CN101025439B - 用于卫星定位系统(sps)信号测量值处理的方法和装置 - Google Patents

用于卫星定位系统(sps)信号测量值处理的方法和装置 Download PDF

Info

Publication number
CN101025439B
CN101025439B CN200710089630.0A CN200710089630A CN101025439B CN 101025439 B CN101025439 B CN 101025439B CN 200710089630 A CN200710089630 A CN 200710089630A CN 101025439 B CN101025439 B CN 101025439B
Authority
CN
China
Prior art keywords
signal
satellite
sps
measured value
gps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN200710089630.0A
Other languages
English (en)
Other versions
CN101025439A (zh
Inventor
L·希恩布拉特
N·F·克拉斯纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SnapTrack Inc
Original Assignee
SnapTrack Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SnapTrack Inc filed Critical SnapTrack Inc
Publication of CN101025439A publication Critical patent/CN101025439A/zh
Application granted granted Critical
Publication of CN101025439B publication Critical patent/CN101025439B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/09Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing processing capability normally carried out by the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/22Multipath-related issues
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/001Transmission of position information to remote stations
    • G01S2205/008Transmission of position information to remote stations using a mobile telephone network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station

Abstract

本发明揭示了用于卫星定位系统(SPS)信号测量值处理的方法和装置。SPS接收机接收从相应的多个SPS卫星发出的多个SPS信号。表征SPS接收机所在位置对应的信号环境以产生信号环境数据。在一个典型的实施例中,搜索信息源,如基于蜂窝网的数据库,以检索能给出GPS接收机大概位置的信号环境数据。可以通过蜂窝式无线通信中的小区站点位置确定该大概位置,该蜂窝式无线通信带有与GPS接收机在同一地点的蜂窝通信装置。定义一个或多个关于卫星信号信号特征的参数。用信号环境数据确定参数的门限值。测量多个卫星发出的各个卫星信号到达时间的代码相位。用参数的门限值检验表示测量到的到达时间的数据,以产生一组到达时间,从中计算出GPS接收机的位置坐标。此外还描述了本发明其它实施例的其它方法和装置。

