method for providing temperature correction in a crystal oscillator
US20080167018A1 (en) * 2007-01-10 2008-07-10 Arlene Havlark Wireless telecommunications location based services scheme selection
US8050386B2 (en) 2007-02-12 2011-11-01 Telecommunication Systems, Inc. Mobile automatic location identification (ALI) for first responders
US8305190B2 (en) * 2007-03-20 2012-11-06 Golba Llc Method and apparatus for power management for a radio frequency identification system
TWI492607B (zh) * 2007-04-03 2015-07-11 Ymax Comm Corp 集結聯絡表之技術
US7724612B2 (en) * 2007-04-20 2010-05-25 Sirf Technology, Inc. System and method for providing aiding information to a satellite positioning system receiver over short-range wireless connections
US7978050B2 (en) 2007-05-30 2011-07-12 Golba Llc Systems and methods for providing quality of service to RFID
US20080319652A1 (en) * 2007-06-20 2008-12-25 Radiofy Llc Navigation system and methods for map navigation
US9360337B2 (en) * 2007-06-20 2016-06-07 Golba Llc Navigation system and methods for route navigation
DE102007036497A1 (de) * 2007-08-01 2009-02-19 Astrium Gmbh Positionierungsvorrichtung und Positionierungsverfahren für ein Satellitennavigationssystem
KR100902333B1 (ko) * 2007-09-10 2009-06-12 한국전자통신연구원 항법칩이 탑재된 탐색구조단말기를 이용하는 조난자의위치를 측정하는 방법 및 장치
WO2009038726A1 (en) 2007-09-17 2009-03-26 Telecommunication Systems, Inc. Emergency 911 data messaging
US7995683B2 (en) 2007-10-24 2011-08-09 Sirf Technology Inc. Noise floor independent delay-locked loop discriminator
CN101910861B (zh) * 2007-11-19 2013-10-23 Rx网络股份有限公司 用于预测的和实时辅助的gps系统的分布式轨道建模和传播方法
US7642957B2 (en) * 2007-11-27 2010-01-05 Sirf Technology, Inc. GPS system utilizing multiple antennas
US9130963B2 (en) 2011-04-06 2015-09-08 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US7929530B2 (en) 2007-11-30 2011-04-19 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US8144053B2 (en) * 2008-02-04 2012-03-27 Csr Technology Inc. System and method for verifying consistent measurements in performing GPS positioning
US20090209224A1 (en) * 2008-02-20 2009-08-20 Borislow Daniel M Computer-Related Devices and Techniques for Facilitating an Emergency Call Via a Cellular or Data Network
US8699984B2 (en) 2008-02-25 2014-04-15 Csr Technology Inc. Adaptive noise figure control in a radio receiver
US7616064B2 (en) * 2008-02-28 2009-11-10 Noshir Dubash Digital synthesizer for low power location receivers
US7800541B2 (en) 2008-03-31 2010-09-21 Golba Llc Methods and systems for determining the location of an electronic device
US9829560B2 (en) 2008-03-31 2017-11-28 Golba Llc Determining the position of a mobile device using the characteristics of received signals and a reference database
US8478305B2 (en) * 2008-04-09 2013-07-02 Csr Technology Inc. System and method for integrating location information into an internet phone system
US8073414B2 (en) 2008-06-27 2011-12-06 Sirf Technology Inc. Auto-tuning system for an on-chip RF filter
US8072376B2 (en) * 2008-06-27 2011-12-06 Sirf Technology Inc. Method and apparatus for mitigating the effects of cross correlation in a GPS receiver
US8068587B2 (en) 2008-08-22 2011-11-29 Telecommunication Systems, Inc. Nationwide table routing of voice over internet protocol (VOIP) emergency calls
EP2347395A4 (en) 2008-10-14 2016-11-02 Telecomm Systems Inc Location Based Approach Alert
US8892128B2 (en) 2008-10-14 2014-11-18 Telecommunication Systems, Inc. Location based geo-reminders
US8478228B2 (en) * 2008-10-20 2013-07-02 Qualcomm Incorporated Mobile receiver with location services capability
US8938211B2 (en) 2008-12-22 2015-01-20 Qualcomm Incorporated Providing and utilizing maps in location determination based on RSSI and RTT data
US20100157848A1 (en) * 2008-12-22 2010-06-24 Qualcomm Incorporated Method and apparatus for providing and utilizing local maps and annotations in location determination
US8433283B2 (en) * 2009-01-27 2013-04-30 Ymax Communications Corp. Computer-related devices and techniques for facilitating an emergency call via a cellular or data network using remote communication device identifying information
US8938355B2 (en) * 2009-03-13 2015-01-20 Qualcomm Incorporated Human assisted techniques for providing local maps and location-specific annotated data
US9301191B2 (en) 2013-09-20 2016-03-29 Telecommunication Systems, Inc. Quality of service to over the top applications used with VPN
US8867485B2 (en) 2009-05-05 2014-10-21 Telecommunication Systems, Inc. Multiple location retrieval function (LRF) network having location continuity
US20110009086A1 (en) * 2009-07-10 2011-01-13 Todd Poremba Text to 9-1-1 emergency communication
US8600297B2 (en) * 2009-07-28 2013-12-03 Qualcomm Incorporated Method and system for femto cell self-timing and self-locating
US8686685B2 (en) 2009-12-25 2014-04-01 Golba, Llc Secure apparatus for wirelessly transferring power and communicating with one or more slave devices
US8315599B2 (en) 2010-07-09 2012-11-20 Telecommunication Systems, Inc. Location privacy selector
US20120006610A1 (en) 2010-07-09 2012-01-12 Erik Wallace Telematics enhanced mobile device safety interlock
FR2966001B1 (fr) 2010-10-08 2012-11-16 Thales Sa Procede d'identification d'emetteurs par un terminal dans un reseau iso-frequence