Description

用于卫星定位系统(SPS)信号测量值处理的方法和装置
本申请是2000年1月24日提交的申请号为00805127.5,申请名称为《用于卫星定位系统(SPS)信号测量值处理的方法和装置》的申请的分案申请。
参照相关发明
该申请是1998年7月2号提交的、序号为09/109,112待批申请的部分连续。
技术领域
本发明一般涉及卫星定位系统的领域,例如全球定位系统(GPS)接收机,以及更特别地涉及处理SPS信号。
背景技术
全球定位系统(GPS)接收机通常通过计算信号到达的时间确定它们的位置,这些信号是从多个GPS(或NAVSTAR)卫星中同时发送的。这些卫星发送作为它们部分信息的卫星定位数据和时钟定时数据,所有叫作“天文历”数据。搜索和捕获GPS信号、读多个卫星的天文历数据以及从这些数据中计算出接收机位置的过程是消耗时间的,通常需要几分钟。在很多情况下,这么长的处理时间是不能接受的,此外,在小型化的便携式应用中它还大大地限制了电池的寿命。
GPS接收系统有两个主要功能。第一个是计算各种各样卫星的伪距,第二个是用这些伪距和卫星的定时和天文历数据计算接收机的位置。伪距只是本地时钟测量的卫星信号到达的时间。伪距的定义有时也叫作代码相位。一旦捕获或追踪到GPS信号就从中提取出卫星天文历和定时数据。如上所述,收集该信息通常需要相当长的时间(30秒到几分钟),而且为了得到低差错率必须由较好的接收信号电平完成。
大部分GPS接收机利用相关法计算伪距。通常用硬件相关器实时执行这些相关法。GPS信号包括高重复率的信号叫作伪随机序列。民用的代码叫作C/A(粗略/捕获)代码,且具有1.023MHz的二进制反相率或“码片”率,以及对于每一毫秒的代码周期有1023片码片的重复期。该代码序列属于金代码(Gold code)族,每个GPS卫星发送一个信号连同一个唯一的金代码。
对于从给出的GPS卫星接收到的信号,在变成基带的下变频过程之后,相关接收机用适当金代码的已存复制品乘接收信号,该金代码包含在其本地存储器中,然后积分或低通滤波该结果,以得到有信号存在的指示。该过程叫作“相关”操作。通过按时调整与接收信号相关的已存复制品的相对定时,和观察相关输出,接收机能确定接收信号和本地时钟的延迟时间。对于该输出存在的初始确定叫作“捕获”。一旦发生捕获,该过程进入“追踪”阶段,其中为了保持高相关输出本地参考的定时要作很小的调整。追踪阶段的相关输出可以认为是移去伪随机代码的GPS信号,或者用一般的术语“去扩展”。该信号是窄带的,带宽相当于50bit每秒二进制移相键控(BPSK)数据信号,它叠加在GPS的波形上。
相关捕获过程很耗时,尤其在接收信号很弱时。为了改进捕获时间,大部分GPS接收机利用多个相关器(典型的接近36个),它允许并行搜索相关峰值。
典型地将相关GPS接收装置设计成在开放空间接收GPS信号,因为卫星信号是直视形的,因此会被金属和其它材料挡住。改良的GPS接收机提供的信号灵敏度,允许室内跟踪GPS卫星信号,或者在存在很弱的多路径信号和全反射信号下跟踪。但是捕获这些弱信号的能力引起了其它问题。例如,同时追踪强弱信号可能使接收机锁定到一个不是真正信号的互相关信号。可能捕获一个较强的互相关峰值,而不是找出较弱的真正峰值。追踪一个较弱的卫星信号不能保证它是直接信号。该弱信号可能是反射信号或是直接信号和间接信号的组合。该组合信号被看做是多路径信号。反射信号的路径通常比直接信号的路径长。该路径长度的不同使反射信号到达时间的测量值被延迟了,或者使相应代码相位的测量值包含一个正向的偏移。一般偏移量的大小与反射和直接路径间的相关延迟成比例。直接信号分量的可能缺少使现有的多路径缓和技术(例如窄相关器或选通相关器)作废。
因此令人满意的是提供一种最佳地利用各种已有数据得到最佳位置结果的测量值处理算法。
发明内容
本发明揭示了用于SPS信号测量值处理的方法和装置。在本发明的一个实施例中,GPS接收机接收从相应的多个GPS卫星发出的多个GPS信号。表征该GPS接收机所在位置的信号环境,以产生信号环境数据。在一个典型的实施例中,搜索信息源,如基于蜂窝网的数据库,以检索能给出GPS接收机大概位置的信号环境数据。可以通过蜂窝式无线通信中的小区站点位置确定该大概位置,该蜂窝式无线通信带有与GPS接收机在同一地点的蜂窝通信装置。定义一个或多个关于卫星信号信号特征的参数。用信号环境数据确定参数的门限值。测量多个卫星发送的各个卫星信号到达时间的代码相位。用参数的门限值检验表示测量出到达时间的数据,以产生一组到达时间,从中计算出GPS接收机的位置结果。
在本发明的另一实施例中,表征GPS接收机所在位置信号环境,以产生信号环境数据。该信号环境数据反映了SPS信号在该位置传播的方式。该信号环境数据用于确定至少一个处理值,它用于依次处理表示GPS接收机接收到SPS信号的数据。
在本发明的一个特殊实施例中,用基于信息源的小区(例基于蜂窝电话网的数据库)确定信号环境数据,该数据表示SPS信号在SPS接收机所在位置传播的方式,位于该位置的SPS接收机用信号环境数据确定的方式处理SPS信号。
在本发明的另一实施例中,处理SPS信号的方法能确定同组SPS信号的两个(或更多)相关峰值的存在,该同组SPS信号来自一个第一SPS卫星。一组表示SPS信号到达时间的测量值来自两个(或更多)的相关峰值;典型地,较早的相关峰值表示一组SPS信号的直接路径,而不是反射路径,用较早的相关峰值得出表示一组SPS信号到达时间的测量值。
通过以下附图和详细描述,本发明其它特点和实施例将更加明显。
附图说明
本发明用实例举例说明而不局限于附图,附图中用标号指出相应的部件,其中:
图1是利用本发明实施例的GPS接收系统一个实例的框图,表示了可能存在于基站和远程GPS接收机间的数据链路。
图2是用七个不同视点卫星的实例值例示数据元实例的表格,它可用于本发明的实施例。
图3是十五个相关器输出带有1/2码片延迟振幅的图示,它在如图2所示卫星的点状信道附近。
图4是流程图,它根据本发明实施例的测量值处理方法,概述了在处理接收卫星信号以产生位置坐标的过程中,GPS接收机20,或其它类型GPS接收机,或移动GPS接收机和如服务器计算机系统的数据处理系统组合的主要操作。
图5是根据本发明的实施例,概述包括在如图4所示信号环境表征过程中的操作流程图。
图6是根据本发明的实施例,概述包括在如图4所示算法控制参数建立过程中的操作流程图。
图7是根据本发明的实施例,概述包括在如图4所示测量值选择和计算过程中的操作流程图。
图8是根据本发明的实施例,概述包括在如图4所示差错检测和分离过程中的操作流程图。
图9是根据本发明的实施例,概述包括在如图4所示偏移调整过程中的操作流程图。
图10是根据本发明的实施例,概述包括在如图4所示贯序测量值优化过程中的操作流程图。
图11是根据本发明的实施例,概述包括在如图4所示计算和误差估计过程中操作的流程图。
图12A是包括基于小区信息源的蜂窝网系统的实例。
图12B是根据本发明实施例的SPS服务器的实例。
具体实施方式
本发明描述了用于卫星定位系统(SPS)信号测量值处理的方法和装置。
在以下的讨论中,将参照作为SPS系统实例的美国全球定位系统(GPS)系统的应用描述本发明的实施例。然而,很明显的是这些方法也可以等效的应用于其它卫星定位系统,如俄国Glonass系统。因此,这里用的术语“GPS”包括这些可选的卫星定位系统,包括俄国Glonass系统。同样地,术语“GPS信号”包括另外的可选卫星定位系统发出的信号。
此外,虽然参照GPS卫星描述本发明的实施例,但是值得重视的是该学说可等效的应用于使用伪卫星(pseudolites)或卫星和伪卫星组合的定位系统。伪卫星基于地面的发射机,该发射机发送调制在L-波段(或其它频率)载波上的PN代码(类似于GPS信号),一般与GPS时间同步。指派给每个发射机一个唯一的PN代码,使得远程接收机能够辨认。伪卫星在轨道卫星发出的GPS信号难以到达的地方很有用,例如隧道、矿井、建筑物、城市峡谷或其它封闭的区域。这里使用的术语“卫星”将包括伪卫星或伪卫星的等价物,这里使用的术语GPS信号将包括伪卫星或伪卫星等价物发出的类似伪卫星或伪卫星的等价物GPS信号。
GPS接收系统
图1是GPS接收系统的框图,它可实现本发明的方法。图1的GPS接收系统包括一个移动或远程GPS接收机单元20,它包括GPS处理级和通信级。因此,GPS接收机单元20包括实现处理GPS信号所需功能和处理通信信号所需功能的电路,该通信信号通过通信链路发送和接收。典型的如数据链路16的通信链路是到另一个通信部件的射频通信链路(例如蜂窝电话通信链路),例如具有通信天线14的基站10。
与传统的GPS方法一致,GPS接收机20接收轨道GPS卫星发送的GPS信号,并通过比较接收到的PN代码信号序列和内部产生的PN信号序列之间的时间变化,确定唯一的伪随机噪声(PN)代码到达的时间。通过GPS天线40接收GPS信号,并输入到捕获各种接收到卫星PN代码的捕获电路。捕获电路产生的导航数据(如伪距数据)通过处理器处理发送到数据通信链路16。
GPS接收机20还包括通信收发部分,如图所示调制解调器22,用于与数据链路16通信。调制解调器22与通信天线24耦合。调制解调器22通过通信信号(典型的为射频信号)发送GPS接收机20处理的导航数据到远程基站,例如基站10。导航数据可以是GPS接收机的实际纬度、经度和高度,或可以是未加工或部分处理的数据。将接收到的通信信号输入到调制解调器22并传给处理器处理,也可能通过声频扬声器输出。
根据本发明的一个实施例,GPS接收机20产生的伪距数据将通过数据链路16传送到基站10。然后基站10根据组合接收机发出的伪距数据、测量伪距的时间和GPS接收机本身(例如通过GPS天线12)接收到的天文历数据,或其它类似数据源,如GPS基准接收机网络,确定GPS接收机20的位置。然后可以将该位置数据发回到GPS接收机20或其它远程位置。GPS接收机20和基站10之间的数据链路16可用各种不同的实施例实现,包括直接链路,或蜂窝电话链路,或任何其它类型的无线链路。
在本发明的一个实施例中,基站10命令GPS接收机20通过数据链路16发送的消息作一个位置测量。在该消息中,基站10还向可视范围内的卫星发送了多普勒相关信息(或其它信息,如卫星历书,可从它导出多普勒频率)。多普勒相关信息可能还包括多普勒变化率,多普勒加速度或其它多普勒相关信息的数学表示。多普勒信息的形式是与卫星位置和速度相关的卫星数据信息,典型的形式是频率信息。典型地,该消息还指定了可视范围内某一特定卫星的标识,或其它初始化数据。调制解调器22接收该消息,并存储在与微处理器26耦合的存储器30中。微处理器26处理数据信息在远程处理部件32-48和调制解调器22间的直接转移。
典型地,消息中包括的多普勒信息持续时间非常短,因为对多普勒信息要求的精度不高。例如,如果要求的精度是10Hz,最大的多普勒频率大约±7kHz,那么一个11比特的字将满足每个可视范围内的卫星。其余的比特将用于传送多普勒变化率信息。如果可视范围内有八个卫星,那么需要88比特指定了所有的多普勒频率。该信息的使用消除了远程装置20搜索这些多普勒频率的需要,因此将处理时间降低了超过十倍。使用多普勒信息还允许GPS接收机20更快地处理GPS信号的样本,如收集存储在数字存储器中的数字化GPS信号。
当GPS接收机20接收到命令(如从基站10)通过含有多普勒信息的消息处理GPS信号时,微处理器26通过电池和功率调节器和功率切换电路36(以及受控功率线路21a、21b、21c和21d),激活RF-IF转换器42、模数(A/D)转换器44和数字快慢存储器46,以此提供这些部件的全功率。这使天线40接收到的GPS卫星发出的信号从射频(RF)下变频到中频(IF),以后在A/D转换器44中数字化。然后将一组连续的数据存储在快照存储器46中,一般数据持续时间是一百毫秒到一秒(或更长)。该存储器46存储该数据的寻址由现场可编程门阵列(FPGA)集成电路48控制。通过使用频率合成器38完成GPS信号的下变频,频率合成器38向以下将详细讨论的转换器42提供本机振荡器信号39。
在将可视范围内卫星发出的数字化GPS信号填充快照存储器46期间,DPS微处理器32可以保持低功率状态。RF-IF转换器42和A/D转换器44通常只开通一小段时间,足够于收集和储存伪距计算所需的数据。收集数据完成之后,这些转换电路就关掉,或者另外通过控制功率线路21b和21c(这时存储器46继续接收全功率)减小功率,因此在实际伪距计算期间不会浪费额外的功率。然后进行伪距计算,在本发明的一个实施例中,使用通用可编程数字信号处理器(DSP)集成电路IC32。在进行该计算之前,微处理器26和电路36通过控制功率线路21e将DSP32置于有功功率的状态。
在一实施例中,DSP32是一个通用可编程处理器,与用户定制的数字信号处理器不同,它用于其它GPS单元。一旦DSP32完成每个可视范围内卫星伪距的计算,它会使用通过数据链路提供的或通过标准解调技术收集得到的卫星天文历数据计算卫星的最终位置。也可以是,它将伪距发送到基站(如基站10),由基站提供最终位置的计算。图12A显示了一个基站的实例,在这种情况下,可称之为SPS服务器。该SPS服务器通过蜂窝电话网和公众交换电话网(PSTN)通信连接到SPS接收机/蜂窝电话。
在本发明的一个实施例中,DSP32通过互联总线33将该位置信息发送到微处理器26。这时微处理器26可以通过向电池和功率调节电路36发送一个适当的控制信号,使DSP32和存储器46再次进入低功率状态。然后,微处理器26通过数据链路16用调制解调器22向基站10发送伪距数据或位置数据,进行最终位置计算或在显示设备(未图示)上输出。
根据存储在数字快照存储器46中的数据量和DSP的速度,可以预计到DSP中位置的计算一般只需要不到几秒的时间。
如上所述,数字快照存储器46捕获一个有相当长时间的记录。用快速卷积法有效地处理该大块数据增强了本发明处理低接收电平信号的效率。在美国专利号5,663,743中描述了该方法的实例。可用这同样的缓冲数据计算所有可视GPS卫星的伪距。在信号振幅快速变化的情况下(例城市的阻挡情况下),这样可以改良连续追踪GPS接收机的性能。
不同的GPS接收机结构都可以和本发明一同使用。虽然上述讨论集中于带有数字存储器和数字信号处理器的GPS接收机,但是其它GPS接收机结构也可以实现所有或部分本发明的方法,也可以做成所有或部分本发明的装置。例如,传统硬件相关器式GPS接收机可和本发明一同使用。PCT申请PCT/US98/07471或PCT/US98/11375或PCT/US97/06946(公布号为97/40398)中所描述类型的GPS接收机也可和本发明一同使用。在各种情况下,每个SPS卫星的相关器输出(如图3)都保存下来,用于本发明的测量值处理技术。
在各种情况下,接收机本身可以执行测量值处理技术之一的完整处理;或执行该技术的部分处理,并将中间处理结果向前传给“服务器”系统,例如如图12A所示的SPS服务器,由服务器系统完成该处理。在GPS接收机(如移动单元20)执行这些技术之一的所有处理的情况下,GPS接收机会通过它的通信链路如蜂窝电话系统,从外部源接收辅助数据;该辅助数据,如信号环境的特征(和关联的参数值),可发送到移动单元20。在GPS接收机执行某些处理的情况下,典型地,GPS接收机储存每个SPS卫星相关器输出的样本(如图3所示数据),然后将这些相关器输出发送到服务器,由服务器执行本发明的测量值处理技术。
测量值处理
在本发明的一个实施例中,改良的GPS接收机为每个可视卫星处理几种不同类型的数据。这些数据类型可以包括:对应于最大相关峰值(也称为主峰值)(测量到达时间)的一个代码相位;最大相关峰值周围(例如在1/8、1/4、1/2C/A代码码片或其它任意间距处计算)的一组代码相位;一组相关峰宽(在一些选中的信号电平处计算,例如低于峰值3dB处);多普勒频率(测量代码相位变化率);信噪比(SNR);信号干扰比(SIR);积分周期;表示多个峰值存在和它们与主峰值相对位置的标记。
在本发明的一个典型实施例中,信号环境是用这些为SPS信号(例如SPS信号的SNR)测量的数据类型表征的,这表示SPS信号在SPS接收机所在位置本地(例如不在电离层)传播的方式。在一典型实例中,本地传播SPS信号是在SPS接收机位置附近大约1000米范围内传播的SPS信号。也就是说,在SPS接收机位置附近大约1000米范围内传播的SPS信号可以认为是本地传播SPS信号;该距离可以认为是从距SPS接收机大约0.1米到距SPS接收机大约1000米(可能是2000米)的范围。在另一实施例中,用这些为蜂窝通信信号(例如接收到的蜂窝电话通信信号的SNR)测量的数据类型表征信号环境。例如,为接收到的蜂窝通信信号确定一个或多个这些数据类型,或者从蜂窝电话中发射机的功率电平(例如功率电平越高表示SNR越低)中导出一个或多个这些数据类型。用蜂窝通信信号的测量值表征的信号环境通常表示SPS信号在SPS接收机所在位置本地传播的方式。还要注意到,蜂窝通信信号的处理可以利用信号环境表征。
图2是用七个不同视点卫星的实例值例示一些数据元实例的表格,它可用于本发明的一个实施例。根据其相应的PRN代码,将卫星编号为2,4,7,9,15,26和27。每个卫星的数据包括信噪比、信号干扰比、峰宽、方位角、仰角、代码相位和多普勒信息。
图3表示在点状信道附近,带有1/2码片延迟的十五个相关器输出折合振幅的实例。图3的波形与图2表格中所示27号卫星的数据值一致。图3图示了一个“双峰值”特性的实例,证明存在两个强信号。图3还证明了存在两个弱信号,一个在3个半码片(half-chip)相关延迟时间处,另一个在11个半码片相关延迟时间处。这些信号都可以通过直接信号的到达时间测量。当一个SPS接收机接收到来自同一个SPS卫星信号的反射信号和直接信号,而且这两个信号都相当强且都超过了信号检测电平,就发生同一SPS卫星信号双峰值特性的典型事例。通常,直接信号产生较早的相关峰值(例如,如图3所示时间≈大约6,y≈大约4500),反射信号产生较晚的相关峰值(例如,如图3所示时间≈大约8.5,y≈大约6500)。在特定情况下(例如SPS卫星低于地平线),反射信号可能比直接信号强;图3显示了该实例。
在一个较强的SPS卫星信号干扰一个较弱信号的处理时,称为互相关干扰的另一类型干扰也会存在和产生;缓和该干扰方法的实例在1998年7月2日提出申请的,共同待批的美国专利申请序号09/109,112中有描述。
图4是根据本发明实施例的测量值处理方法,概述在处理接收到的卫星信号以产生位置信息的过程中,GPS接收机20主要操作的流程图。图4所示测量值处理方法包括七个主要过程。在操作101中,表征了GPS接收机位置的信号环境。实验数据表示信号特征,例如信号强度、伪距和多路径误差的各种测量,从一种环境(如城市峡谷)到另一种环境(如室内)的重要变化。这主要是因为在不同城市环境中的建筑物材料、重量和空间的分布影响了卫星信号到GPS接收机天线的通路。信号环境数据表示在一特定位置SPS信号向SPS天线传播的方式。
表征GPS接收机20根据其信号环境通信的蜂窝站点有助于测量值处理的算法选择。该信息可作为小区目标信息的一部分而被得到。除了小区信号分类以外,小区目标信息还可包含小区服务区域、小区站点标识、小区站点位置和估计高度等信息。各种信号环境可被定义为“开放天空”、“乡村”、“城市”、“城市峡谷”等等。“城市峡谷”可由真正的城市或大城市再细分以更精确地定义环境,如“东京城市峡谷”或“旧金山城市峡谷”。例如“明尼阿波利斯城市峡谷”表示平坦的地形,然而“旧金山城市峡谷”表示在高度上可能有重要变化的丘陵地形。
在本发明的一个典型实施例中,每次SPS接收机在某一位置工作,不参考先前对该位置信号环境的分析,进行信号环境的表征。但是,可能使用该位置信号环境的先前分析,并把该先前分析看作是建立步骤。位置的信号环境,例如小区站点的位置或在该小区站点服务小区区域内的蜂窝电话的典型位置,可在建立步骤(如先前分析)中用在该位置(或该小区站点覆盖区域内的几个“代表性的”位置)记录的几个测量值表征。因为卫星到处移动,所以实验数据只在特定的时期内有效。上述测量值可在每天不同的时间或峰值使用时间周围重复。实际分析这些测量值确定典型的信号强度和典型的峰宽(例如,如图2所示SNR输出和/或SIR输出和/或峰宽),干扰模式和多路径误差的存在。因为当进行建立表征时位置(或代表性的位置)已知,所以卫星信号相关输出可与期望的相关输出比较,该比较将显示出反射(如反射信号)的数量和信号环境中双峰值的存在。在另一实例中,相关输出和标称值的RMS(均方根值)不同可用于分析多路径误差。而且,大部分或所有蜂窝站点覆盖城市或乡村的实际知识可能包含在信号环境数据中。一旦完成表征,表征信号环境的数据就存储在数据库(例如基于小区的数据库)中,其中该数据库中的位置(例如小区站点标识符或其它小区位置标识符)与表征信号环境的数据相关联。图12A显示了维持于SPS服务器中的该数据库的实例。在本发明一个实施例的工作中,移动蜂窝电话/GPS接收机(例如接收机901b)提供伪距和发送到小区站点(例如小区站点901a)的相关输出(用于测量值处理)。然后小区站点将该数据转送到依次确定信号环境(例如接收蜂窝无线电通信小区站点的标识符和在数据库(如数据库912a)中寻找与小区站点位置相关联的信号环境数据)的SPS服务器(如服务器912)。然后根据本发明的各种实施例,用表示信号环境的数据处理从移动蜂窝电话/GPS接收机(例如接收机901b)接收到的伪距和相关输出。该信号环境数据可由动态得到的信号环境测量值补充,这些测量值在建立表征后系统的实际应用中得到。然而,建立表征可提供帮助信息;例如,在蜂窝电话网的特定小区中,大部分的小区在城市或乡村,该信息将传到移动SPS接收机并用于移动SPS接收机作为信号环境分类的一部分。
在本发明的一个实施例中,在操作101中得到的环境分类可用于帮助操作103中的算法控制参数选择。操作103中的控制参数建立通常包括信噪比、信号干扰比、峰宽、HDOP、卫星仰角的表征码和其它参数。这些控制参数用于操作105的测量值选择和计算过程。根据参数表征码值进行测量值选择。作为操作105的一部分,还进行一些测量值的计算。例如,从测量出的(输出)信噪比、测量值积分周期(根据检测前的积分数和检测后的积分数定义)和多普勒误差估计出输入信噪比。
根据操作103的参数选择,可识别出一些测量值是潜在的互相关。在操作105中,进行一个测试以确定产生代码相位测量值的接收机是否是互相关峰值,而不是一个真信号。
然后,操作107的差错检测和分离(FDI)步骤使用这些成功通过操作105的测量值。差错检测和分离步骤用于分离(也就是识别)任何错误的卫星,使之能被纠正或从结果中移去。差错检测和分离的先决条件是有一个过定的解答,即测量值的数目超过未知的数目。
如果伪距测量值中有误差(偏移),进行操作109的偏移调整步骤。在一个实施例中,偏移调整步骤首先进行偏移估计,然后进行偏移调整。该步骤还可以包括用偏移估计纠正伪距测量值。
在操作111中,贯序测量值优化(SMO)步骤用于改进选中的误差统计量。使用的误差统计量会受操作101中信号环境表征的影响。贯序测量值优化步骤每次分析一个测量值一个子集的解,并选出具有最佳误差统计量的解。例如,如果有n个测量值,只有一个误差,贯序测量值优化步骤将认为n个子集的解是通过每次在最初的集合中忽略一个卫星得到的。在本发明的另一可选实施例中,不用移去卫星的方法,通过操作109中计算的误差估计调整卫星测量值。用这种方法,贯序测量值优化步骤分析所有可能的子集以得到最佳的解。在另一个实施例中,偏移调整可作为贯序测量值优化步骤的一部分。
在操作113中计算位置和速度。此外,还要计算误差统计量例如单位方差、估计水平误差、加权HDOP、误差椭圆及其方位。
图4的每个主要过程中个别操作的详细描述将在以下部分提供。
信号环境表征
图5是根据本发明的实施例,概述包括在如图4中操作101所示信号环境表征过程中的操作流程图。识别或确定GPS接收机的信号环境对于达到最大适应性和支持各种工作电平很重要。
在操作201中,信号环境被分成“室内”和“室外”。在本发明的一个实施例中,通过用户输入将该信息提供给GPS接收机。在另一实施例中,该信息可从获得的基于GPS的测量值中分离出来。例如,信噪比和/或信号衰减和卫星视线信息(方位角和仰角)的分布可以指示出室内环境或室外环境。信号衰减计算为测量到的输入信号电平与期望输入信号电平之差。期望信号电平是对于一个给定的仰角和方位角组合的无障碍直接卫星信号的信号电平。确定期望输入信号电平作为多普勒误差和总的积分周期的函数。GPS接收机的天线增益模式可用于调整期望信号电平。
例如,如果所有可视范围内卫星信号都通过一个门限电平衰减,可识别出信号环境为“室内”。在所有或多数卫星上存在短多路径误差(<30m)也可以识别出室内环境。在另一实例中,在存在至少一个较高仰角的卫星信号显示出衰减电平高于低空卫星发出的信号电平的情况下,也可识别出信号环境为“室内”。在所有或多数卫星上存在峰宽偏移,一般在波峰较宽的波形中,也可以识别出室内环境。在一定的信号条件下,例如不同相位的信号组合,作为多路径信号存在的结果峰宽会变窄。
在本发明的另一实施例中,从蜂窝输出发送(例如从基站到手机)的信号电平,用于帮助信号环境的确定。在类似于以上就GPS卫星信号描述的方式中,蜂窝或无线电信号的信号衰减测量可用于帮助确定如GPS接收机20的组合GPS接收机用于室内还是室外。
在操作202中,确定信号环境是否在“室外”。如果信号环境是在室内,进行操作207的处理,从而跳过操作203-205。另外,该处理也可跳过操作203-209,因为室内环境不太可能具有动态特征(即使如果它有,这表示室内的表征可能是不正确的,信号环境应重新表征为“室外”)。如果环境是室外,在操作203中再把环境细分为“开放天空”、“乡村”、“城市”或“城市峡谷”。在本发明的一个实施例中,通过进一步分析信号衰减和GPS信号的伪距误差特征确定这些细分类。例如,如果GPS传感器能捕获和追踪所有可视范围内的卫星信号,这些信号显示出很少或无多路径的直接信号特性,那么可以断言该环境是“开放天空”信号环境。