US8688087B2 (en) 2010-12-17 2014-04-01 Telecommunication Systems, Inc. N-dimensional affinity confluencer
US8942743B2 (en) 2010-12-17 2015-01-27 Telecommunication Systems, Inc. iALERT enhanced alert manager
WO2012087353A1 (en) 2010-12-22 2012-06-28 Telecommunication Systems, Inc. Area event handling when current network does not cover target area
US9246349B2 (en) 2010-12-27 2016-01-26 Golba Llc Method and system for wireless battery charging utilizing ultrasonic transducer array based beamforming
US9077188B2 (en) 2012-03-15 2015-07-07 Golba Llc Method and system for a battery charging station utilizing multiple types of power transmitters for wireless battery charging
WO2012141762A1 (en) 2011-02-25 2012-10-18 Telecommunication Systems, Inc. Mobile internet protocol (ip) location
US8649806B2 (en) 2011-09-02 2014-02-11 Telecommunication Systems, Inc. Aggregate location dynometer (ALD)
US9479344B2 (en) 2011-09-16 2016-10-25 Telecommunication Systems, Inc. Anonymous voice conversation
US8831556B2 (en) 2011-09-30 2014-09-09 Telecommunication Systems, Inc. Unique global identifier header for minimizing prank emergency 911 calls
US9313637B2 (en) 2011-12-05 2016-04-12 Telecommunication Systems, Inc. Wireless emergency caller profile data delivery over a legacy interface
US9264537B2 (en) 2011-12-05 2016-02-16 Telecommunication Systems, Inc. Special emergency call treatment based on the caller
JP2013122417A (ja) * 2011-12-12 2013-06-20 Ntt Electornics Corp Gps測位端末及びgps測位システム
US8984591B2 (en) 2011-12-16 2015-03-17 Telecommunications Systems, Inc. Authentication via motion of wireless device movement
US9384339B2 (en) 2012-01-13 2016-07-05 Telecommunication Systems, Inc. Authenticating cloud computing enabling secure services
US9080882B2 (en) 2012-03-02 2015-07-14 Qualcomm Incorporated Visual OCR for positioning
US8688174B2 (en) 2012-03-13 2014-04-01 Telecommunication Systems, Inc. Integrated, detachable ear bud device for a wireless phone
US9307372B2 (en) 2012-03-26 2016-04-05 Telecommunication Systems, Inc. No responders online
US9544260B2 (en) 2012-03-26 2017-01-10 Telecommunication Systems, Inc. Rapid assignment dynamic ownership queue
US9338153B2 (en) 2012-04-11 2016-05-10 Telecommunication Systems, Inc. Secure distribution of non-privileged authentication credentials
US9313638B2 (en) 2012-08-15 2016-04-12 Telecommunication Systems, Inc. Device independent caller data access for emergency calls
US9208346B2 (en) 2012-09-05 2015-12-08 Telecommunication Systems, Inc. Persona-notitia intellection codifier
US9456301B2 (en) 2012-12-11 2016-09-27 Telecommunication Systems, Inc. Efficient prisoner tracking
US8983047B2 (en) 2013-03-20 2015-03-17 Telecommunication Systems, Inc. Index of suspicion determination for communications request
US9408034B2 (en) 2013-09-09 2016-08-02 Telecommunication Systems, Inc. Extended area event for network based proximity discovery
US9516104B2 (en) 2013-09-11 2016-12-06 Telecommunication Systems, Inc. Intelligent load balancer enhanced routing
US9479897B2 (en) 2013-10-03 2016-10-25 Telecommunication Systems, Inc. SUPL-WiFi access point controller location based services for WiFi enabled mobile devices
CN103558607B (zh) * 2013-10-17 2016-04-20 同济大学 一种基于位置信息的电离层tec主动式播发方法和系统
CN104655182A (zh) * 2014-09-30 2015-05-27 李波 利用卫星精确定位系统监控架空输电线路状态的监测方法
US9749017B2 (en) 2015-08-13 2017-08-29 Golba Llc Wireless charging system
DE102017210138A1 (de) 2017-06-16 2018-12-20 Robert Bosch Gmbh Verfahren und Vorrichtung zum Senden von Korrekturdaten und zum Bestimmen einer hochgenauen Position einer mobilen Einheit
JP6956702B2 (ja) * 2018-11-20 2021-11-02 三菱電機株式会社 位置情報出力装置
US11270250B2 (en) * 2020-02-14 2022-03-08 International Business Machines Corporation Intelligent service and customer matching using an information processing system
CN113315562A (zh) * 2020-02-27 2021-08-27 华为技术有限公司 通信方法、装置及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2245445A (en) * 1990-06-18 1992-01-02 Philips Electronic Associated Method of and apparatus for obtaining vehicle heading information
US5155490A (en) 1990-10-15 1992-10-13 Gps Technology Corp. Geodetic surveying system using multiple GPS base stations
US5225842A (en) * 1991-05-09 1993-07-06 Navsys Corporation Vehicle tracking system employing global positioning system (gps) satellites
US5323322A (en) 1992-03-05 1994-06-21 Trimble Navigation Limited Networked differential GPS system
CA2106534A1 (en) * 1992-12-07 1994-06-08 Kristine Patricia Maine Intelligent position tracking
US5477458A (en) 1994-01-03 1995-12-19 Trimble Navigation Limited Network for carrier phase differential GPS corrections
WO1996022546A1 (en) 1995-01-17 1996-07-25 The Board Of Trustees Of The Leland Stanford Junior University Wide area differential gps reference system and method
US5841396A (en) * 1996-03-08 1998-11-24 Snaptrack, Inc. GPS receiver utilizing a communication link
US6131067A (en) 1995-10-09 2000-10-10 Snaptrack, Inc. Client-server based remote locator device
JP3209090B2 (ja) * 1996-05-22 2001-09-17 セイコーエプソン株式会社 位置情報提供システム
US6215441B1 (en) * 1997-04-15 2001-04-10 Snaptrack, Inc. Satellite positioning reference system and method
JP3296261B2 (ja) * 1997-09-02 2002-06-24 セイコーエプソン株式会社 端末装置、情報提供システム、情報取得方法、情報提供方法および記録媒体