对于操作203,信号衰减/信号阻塞信息用于确定“城市”环境的类型。例如,在城市环境中假定建筑物间隔20米,30°卫星能见度表征码等于被6米高的建筑物环绕。卫星能见度表征码信息来自总的信号阻塞或一特定电平的信号衰减。例如,带有接收到全部超过60°仰角表征码的直接信号信号环境,可断言它是“城市峡谷”信号环境。典型的城市信号环境是在一个方向卫星被建筑物遮住,但是在垂直方向有较佳的能见度。具有较大多路径误差的伪距测量值也可表示城市峡谷环境。在很多情况下,峰形中多个峰值或偏移的存在也可表示城市峡谷环境。
在操作204中,确定室外信号环境是城市或城市峡谷,还是开放天空或乡村。如果室外信号被分为“城市”或“城市峡谷”环境,在操作205中,通过识别它的城市区域或城市名称进一步细分该环境。例如,城市峡谷环境可被指定为“芝加哥城市峡谷”或“旧金山城市峡谷”。如先前所述,通过城市或自然的地形和GPS接收机周围建筑物的类型,实际的城市环境会大大的影响GPS信号的接收。
在本发明的一个实施例中,该信息从小区目标信息导出。在另一实施例中,该信息由用户输入提供。另外,它也可从最初的GPS位置结果导出。独立于特定城市峡谷信息的最初坐标一般作为用于识别城市峡谷搜索的数据库是足够正确的。在另一实施例中,最初的位置信息可能与其它定位方法结合而导出,例如使用无线信号作为距离测量值的陆地无线电定位。对于特定的城市峡谷环境,可获得和/或发展用于卫星视线和信号强度期望的计算机模型。模型参数可包括建筑物高度、路宽、十字路口、卫星能见度和周围建筑物遮挡情况的分布,可能的反射和相应的多路径误差。该模型可以自学,例如通过使用人工智能,以合并每个可获得位置坐标的数据。可先使用标准模型帮助分析。这种模型的一个实例可以是一个城市模型,在一个5英里半径的范围内,所有建筑物的60%是20层的建筑物,平均路宽是60英尺。在离中心5到20英里的范围内,所有建筑物的20%是8层的建筑物,平均路宽是80英尺。在离中心20到40英里的范围内,所有建筑物的35%是单层建筑物,平均路宽是100英尺。通过相应的基于GPS的信息的更新和改进,可改进该城市模型的每个位置坐标。
在操作207中,识别GPS接收机的用户动态。典型的轻便GPS接收机,例如图1所示的组合GPS接收机,可用于移动(动态)应用或固定(静态)应用。在本发明的一个实施例中,用户动态的识别通过用户提供的输入完成。在另一个实施例中,该信息来自最初基于GPS的速度结果。在再一个实施例中,用户动态来自可选的无线电定位方法。此外,可通过依赖先前的结果信息或通过使用城市峡谷模型和设置期望电平的具体应用来确定用户动态信息。例如,在自动车辆定位应用中,标准城市模型可包括期望平均车辆速度,例如在5英里半径的范围内是20英里/小时,在20英里半径的范围内是35英里/小时,在40英里半径的范围内是50英里/小时。该模型的每个速度结果都可以更新。特定城市特定街道最大允许速度的数据库也能提供帮助。
在操作209中,将“动态”环境进一步细分为“低”、“中”或“高”动态环境。动态环境的细分提供了GPS接收机传播信息的速度。在本发明的一个实施例中,操作207的动态细分信息由用户向GPS接收机的输入提供。在另一实施例中,根据先前的结果信息(例如速度和加速度)或通过使用城市峡谷模型和设置期望电平的具体应用确定该信息。例如在车辆跟踪应用中,附加的传感器(例如速度计和陀螺仪)输入可用于提供最初的速度估计或速度和/或方向信息,用于进一步与GPS数据集成。
算法控制参数建立
图6是根据本发明的实施例,概述包括在如图4操作103所示算法控制参数建立过程中的操作流程图。在操作301中执行信号门限的最初选择。在一个实施例中,根据操作101(如图5流程图所示)确定的信号环境执行该最初的选择。在操作301中选择的信号门限包括最小信噪比(SNR)和信号干扰比(SIR)。例如,如果使用旧金山城市峡谷作为范例信号环境,最小的信噪比和信号干扰比分别设置为15.5和14.5dB。这些门限用于操作105的卫星测量值选择。
在操作303中,设置峰宽参数。这些参数用于在操作105测量值选择和计算过程中执行的卫星选择和互相关校验。在本发明的一个实施例中,在选中信噪比和信号干扰比的电平处计算所有卫星的峰宽。例如,在低于点状相关器信号电平3dB的信号电平处计算峰宽。图3所示相关器的函数表示了点状相关器的输出,该输出位于带有8个半码片相对时间延迟的实例处。计算出该特殊相关器波峰的峰宽是1.02半码片。一般,相关器函数的峰宽、峰宽偏移和波形可表示信号中多路径的存在。例如波峰越宽,多路径误差越大。因此,峰宽表征码可用于操作105的卫星测量值选择。此外,相关器函数的波形可表示多个信号的存在。例如,图3所示的相关器函数表示了两个较早信号的存在。而且,样本中具有5个半码片时间延迟的坡点可以表示不只一个信号的存在。在大部分情况下,互相关信号显示较宽的波峰。这使峰宽测量值可用于在测量值选择和计算过程(图4中操作105)中识别潜在互相关信号。
在操作305中,定义一个“强”卫星。“强”卫星的特征是具有受多路径误差影响最小的卫星测量值。在本发明的一个实施例中,用于“强”卫星识别的参数是卫星仰角、峰宽偏移、信噪比、信号干扰比、信号衰减和输入信号强度。以旧金山城市峡谷为例,仰角表征码可设置为20°,信号输入强度可设置为-135dB。另外,对于不同的城市环境,例如圣荷西城市峡谷,信号输入强度可设置为-130dB。
独立于“强”信号定义的卫星仰角表征码也在操作105中设置。该表征码可用于测量值选择和计算过程中的卫星选择步骤。在“开放天空”信号环境中,该仰角表征码可设置为比较低的值,如5°,因为预计只有很小的多路径误差。然而,在“城市峡谷”环境中,仰角表征码就要升到15°,以避免处理可能受多路径误差影响的卫星。
执行差错检测和分离(FDI)、偏移调整(BA)和贯序测量值优化(SMO)算法的状态机的流程由操作307设置的参数控制。例如,根据信号环境表征和互相关漏检的可能性,可以改变差错检测和分离、偏移调整和连续测量值优化计算进行的次序。例如,在“开放天空”环境中,遗漏互相关的可能性很小,那么偏移调整可能根本不必做,或者可以在差错检测和分离之前做。在另一个实例中,高度辅助测量值可以包括也可以不包括在差错检测和分离、偏移调整和连续测量值优化算法中。根据操作101的信号环境表征设置与高度辅助测量值有关的误差估计。例如,对于“室内”环境,高度辅助可能失效,或者高度误差可以设置成很大的值(如50m)以表示对高度信息源的可信度的缺乏,该高度信息在某一实施例中可以是地形仰角数据库。在另一实例中,控制参数定义的“强”卫星在FDI、BA和SMO算法中可以不同。
测量值选择和计算
图7是根据本发明的实施例,概述包括在如图4操作105所示测量值选择和计算过程中的操作流程图。测量值选择和计算过程用于预先过滤位置坐标测量值和计算用本发明的测量值处理方法进一步处理GPS信号所需的参数。
在操作401中,在进一步测量值处理中移去低仰角卫星。可根据图5所示的信号环境表征过程和图6所示的控制参数建立设置仰角表征码。在操作403中,根据测量到的输出信噪比、测量值积分周期和多普勒误差计算估计的输入信号强度。然后,输入信号强度用于计算峰宽偏移和信号衰减。峰宽偏移计算为对具有给定输入信号强度的卫星信号的测得的峰宽和期望峰宽之差。根据信号环境表征,在操作405中,使用信噪比表征码或信号干扰比表征码或估计信号输入强度或这三个表征码的组合,从进一步测量值处理中移去弱信号。在一个实施例中,在图6的算法控制参数建立过程中,如操作301所述设置信号门限。
在操作407中检测和移去互相关信号。互相关信号一般显示出较宽的波峰和高噪声干扰比(NIR)。当一个强卫星信号和一个弱卫星信号互相关时,在高动态信号环境中发生互相关。一般,“室内”和“城市峡谷”环境会产生许多互相关信号。可以检测(通常是检测)强弱卫星耦合的SNR、SIR和估计输入信号强度,以得到有效信号的分离。在一典型实施例中包括旧金山城市峡谷地形,搜索18dB的差值。然后通过检测相关代码相位和强弱卫星耦合的多普勒频率,校验互相关。
在特定的接收条件下,相关波峰的波形会显示出一个有两个主要峰值的双峰值信号。图3的波形例示了这种双峰值信号。双峰值信号是多峰值信号的特殊情况,该多峰值信号是多个信号的组合同时入射到GPS天线的结果。在操作409中,分析如图3波形所示的相关峰值函数,以确定双峰值的存在。例如,接收到图3中最大相关峰值的信号比接收到较早的信号晚1微秒。因为反射信号总是比直接信号传播较长的路径,所以主峰值对应于反射信号,较早的峰值对应于直接信号。在该实例中,可将相关加到伪距(代码相位)测量值上,以计算多路径信号的存在。典型地,该相关选择较早的峰值作来自一个SPS卫星信号正确的相关输出。在移动SPS接收机执行一些本发明的测量值处理技术(如识别双峰值的存在),SPS服务器执行其它测量值处理技术(例如FDI)的情况下,移动接收机会发出一个某一卫星存在双峰值的指示。在另一实例中,它也会通过参考即时相关器(如图3中的抽样8)发送在相关峰值函数中所有识别出峰值的相对位置。在再一实例中,移动接收机会发送一组相关峰值函数的抽样。偏移调整算法和/或SMO算法可使用该数据处理可的到达时间候选项,以纠正操作601和703所述的伪距测量值。在操作411中,如果检测到宽波峰且它不属于双峰值,那么或者纠正该信号或者从进一步测量值处理中移去该信号。
根据信号环境,在操作413中选择加权方案。权表示伪距测量值中的先验误差不确定性。例如,0.1的权的误差估计是10米。权可以来自各种参数,包括信噪比、信号干扰比、噪声干扰比、输入信号强度、信号衰减、仰角、测量值积分周期、峰宽、峰宽偏移等等。如果检测到卫星信号的双峰值,可以调整特定卫星测量值的权。如果测量值一点未被纠正过或纠正太老了(例如纠正周期大于30秒)以致于不能用于说明选择性有效误差的存在,也可以调整权。误差估计可以改进,通过在系统建立表征中合并可供使用的信号环境测量值,它可作为操作101中信号环境表征的一部分。如果可利用附加信息,也可以改进加权。例如,在“城市峡谷”环境中,可以通过来自不断更新的城市计算机模型的反射信息外部源,例如周围建筑物的相对位置,进一步改进误差估计。
在室外信号环境中高度辅助可用于改进操作415中测量值处理算法的精确度。高度辅助改进了解的几何结构,还提供了对于未定情况所必需的额外数据。如果可获得估计高度(例如小区站点的平均高度),那它可用作高度辅助参数。当垂直地形模型改进时,高度辅助也将改进。差错检测和分离、偏移调整和连续测量值优化的算法也将从精确的高度辅助中得益。
在室内信号环境中,如果需要产生坐标而没有坐标位置,可利用高度辅助。在这种情况下,加权反映高度测量值的不确定性。将权定义为测量值误差估计的倒数。高度不确定性可能来自城市计算机模型。例如,如果室内环境是20米高的建筑物,可以使用0.1的权。在具有很大高度不确定性或根本没有高度辅助的最初坐标可用作城市计算机模型的查找,以获得建筑物高度信息和相应高度不确定性的地方,可以迭代使用高度辅助。另外,外部源可以提供信息(也就是10层楼)用于纠正来自地形仰角数据库的高度。在操作417中,应用时钟辅助。时钟不确定性可以来自时钟模型,该时钟模型基于用于GPS接收机的内部振荡器的质量或外部定时信号的质量,例如在CDMA网络中用于设置GPS接收机时间的信号。通过来自GPS伪距和多普勒测量值的时钟偏移和时钟位移估计,可以在实时中更新时钟模型。如果网络提供的定时信息很精确(例如精确到在1微秒的范围内),那这种信息也可以通过提供一个额外的自由度,以辅助本发明的测量值处理方法。
差错检测和分离算法
图8是根据本发明的实施例,概述包括在如图4操作107所示差错检测和分离过程中的操作流程图。
在本发明的一个实施例中,差错检测和分离过程作为GPS接收机内接收机自动完整性监控(RAIM)功能的一部分。在本发明的另一实施例中,利用GPS接收机接收到的位置信息,在SPS服务器上执行差错检测和分离过程。基于几种可获得测量值中的自身一致性校验,提出了各种RAIM方案。一些众所周知的误差检测方法是范围比较法、最小二乘残差法和一致校验法及其它(见R.Grover Brown的《全球定位系统:理论和应用》第五章,第二卷)。在本发明的一个实施例中,差错检测和分离过程是的差错检测问题的延伸,其中完整性系统也可以尝试分离错误的卫星测量值,这样就能将它从导航解中移去。
在操作501中,发生差错检测和分离。在本发明的一个实施例中,使用一致校验法。(见Mark Sturza的《利用冗余测量值进行导航系统完整性监控》中的导航)。作为差错检测和分离的一部分,进行F测试以确定分离的可靠性。根据信号环境和分离的可靠性,如果将“强”卫星作为一个错误的卫星分离,那么可以执行偏移调整和贯序测量值处理算法,而无需任何进一步的差错检测和分离处理。同样,如果差错检测和分离过程有高度辅助,再次基于高度辅助参数,而且如果高度测量值是分离的,那么可以执行偏移调整和连续测量值处理算法,而无需任何进一步的差错检测和分离过程的处理。例如如果解的计算发生在具有较好高度估计(也就是不确定性很小)的“开放天空”环境下,而且高度测量值作为错误的测量值独立,那么就可以停止进一步的差错检测和分离处理,而执行偏移调整和连续测量值处理的算法。
另外在操作503中,执行独立测量值中的偏移估计。在本发明的一个实施例中,利用著名的先验和后验最小二乘解残差的数学关系,假设只有独立测量值受大小未知偏移的影响,其余的测量值是完美的。然后用最小二乘的形式解决偏移。在本发明的一个实施例中,如果偏移的大小超过预选的门限,那么断言独立的测量值为遗漏的互相关,并适当地除去权。
根据信号环境和自由度数,可以对独立测量值调整偏移或除权。将自由度数定义为测量值总数和待解决的未知参数数的差。根据加权系数,除权相当于从解中移去测量值。在操作505中,对测量值进行偏移调整。该方法中,用操作503中估计的偏移纠正测量值。在本发明的一个实施例中,只有在偏移为正时,对测量值进行偏移调整。
在操作507中,计算用于已调整测量值的新权。新的权可能基于信号环境、分离可靠性、偏移大小、卫星测量值中多峰值的存在和其它因素。
在操作509中,计算新的解和相应的误差估计。在操作511中,确定是否引起了任何预定义的突发情况。在本发明的一个实施例中,突发情况包括HDOP超过HDOP表征码、估计水平误差超过预选门限、单位方差低于预选门限或超过第二预选门限、分离之前和之后解的变化低于预选门限或超过第二预选门限、差错分离未通过可靠性测试、自由度数低于预选门限,以及其它因素。如果在操作511中确定未引起任何突发情况,从操作501开始重复整个差错检测和分离过程。否则,差错检测和分离过程结束。
偏移调整算法
图9是根据本发明的实施例,概述包括在如图4操作109所示偏移调整过程中的操作流程图。
在本发明的一个实施例中,如图9所示的偏移调整算法类似于参照图8操作503的偏移估计过程。然而在图9的偏移调整过程中,对任何或任何子集的普通接收信号进行偏移估计,而不只限于检测到的独立的错误测量值。在某些实例中,选中的子集可以是整组测量值。在本发明的一个实施例中,该组内可以不包括互相关信号,可以不包括“强”卫星,也可以不包括“双峰值”测量值。应该注意到偏移调整过程上下文中“强”卫星的定义可能不同于差错检测和分离算法上下文中用的“强”卫星的定义。在另一实施例中,该组内可以不包括任何或所有作为图4中操作105测量值选择和计算一部分的预先过滤掉的测量值。
在操作601,估计一组选中卫星的偏移误差。根据信号环境和高度辅助参数,偏移估计可以包括或不包括高度测量值。在操作603中,选择最大正偏移估计。在本发明的一个实施例中,如果使用高度辅助,高度测量值的偏移可以不包括在该选择中。在本发明的另一实施例中,可选择相关函数中任何多峰值的位置作为偏移估计。在一个实例中,选择最早的可识别峰值。在另一实例中,可选择相关函数中的任何坡点作为偏移估计。然后在操作605中,用偏移估计纠正选中的测量值。
在操作607中,调整已纠正测量值的权以解决偏移调整。新的权可能基于信号环境、偏移大小、已纠正伪距残余项的大小、算法控制参数、SNR、SIR、偏移估计相关函数样本中的信号输入强度等等。在操作609中计算新的解和相应的误差估计。
在操作611中,确定是否引起了任何预定义的突发情况。在本发明的一个实施例中,突发情况包括与单位方差成比例的估计水平误差超过预选门限、单位方差低于预选门限或超过第二预选门限、偏移调整之前和之后解的变化低于预选门限或超过第二预选门限、自由度数低于预选门限,以及其它因素。如果在操作611中确定未引起任何突发情况,从操作601开始重复偏移调整过程,否则,偏移调整过程结束。
贯序测量值优化算法
图10是根据本发明的实施例,概述包括在如图4操作111所示贯序测量值优化(SMO)过程中的操作流程图。
在本发明的一个实施例中,只有遇到称为“初始条件”的特定条件,才进行贯序测量值优化过程。在操作701中,检验贯序测量值优化过程的初始条件。初始条件包括差错检测和分离可靠性测试的失败,或用错误的检测和分离算法分离“强”卫星或高度测量值。如果误差统计量(例如估计水平误差)超过基于信号环境表征的选中门限,也可以启动贯序测量值优化过程。初始条件还可以包括差错检测和分离和/或偏移调整中的任何突发情况。
在本发明的另一实施例中,可设置算法控制参数建立过程中操作307的一组控制参数,以迫使贯序测量值优化算法总是执行,而不是在只有出现初始条件时进行。
在操作703中,为每个选中的卫星估计偏移。在一个实施例中,一组选中的卫星测量值可以不包括由先前测量值处理步骤已经从解中移去的卫星,例如通过测量值选择和计算过程、差错检测和分离过程或者偏移调整过程。该组内也可以不包括“强”卫星。此外,在连续测量值优化上下文中的“强”卫星定义可能与差错检测和分离或偏移调整上下文中用的“强”卫星定义不同。在另一实施例中,该组内可以包括所有卫星。
在操作705,根据选中的方法处理选中的卫星测量值。选中的方法可以是偏移调整技术、权调整技术、时间调整技术、多路径缓和技术或一些其它的测量值优化技术。偏移调整技术可使用操作703计算的偏移估计,以纠正选中的测量值和调整权以解决纠正。权调整技术可以除权卫星测量值,降低测量值对总体解的影响。时间调整技术可以在任一方向(延迟或提前到达时间)上调整卫星测量值,以改进解。在另一实施例中,只能执行提前到达时间(例如减少到达时间)作为时间调整技术的一部分。多路径缓和技术可以使用信号计算机模型来估计特定位置的多路径误差,并在卫星测量值加权中使用该信息。在另一实施例中,分析相关波形(相关函数)的拐点,拐点表示偏移理想峰形,也可以表示多个信号组合的点。在再一个实施例中,分析相关波形的在可能到达时间的多个峰值。
在操作707中,计算新的解和相应的误差统计量。在操作709中,识别优化误差统计量的测量值。在特定的情况下,优化可以对应于误差统计量的最小化。例如,选中的误差统计量可以是加权的根和平方后验残差。误差统计最选择可以根据信号环境表征或“城市峡谷”计算机模型,或者先前关于具体信号环境中具体方法成功的信息。其它可用的误差统计量是未加权的根和平方后验残差,加权的根和平方先验残差、估计水平误差、单位方差、与HDOP成比例的单位方差及其它。
在操作711中,确定对于进一步贯序测量值优化,是否有可用的自由度。如果有自由度仍然有效,从操作601开始重复贯序测量值优化,否则贯序测量值优化过程结束。在本发明的一个实施例中,如果结果HDOP超过预选的HDOP表征码,或者结果加权HDOP超过预选的加权HDOP表征码,如果选中的误差统计量低于预选的门限水平,或者如果当前的贯序测量值优化迭代不导致选中误差统计量的改进,那么可以停止贯序测量值优化过程。FDI和/或偏移停止过程的任何突发情况可用于停止SMO过程。
最后解和误差估计的计算
图11是根据本发明的实施例,概述包括在如图4操作103所示最后计算和误差估计过程中操作的流程图。
在操作801中,计算最后解和误差估计。在本发明的一个实施例中,解可以包括至少一个位置、速度和定时信息。也可以进行测试以验证解。在一个实施例中,测试基于环境类型,例如“城市峡谷”城市模型。在另一实施例中,在车辆跟踪应用中,通过比较解的位置和它在数字地图或其它GIS(地理信息系统)资源上的位置,检验解是否在街道位置上。该测试检验选中的误差统计量是否超过预选的门限。该测试也可以将该解和先前的解或一系列先前的解比较。
在操作803中,计算误差椭圆。可以根据环境类型分析误差椭圆半长轴和半短轴的大小以及方位角。例如,在“城市峡谷”环境中严重的多路径条件下,误差椭圆的方位角一般垂直于街道的方向。换句话说,半短轴要重合于街道方向。
在操作805中,用位置解信息更新信号环境计算机模型。还可用室外信号环境的高度解更新地形仰角数据库。
本发明的各种方法可以通过移动SPS接收机执行一部分,剩余的部分由远程本地SPS服务器执行。图12A中显示了用该方法工作的系统的一个实例,图12B显示了SPS服务器的一个实例。
只为了解释的目的,图12A的系统900包括四个分别由小区基站服务的小区901、902、903和904,以后参考小区站点901a、902a、903a和904a。每个小区站点用熟知的蜂窝电话通信方式,用小区站点附近的小区电话提供两路蜂窝无线通信。典型的小区电话也可包括移动SPS接收机,例如接收机901b。图1显示了移动单元20的特例,可以构造它实现集成移动SPS接收机和小区电话901b。移动单元901b中的蜂窝电话提供到小区站点和来自小区站点的无线通信。无线通信可包括语音数据和SPS辅助数据或上述输出的SPS位置信息。例如,可将信号环境数据提供给小区电话,然后SPS接收机可利用该小区电话,以执行本发明的测量值处理技术。可从基于小区的数据库得到该数据,例如由SPS服务器912维持的数据库912a,然后单元901b中的SPS接收机可使用该信号环境数据在SPS接收机内执行本发明的测量值处理技术。典型地,SPS接收机将接收SPS信号,并为每个卫星确定这些信号的相关输出。然后,在SPS接收机内执行本发明的一些测量值处理技术,其它的由SPS服务器执行,例如服务器914和912。每个移动单元都通过小区站点和移动交换中心和服务器相连,例如移动交换中心906和907,它们通过图12A所示的公众交换电话网908依次和服务器相连。因此,伪距和相关输出和移动SPS系统901b产生的其它测量值处理输出可以通过小区站点901a和移动交换中心907和特定服务器(如SPS服务器912)的PSTN(公众交换电话网)向前传给SPS服务器。然后SPS服务器执行本发明测量值处理技术的剩余部分,以确定各种可视卫星最后的伪距。还使用从广域基准网(WARN)915接收到的卫星天文历数据进行位置计算。之后,SPS服务器做出的最后位置的确定允许服务器将该最后位置信息提供给另一系统,例如应用系统910,在一个实施例中,它可以是公共安全应答点(PSAP)。在共同待批的、1998年4月28日提出申请的,发明者为Norman F.Krasner,MarkMoeglein和David Coleman,题为《分布卫星位置系统处理和应用网络》的美国专利申请序号09/067,406中,描述了本发明可利用系统的再一实例。在共同待批的、1998年4月28日提出申请的,发明者为Mark Moeglein,Leonid Sheynblat,和Norman F.Krasner,题为《卫星定位基准系统和方法》的美国专利申请序号09/067,407中,描述了广域基准网的实例。除了可以存储在小区基础数据库912a和914a中的信号环境数据,这些数据库可以储存平均高度,也可以储存卫星相关信息,例如考虑到各种小区站点的卫星估计多普勒频率。在共同待批的、1997年4月15日提出申请的,发明者为Norman F.Krasner,题为《利用通信链路的改进GPS接收机》的美国专利申请序号08/842,559中,描述了这种类型的基于小区的数据库实例。
应该注意到基于蜂窝的通信系统是具有不只一个发射机,每个发射机服务于随时及时预定义的不同地域的通信系统。典型地,每个发射机是一个无线发射机(例如小区站点),它服务一个地理半径小于20英里的小区,虽然覆盖区域依赖于具体的蜂窝系统。具有多个类型的蜂窝通信系统,例如蜂窝电话、PCS(个人通信系统)、SMR(专用移动无线电)、单向和双向寻呼机系统、RAM、ARDIS和无线分组数据系统。一般预定义的不同地域被称为小区,许多小区组合在一起形成蜂窝服务区域,这些小区耦合到一个或多个提供与陆基电话系统和/网络连接的蜂窝交换中心。服务区通常用于账单目的。因此,可能有这种情况在不只一个服务区内的小区被连到一个交换中心。另外,有时在一个服务区内的多个小区被连到不同的交换中心,尤其是在人口密集的区域。一般,将服务区定义为地理上接近的小区的集合。另一类符合以上描述的蜂窝系统是基于基于卫星的系统,其中蜂窝基站典型地是地球轨道卫星。在这些系统中,小区扇区和服务区按时间函数移动。这些系统的实例包括铱、地球星、Orbcomm、Odyssey系统。
图12B是根据本发明实施例的SPS服务器的实例。该服务器包括与调制解调器或其它接口953耦合,并与调制解调器或其它接口952耦合,还和另一调制解调器或接口954耦合的数据处理单元951。此外,大容量存储单元955也和数据处理单元951耦合。任选项GPS接收机也可以和数据处理单元耦合951。大容量存储器955包括用于执行本发明处理操作的可执行计算机程序,还包括存储基于小区信息源的存储器,例如基于小区的数据库912a,它将小区站点内的位置与这里所述的具体的信号环境数据关联。每个调制解调器或其它接口提供一个数据处理单元951和图12A所示系统900的各种部件之间的接口。例如,调制解调器或其它接口953提供来自蜂窝交换中心间的连接,在SPS接收机直接和移动交换中心耦合的情况下例如与移动交换中心907和单元951连接。如图12A所示,移动交换中心间的链路是通过公共交换电话网的,因此接口953将服务器912和914耦合到公共交换电话网。在另一实施例中,每个小区站点可以包括一个服务器系统,因此接口953将数据处理单元951直接耦合到小区站点,例如小区站点901a。接口952将单元951耦合到其它系统,例如图12A所示应用系统910。接口954将单元951耦合到GPS信号源,例如图12A所示WARN915。
以上叙述中,通过例如GPS接收机的SPS系统中导航数据的测量值处理描述了系统。虽然通过参考特殊的实施例描述了本发明,但是很明显的是对这些实施例做各种改变和变化不脱离以下权利要求所述的本发明最宽的精神和范围。因此,应该认为说明书和附图只有说明的意义,而没有限制的意义。