Also Published As

Publication number Publication date
JP2008281574A (ja) 2008-11-20
FI109842B (fi) 2002-10-15
US6215441B1 (en) 2001-04-10
ID27876A (id) 2001-05-03
EP1075665B1 (en) 2010-02-17
KR20010052274A (ko) 2001-06-25
ES2339197T3 (es) 2010-05-17
JP5518770B2 (ja) 2014-06-11
JP2014059323A (ja) 2014-04-03
JP2010133966A (ja) 2010-06-17
CA2330575C (en) 2009-06-09
IL139253A0 (en) 2001-11-25
MXPA00010615A (es) 2003-02-24
BR9909982B1 (pt) 2014-11-25
WO1999056145A1 (en) 1999-11-04
BR9909982A (pt) 2002-01-22
KR100644112B1 (ko) 2006-11-10
DE69942023D1 (de) 2010-04-01
JP2008268225A (ja) 2008-11-06
FI20002356A (fi) 2000-12-22
HK1036106A1 (en) 2001-12-21
AU4181299A (en) 1999-11-16
CA2330575A1 (en) 1999-11-04
JP4933490B2 (ja) 2012-05-16
IL139253A (en) 2004-03-28
EP1075665A1 (en) 2001-02-14
ATE458202T1 (de) 2010-03-15
CN1307683A (zh) 2001-08-08
JP2011137833A (ja) 2011-07-14
JP5362539B2 (ja) 2013-12-11
JP2002513159A (ja) 2002-05-08

Similar Documents

Publication Publication Date Title
CN1252490C (zh) 卫星定位参照系统与方法
US6411254B1 (en) Satellite positioning reference system and method
CN1218191C (zh) 卫星定位系统利用高度信息的方法和系统
JP5726420B2 (ja) 衛星位置決めシステム受信機を作動する方法および装置
Wübbena et al. Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station networks
CN100409029C (zh) 用于全球定位系统的接口
CN1224846C (zh) 采用无线通信信号进行的卫星定位系统扩充
JP2008281574A5 (zh)
AU2004200563B2 (en) Satellite positioning reference system and method
AU2003246306B2 (en) Satellite positioning reference system and method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20060419

CX01 Expiry of patent term