Claims (4)

1.一种处理卫星定位系统(SPS)信号的方法,其特征在于,所述方法包括以下步骤:
为来自第一SPS卫星的第一组SPS信号确定第一可能相关峰值;
为来自所述第一组SPS信号确定第二可能相关峰值;
从所述第一可能相关峰值和所述第二可能相关峰值中的一个,得到表示所述第一组SPS信号到达时间的测量值。
2.如权利要求1所述的方法,其特征在于,所述第二可能相关峰值在时间上跟随在所述第一可能相关峰值之后。
3.如权利要求2所述的方法,其特征在于,所述第二可能相关峰值由一个反射SPS信号产生。
4.如权利要求3所述的方法,其特征在于,表示所述到达时间的所述测量值来自所述第一可能相关峰值。
CN200710089630.0A 1999-02-01 2000-01-24 用于卫星定位系统(sps)信号测量值处理的方法和装置 Expired - Lifetime CN101025439B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/241,334 US6313786B1 (en) 1998-07-02 1999-02-01 Method and apparatus for measurement processing of satellite positioning system (SPS) signals
US09/241,334 1999-02-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB008051275A Division CN1316259C (zh) 1999-02-01 2000-01-24 用于卫星定位系统(sps)信号测量值处理的方法和装置

Publications (2)

Publication Number Publication Date
CN101025439A CN101025439A (zh) 2007-08-29
CN101025439B true CN101025439B (zh) 2014-08-20

Family

ID=22910291

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201310697716.7A Expired - Lifetime CN103698786B (zh) 1999-02-01 2000-01-24 用于卫星定位系统(sps)信号测量值处理的方法和装置
CN200710089630.0A Expired - Lifetime CN101025439B (zh) 1999-02-01 2000-01-24 用于卫星定位系统(sps)信号测量值处理的方法和装置
CNB008051275A Expired - Lifetime CN1316259C (zh) 1999-02-01 2000-01-24 用于卫星定位系统(sps)信号测量值处理的方法和装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201310697716.7A Expired - Lifetime CN103698786B (zh) 1999-02-01 2000-01-24 用于卫星定位系统(sps)信号测量值处理的方法和装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB008051275A Expired - Lifetime CN1316259C (zh) 1999-02-01 2000-01-24 用于卫星定位系统(sps)信号测量值处理的方法和装置

Country Status (16)

Country Link
US (2) US6313786B1 (zh)
EP (4) EP1775598B1 (zh)
JP (5) JP4270757B2 (zh)
KR (1) KR100732795B1 (zh)
CN (3) CN103698786B (zh)
AT (4) ATE416388T1 (zh)
AU (1) AU770440B2 (zh)
BR (1) BRPI0007834B1 (zh)
CA (3) CA2359662C (zh)
DE (3) DE60040880D1 (zh)
ES (4) ES2316107T3 (zh)
HK (2) HK1044377B (zh)
IL (2) IL144599A0 (zh)
MX (1) MXPA01007686A (zh)
NO (1) NO20013755L (zh)
WO (1) WO2000045191A2 (zh)

Families Citing this family (396)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US7092369B2 (en) 1995-11-17 2006-08-15 Symbol Technologies, Inc. Communications network with wireless gateways for mobile terminal access
US6313786B1 (en) * 1998-07-02 2001-11-06 Snaptrack, Inc. Method and apparatus for measurement processing of satellite positioning system (SPS) signals
US7711038B1 (en) 1998-09-01 2010-05-04 Sirf Technology, Inc. System and method for despreading in a spread spectrum matched filter
US7545854B1 (en) 1998-09-01 2009-06-09 Sirf Technology, Inc. Doppler corrected spread spectrum matched filter
US7904187B2 (en) 1999-02-01 2011-03-08 Hoffberg Steven M Internet appliance system and method
US6704348B2 (en) * 2001-05-18 2004-03-09 Global Locate, Inc. Method and apparatus for computing signal correlation at multiple resolutions
US6453237B1 (en) * 1999-04-23 2002-09-17 Global Locate, Inc. Method and apparatus for locating and providing services to mobile devices
GB9915841D0 (en) * 1999-07-06 1999-09-08 Nokia Telecommunications Oy Location of a station
US8255149B2 (en) 1999-07-12 2012-08-28 Skybitz, Inc. System and method for dual-mode location determination
US6560536B1 (en) * 1999-07-12 2003-05-06 Eagle-Eye, Inc. System and method for rapid telepositioning
US6480788B2 (en) 1999-07-12 2002-11-12 Eagle-Eye, Inc. System and method for fast acquisition reporting using communication satellite range measurement
US20040143392A1 (en) * 1999-07-12 2004-07-22 Skybitz, Inc. System and method for fast acquisition reporting using communication satellite range measurement
EP1200851B1 (en) * 1999-07-20 2010-01-27 Qualcom Incorporated Method for determining a change in a communication signal and using this information to improve sps signal reception and processing
US7016687B1 (en) * 1999-07-29 2006-03-21 Bryan Holland Portable locator system and method
US6564064B1 (en) 1999-12-01 2003-05-13 Trimble Navigation Limited Cellular telephone using pseudolites for determining location
US6282231B1 (en) * 1999-12-14 2001-08-28 Sirf Technology, Inc. Strong signal cancellation to enhance processing of weak spread spectrum signal
JP4316759B2 (ja) * 2000-01-13 2009-08-19 株式会社日立国際電気 パス認定方法、cdma方式無線通信端末およびcdma方式無線通信システム
US6389291B1 (en) * 2000-08-14 2002-05-14 Sirf Technology Multi-mode global positioning system for use with wireless networks
US8078189B2 (en) * 2000-08-14 2011-12-13 Sirf Technology, Inc. System and method for providing location based services over a network
US6778136B2 (en) 2001-12-13 2004-08-17 Sirf Technology, Inc. Fast acquisition of GPS signal
US8116976B2 (en) 2000-05-18 2012-02-14 Csr Technology Inc. Satellite based positioning method and system for coarse location positioning
US7813875B2 (en) * 2002-10-10 2010-10-12 Sirf Technology, Inc. Layered host based satellite positioning solutions
US7546395B2 (en) * 2002-10-10 2009-06-09 Sirf Technology, Inc. Navagation processing between a tracker hardware device and a computer host based on a satellite positioning solution system
US7970412B2 (en) 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7970411B2 (en) 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7949362B2 (en) 2000-05-18 2011-05-24 Sirf Technology, Inc. Satellite positioning aided communication system selection
US7929928B2 (en) 2000-05-18 2011-04-19 Sirf Technology Inc. Frequency phase correction system
JP3593955B2 (ja) * 2000-05-31 2004-11-24 日本電気株式会社 Gpsシステム
GB0017460D0 (en) * 2000-07-18 2000-08-30 Hewlett Packard Co Message passing to a known location
JP2004506219A (ja) 2000-08-09 2004-02-26 スカイビッツ,インコーポレイテッド Gps受信機におけるコード位相ならびにキャリア周波数の高速捕捉システム並びに方法
US7027486B2 (en) * 2000-09-18 2006-04-11 Skybitz, Inc. System and method for fast code phase and carrier frequency acquisition in GPS receiver
US6961019B1 (en) * 2000-08-10 2005-11-01 Sirf Technology, Inc. Method and apparatus for reducing GPS receiver jamming during transmission in a wireless receiver
JP2002057609A (ja) * 2000-08-10 2002-02-22 Honda Motor Co Ltd 移動体衛星通信システム
US7436907B1 (en) 2000-08-24 2008-10-14 Sirf Technology, Inc. Analog compression of GPS C/A signal to audio bandwidth
US7680178B2 (en) 2000-08-24 2010-03-16 Sirf Technology, Inc. Cross-correlation detection and elimination in a receiver
US6529829B2 (en) 2000-08-24 2003-03-04 Sirf Technology, Inc. Dead reckoning system for reducing auto-correlation or cross-correlation in weak signals
US6583756B2 (en) * 2000-08-25 2003-06-24 Qualcomm Incorporated Method and apparatus for using satellite status information in satellite positioning systems
EP1914562A3 (en) 2000-08-25 2008-07-02 QUALCOMM Incorporated Method and apparatus for using satellite status information in satellite positioning systems
US6665612B1 (en) * 2000-08-29 2003-12-16 Sirf Technology, Inc. Navigation processing for a satellite positioning system receiver
US7062305B1 (en) * 2000-09-15 2006-06-13 Trimble Navigation Limited Location identifying apparatus and method of identifying the location of a user
US7463893B1 (en) 2000-09-22 2008-12-09 Sirf Technology, Inc. Method and apparatus for implementing a GPS receiver on a single integrated circuit
GB0023366D0 (en) * 2000-09-23 2000-11-08 Koninkl Philips Electronics Nv Mobile radio terminal and related method and system
US20070200752A1 (en) * 2001-06-06 2007-08-30 Global Locate, Inc. Method and apparatus for maintaining integrity of long-term orbits in a remote receiver
US6992617B2 (en) * 2003-11-13 2006-01-31 Global Locate, Inc. Method and apparatus for monitoring the integrity of satellite tracking data used by a remote receiver
US7047023B1 (en) 2000-12-01 2006-05-16 Sirf Technology, Inc. GPS RF front end IC with frequency plan for improved integrability
US6714790B2 (en) * 2000-12-19 2004-03-30 Motorola, Inc. Method for masking the location of a mobile subscriber in a cellular communications network
US7671489B1 (en) 2001-01-26 2010-03-02 Sirf Technology, Inc. Method and apparatus for selectively maintaining circuit power when higher voltages are present
US7027820B2 (en) * 2001-01-31 2006-04-11 Hewlett-Packard Development Company, L.P. Location data validation by static entities receiving location data items by short-range communication
US6614393B2 (en) * 2001-01-31 2003-09-02 Hewlett-Packard Development Company, L.P. Location data dissemination and reception for entities having short-range receivers
US6865394B2 (en) * 2001-01-31 2005-03-08 Hitachi, Ltd Location detection method, location detection system and location detection program
US6703971B2 (en) 2001-02-21 2004-03-09 Sirf Technologies, Inc. Mode determination for mobile GPS terminals
JP4349758B2 (ja) * 2001-03-27 2009-10-21 パイオニア株式会社 位置測位装置
FI110293B (fi) * 2001-03-30 2002-12-31 Suunto Oy Paikannusjärjestelmä
US6785526B2 (en) * 2001-04-04 2004-08-31 The Boeing Company Method and apparatus using event correlation for identifying an interfering mobile terminal
JP2002328157A (ja) * 2001-04-27 2002-11-15 Pioneer Electronic Corp 測位誤差領域設定装置、測位誤差領域設定方法、測位誤差領域設定処理プログラムおよびナビゲーション装置
WO2002091017A2 (en) * 2001-05-04 2002-11-14 Lockheed Martin Corporation System and method for measurement domain data association in passive coherent location applications
US6710743B2 (en) 2001-05-04 2004-03-23 Lockheed Martin Corporation System and method for central association and tracking in passive coherent location applications
US6801163B2 (en) 2001-05-04 2004-10-05 Lockheed Martin Corporation System and method for wideband pre-detection signal processing for passive coherent location applications
US7006556B2 (en) * 2001-05-18 2006-02-28 Global Locate, Inc. Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference
US7995682B2 (en) 2001-05-18 2011-08-09 Broadcom Corporation Method and apparatus for performing signal processing using historical correlation data
US7190712B2 (en) * 2001-05-18 2007-03-13 Global Locate, Inc Method and apparatus for performing signal correlation
US7769076B2 (en) 2001-05-18 2010-08-03 Broadcom Corporation Method and apparatus for performing frequency synchronization
US7567636B2 (en) * 2001-05-18 2009-07-28 Global Locate, Inc. Method and apparatus for performing signal correlation using historical correlation data
US8244271B2 (en) 2001-05-21 2012-08-14 Csr Technology Inc. Distributed data collection of satellite data
US7668554B2 (en) 2001-05-21 2010-02-23 Sirf Technology, Inc. Network system for aided GPS broadcast positioning
US8358245B2 (en) * 2001-06-06 2013-01-22 Broadcom Corporation Method and system for extending the usability period of long term orbit (LTO)
US20030008671A1 (en) * 2001-07-06 2003-01-09 Global Locate, Inc. Method and apparatus for providing local orientation of a GPS capable wireless device
JP4049558B2 (ja) * 2001-08-06 2008-02-20 株式会社デンソー 無線通信端末、コンピュータプログラムおよび位置関連情報の送信方法
GB2396985B (en) 2001-09-12 2005-05-11 Data Fusion Corp Gps near-far resistant receiver
GB0122228D0 (en) * 2001-09-13 2001-11-07 Koninl Philips Electronics Nv GPS receiver and related method
JP2003087361A (ja) * 2001-09-13 2003-03-20 Denso Corp 移動通信端末装置
US6785543B2 (en) 2001-09-14 2004-08-31 Mobile Satellite Ventures, Lp Filters for combined radiotelephone/GPS terminals
US8977284B2 (en) 2001-10-04 2015-03-10 Traxcell Technologies, LLC Machine for providing a dynamic data base of geographic location information for a plurality of wireless devices and process for making same
US7729412B2 (en) * 2001-10-29 2010-06-01 Qualcomm Incorporated Parameter estimator with dynamically variable integration time
US7558534B2 (en) 2001-11-02 2009-07-07 Qualcomm Incorporated Reliability metrics for parameter estimates which account for cumulative error
US6646596B2 (en) * 2001-11-13 2003-11-11 Nokia Corporation Method, system and devices for positioning a receiver
US7218624B2 (en) * 2001-11-14 2007-05-15 Interdigital Technology Corporation User equipment and base station performing data detection using a scalar array
JP3491631B2 (ja) * 2001-11-28 2004-01-26 株式会社デンソー 無線通信端末
US7065064B2 (en) * 2001-12-20 2006-06-20 Interdigital Technology Corporation Cell search using peak quality factors
US20030125045A1 (en) * 2001-12-27 2003-07-03 Riley Wyatt Thomas Creating and using base station almanac information in a wireless communication system having a position location capability
US7038619B2 (en) 2001-12-31 2006-05-02 Rdp Associates, Incorporated Satellite positioning system enabled media measurement system and method
US6882837B2 (en) 2002-01-23 2005-04-19 Dennis Sunga Fernandez Local emergency alert for cell-phone users
US6559795B1 (en) * 2002-02-19 2003-05-06 Seiko Epson Corporation High-sensitivity infrequent use of servers
US8095589B2 (en) * 2002-03-07 2012-01-10 Compete, Inc. Clickstream analysis methods and systems
US9129032B2 (en) * 2002-03-07 2015-09-08 Compete, Inc. System and method for processing a clickstream in a parallel processing architecture
US20080189408A1 (en) 2002-10-09 2008-08-07 David Cancel Presenting web site analytics
US9092788B2 (en) * 2002-03-07 2015-07-28 Compete, Inc. System and method of collecting and analyzing clickstream data
US10296919B2 (en) 2002-03-07 2019-05-21 Comscore, Inc. System and method of a click event data collection platform
US6731240B2 (en) * 2002-03-11 2004-05-04 The Aerospace Corporation Method of tracking a signal from a moving signal source
US8126889B2 (en) 2002-03-28 2012-02-28 Telecommunication Systems, Inc. Location fidelity adjustment based on mobile subscriber privacy profile
US9154906B2 (en) 2002-03-28 2015-10-06 Telecommunication Systems, Inc. Area watcher for wireless network
US8290505B2 (en) 2006-08-29 2012-10-16 Telecommunications Systems, Inc. Consequential location derived information
US8918073B2 (en) 2002-03-28 2014-12-23 Telecommunication Systems, Inc. Wireless telecommunications location based services scheme selection
US8027697B2 (en) 2007-09-28 2011-09-27 Telecommunication Systems, Inc. Public safety access point (PSAP) selection for E911 wireless callers in a GSM type system
US7426380B2 (en) 2002-03-28 2008-09-16 Telecommunication Systems, Inc. Location derived presence information
US8160604B2 (en) 2002-04-18 2012-04-17 Qualcomm Incorporated Integrity monitoring in a position location system utilizing knowledge of local topography
US7460870B2 (en) 2002-04-25 2008-12-02 Qualcomm Incorporated Method and apparatus for location determination in a wireless assisted hybrid positioning system
US7095813B2 (en) * 2002-05-16 2006-08-22 Qualcomm Incorporated System and method for the detection and compensation of radio signal time of arrival errors
US6650288B1 (en) * 2002-05-23 2003-11-18 Telecommunication Systems Culled satellite ephemeris information for quick assisted GPS location determination
US6580390B1 (en) * 2002-05-30 2003-06-17 General Motors Corporation Method and system for global positioning system mask angle optimization
US6738013B2 (en) * 2002-06-20 2004-05-18 Sirf Technology, Inc. Generic satellite positioning system receivers with selective inputs and outputs
WO2004001439A1 (en) * 2002-06-20 2003-12-31 Sirf Technology, Inc. Generic satellite positioning system receivers with programmable inputs and selectable inputs and outputs
US6757324B2 (en) * 2002-07-18 2004-06-29 Motorola, Inc. Method and apparatus for detecting jamming signal
US7200414B2 (en) * 2002-08-07 2007-04-03 Seiko Epson Corporation Client-aiding with cellphones in a 150-KM radius area
FR2843638B1 (fr) * 2002-08-13 2004-10-22 Thales Sa Recepteur de positionnement par satellite avec correction d'erreurs d'inter-correlation
US7239271B1 (en) 2002-08-15 2007-07-03 Sirf Technology, Inc. Partial almanac collection system
KR100722350B1 (ko) 2002-08-15 2007-05-29 서프 테크놀러지, 인코포레이티드 위치 측정 시스템을 위한 인터페이스
US8010423B2 (en) * 2002-08-29 2011-08-30 International Business Machines Corporation Anticipatory mobile system service brokering and resource planning from multiple providers
US7657230B2 (en) * 2002-08-29 2010-02-02 Qualcomm Incorporated Procedure for detecting interfering multi-path condition
US7499712B2 (en) * 2002-09-05 2009-03-03 Qualcomm Incorporated Position computation in a positioning system using synchronization time bias
US7206588B2 (en) * 2002-09-13 2007-04-17 Matsushita Electric Industrial Co., Ltd. Communication device and communication system
US7890451B2 (en) * 2002-10-09 2011-02-15 Compete, Inc. Computer program product and method for refining an estimate of internet traffic
US6873910B2 (en) 2002-10-22 2005-03-29 Qualcomm Incorporated Procedure for searching for position determination signals using a plurality of search modes
US8027843B2 (en) * 2002-11-07 2011-09-27 International Business Machines Corporation On-demand supplemental diagnostic and service resource planning for mobile systems
US20040093299A1 (en) * 2002-11-07 2004-05-13 International Business Machines Corporation System and method for coalescing information for presentation to a vehicle operator
US7447642B2 (en) * 2002-11-07 2008-11-04 International Business Machines Corporation Location based services revenue sharing and cost offsetting
CN1329741C (zh) * 2002-12-16 2007-08-01 华为技术有限公司 一种获取环境数据的装置及其实现的方法
JP2004245657A (ja) * 2003-02-13 2004-09-02 Hitachi Ltd 携帯端末装置及び情報提供システム
US7170447B2 (en) * 2003-02-14 2007-01-30 Qualcomm Incorporated Method and apparatus for processing navigation data in position determination
US7088237B2 (en) 2003-02-14 2006-08-08 Qualcomm Incorporated Enhanced user privacy for mobile station location services
US20040204801A1 (en) * 2003-04-14 2004-10-14 Steenberge Robert W. Air transport safety and security system
US8100824B2 (en) 2003-05-23 2012-01-24 Intuitive Surgical Operations, Inc. Tool with articulation lock
US7289533B2 (en) * 2003-06-06 2007-10-30 Quake Global, Inc. Universal subscriber communicator module
US7123928B2 (en) 2003-07-21 2006-10-17 Qualcomm Incorporated Method and apparatus for creating and using a base station almanac for position determination
US7786931B2 (en) * 2003-08-01 2010-08-31 Alcatel Determining mobile terminal positions using assistance data transmitted on request
US7822105B2 (en) 2003-09-02 2010-10-26 Sirf Technology, Inc. Cross-correlation removal of carrier wave jamming signals
US8164517B2 (en) 2003-09-02 2012-04-24 Csr Technology Inc. Global positioning system receiver timeline management
US8138972B2 (en) 2003-09-02 2012-03-20 Csr Technology Inc. Signal processing system for satellite positioning signals
EP1664824B1 (en) 2003-09-02 2015-01-14 SiRF Technology, Inc. Satellite positioning receiver and method of communicating between the signal processing and FFT subsystems of said satellite positioning receiver
FR2859556B1 (fr) * 2003-09-05 2005-11-11 Airbus France Procede et dispositif de maintenance d'un equipement de radionavigation d'un aeronef
CN1332215C (zh) * 2003-10-24 2007-08-15 中兴通讯股份有限公司 一种移动定位方法
US8131463B2 (en) * 2003-12-02 2012-03-06 Gmv Aerospace And Defence, S.A. GNSS navigation solution integrity in non-controlled environments
US20060047413A1 (en) * 2003-12-02 2006-03-02 Lopez Nestor Z GNSS navigation solution integrity in non-controlled environments
US7424293B2 (en) 2003-12-02 2008-09-09 Telecommunication Systems, Inc. User plane location based service using message tunneling to support roaming
US7260186B2 (en) 2004-03-23 2007-08-21 Telecommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
US20080090546A1 (en) 2006-10-17 2008-04-17 Richard Dickinson Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
US20080126535A1 (en) 2006-11-28 2008-05-29 Yinjun Zhu User plane location services over session initiation protocol (SIP)
US20050136917A1 (en) 2003-12-23 2005-06-23 Taylor Scott P. Content delivery coordinator apparatus and method
US20050180558A1 (en) * 2004-02-17 2005-08-18 Sarnoff Corporation Method and apparatus for equalizing strong pre-echoes in a multi-path communication channel
US8280466B2 (en) * 2004-03-17 2012-10-02 Telecommunication Systems, Inc. Four frequency band single GSM antenna
US8489874B2 (en) * 2004-03-17 2013-07-16 Telecommunication Systems, Inc. Encryption STE communications through private branch exchange (PBX)
US8239669B2 (en) * 2004-03-17 2012-08-07 Telecommunication Systems, Inc. Reach-back communications terminal with selectable networking options
US7761095B2 (en) * 2004-03-17 2010-07-20 Telecommunication Systems, Inc. Secure transmission over satellite phone network
US9137771B2 (en) 2004-04-02 2015-09-15 Qualcomm Incorporated Methods and apparatuses for beacon assisted position determination systems
JP3922585B2 (ja) 2004-05-13 2007-05-30 セイコーエプソン株式会社 測位装置、測位方法、測位プログラム、測位プログラムを記録したコンピュータ読み取り可能な記録媒体
US7415353B2 (en) * 2004-05-25 2008-08-19 Seiko Epson Corporation Satellite-position table messaging
US7564402B2 (en) * 2004-07-26 2009-07-21 Drexel University Information gathering using reflected satellite signals
DE102004043534A1 (de) * 2004-09-08 2006-03-09 Siemens Ag Verfahren zum Bestimmen des Aufenthaltsortes einer Teilnehmerstation eines Funkkommunikationssystems
US20070223686A1 (en) * 2004-09-16 2007-09-27 Shidong Li Methods and apparatus for data and signal encryption and decryption by irregular subspace leaping
US7774112B2 (en) * 2004-09-27 2010-08-10 Teledyne Technologies Incorporated System and method for flight data recording
US8013789B2 (en) * 2004-10-06 2011-09-06 Ohio University Systems and methods for acquisition and tracking of low CNR GPS signals
US6985105B1 (en) 2004-10-15 2006-01-10 Telecommunication Systems, Inc. Culled satellite ephemeris information based on limiting a span of an inverted cone for locating satellite in-range determinations
US7113128B1 (en) 2004-10-15 2006-09-26 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US7411546B2 (en) 2004-10-15 2008-08-12 Telecommunication Systems, Inc. Other cell sites used as reference point to cull satellite ephemeris information for quick, accurate assisted locating satellite location determination
US7629926B2 (en) 2004-10-15 2009-12-08 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US7623066B2 (en) * 2004-11-12 2009-11-24 Motorola, Inc. Satellite positioning system receiver time determination in minimum satellite coverage
JP2006177783A (ja) * 2004-12-22 2006-07-06 Seiko Epson Corp 測位装置、測位装置の制御方法、測位装置の制御プログラム、測位装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体
FR2880693B1 (fr) * 2005-01-11 2007-06-29 Pole Star Sarl Procede et dispositif de positionnement.
US8279119B2 (en) * 2005-01-19 2012-10-02 The Charles Stark Draper Laboratory, Inc. Systems and methods for transparency mapping using multipath signals
JP2008527394A (ja) * 2005-01-19 2008-07-24 ザ・チャールズ・スターク・ドレイパー・ラボラトリー・インコーポレイテッド マルチパス信号を用いて位置決めを行うためのシステム及び方法
US7973716B2 (en) * 2005-01-19 2011-07-05 The Charles Stark Draper Laboratory, Inc. Systems and methods for transparency mapping using multipath signals
GB2438347B8 (en) * 2005-02-25 2009-04-08 Data Fusion Corp Mitigating interference in a signal
US7479922B2 (en) * 2005-03-31 2009-01-20 Deere & Company Method and system for determining the location of a vehicle
US7653483B2 (en) 2005-03-31 2010-01-26 Deere & Company System and method for determining a position of a vehicle
US7720598B2 (en) 2005-03-31 2010-05-18 Deere & Company System and method for determining a position of a vehicle with compensation for noise or measurement error
US7647177B2 (en) * 2005-03-31 2010-01-12 Deere & Company System and method for determining a position of a vehicle
US7593811B2 (en) * 2005-03-31 2009-09-22 Deere & Company Method and system for following a lead vehicle
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
WO2006118494A1 (en) * 2005-04-29 2006-11-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangements relating to satellite-based positioning
US7522098B2 (en) * 2005-06-01 2009-04-21 Global Locate, Inc. Method and apparatus for validating a position in a satellite positioning system using range-rate measurements
ES2427975T3 (es) * 2005-06-02 2013-11-05 Gmv Aerospace And Defence S.A. Método y sistema para proporcionar una solución de posición de navegación de GNSS con una integridad garantizada en entornos no controlados
US7298324B2 (en) * 2005-06-03 2007-11-20 Novatel, Inc. Apparatus for and method of improving position and time estimation of radio location devices using calibrated pulse shapes
US7783425B1 (en) * 2005-06-29 2010-08-24 Rockwell Collins, Inc. Integrity-optimized receiver autonomous integrity monitoring (RAIM)
US8660573B2 (en) * 2005-07-19 2014-02-25 Telecommunications Systems, Inc. Location service requests throttling
US9105028B2 (en) 2005-08-10 2015-08-11 Compete, Inc. Monitoring clickstream behavior of viewers of online advertisements and search results
WO2007021868A2 (en) * 2005-08-10 2007-02-22 Compete, Inc. Presentation of media segments
US8099106B2 (en) * 2005-08-24 2012-01-17 Qualcomm Incorporated Method and apparatus for classifying user morphology for efficient use of cell phone system resources
US8159389B2 (en) * 2005-09-08 2012-04-17 Gps Source Monitor and control of radio frequency power levels in a GNSS signal distribution system
US7498925B2 (en) * 2005-09-12 2009-03-03 Skybitz, Inc. System and method for reporting a status of an asset
US9784583B2 (en) 2005-09-12 2017-10-10 Skybitz, Inc. System and method for reporting a status of an asset
US7486174B2 (en) 2005-09-12 2009-02-03 Skybitz, Inc. System and method for adaptive motion sensing with location determination
WO2007031103A1 (en) * 2005-09-15 2007-03-22 Telecom Italia S.P.A. Method and system for mobile network aided positioning
WO2007034419A2 (en) 2005-09-21 2007-03-29 Nxp B.V. Method and corresponding gps receiver for determining a gps position fix
US9282451B2 (en) 2005-09-26 2016-03-08 Telecommunication Systems, Inc. Automatic location identification (ALI) service requests steering, connection sharing and protocol translation
US7825780B2 (en) 2005-10-05 2010-11-02 Telecommunication Systems, Inc. Cellular augmented vehicle alarm notification together with location services for position of an alarming vehicle
US8467320B2 (en) 2005-10-06 2013-06-18 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) multi-user conferencing
US7907551B2 (en) 2005-10-06 2011-03-15 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) location based 911 conferencing
US7750843B2 (en) * 2005-10-14 2010-07-06 Accord Software & Systems Pvt. Ltd Weak signal acquisition
FR2892193B1 (fr) * 2005-10-14 2007-12-28 Thales Sa Dispositif et procede de correction des effets du vieillissement d'un capteur de mesure
US7501981B2 (en) * 2005-11-18 2009-03-10 Texas Instruments Incorporated Methods and apparatus to detect and correct integrity failures in satellite positioning system receivers
ATE423327T1 (de) * 2005-12-29 2009-03-15 Alcatel Lucent Verfahren zur beschleunigten erfassung von satellitensignalen
US20070164553A1 (en) * 2006-01-17 2007-07-19 Dov Katz Coloring book with embedded inwardly foldable stencils
US20070189270A1 (en) * 2006-02-15 2007-08-16 Borislow Daniel M Network adapter
US8150363B2 (en) 2006-02-16 2012-04-03 Telecommunication Systems, Inc. Enhanced E911 network access for call centers
US8059789B2 (en) 2006-02-24 2011-11-15 Telecommunication Systems, Inc. Automatic location identification (ALI) emergency services pseudo key (ESPK)
US9167553B2 (en) 2006-03-01 2015-10-20 Telecommunication Systems, Inc. GeoNexus proximity detector network
US7899450B2 (en) 2006-03-01 2011-03-01 Telecommunication Systems, Inc. Cellular augmented radar/laser detection using local mobile network within cellular network
US7471236B1 (en) 2006-03-01 2008-12-30 Telecommunication Systems, Inc. Cellular augmented radar/laser detector
US7739032B2 (en) * 2006-03-21 2010-06-15 Broadcom Corporation Method and apparatus for generating and using a regional-terrain model
US7613464B2 (en) * 2006-03-23 2009-11-03 Media Technology Ventures, Llc Systems and methods for scoring communication spectrum maximization
US8320932B2 (en) * 2006-04-11 2012-11-27 Motorola Solutions, Inc. Method and system of utilizing a context vector and method and system of utilizing a context vector and database for location applications
US8208605B2 (en) 2006-05-04 2012-06-26 Telecommunication Systems, Inc. Extended efficient usage of emergency services keys
US20070262900A1 (en) * 2006-05-12 2007-11-15 Motorola, Inc. Method and system of improving time to first fix in a satellite positioning system
US7864898B2 (en) * 2006-05-17 2011-01-04 Sirf Technology Holdings, Inc. Systems and methods for signal acquistion in navigational satellite signal receivers
US7656348B2 (en) * 2006-05-19 2010-02-02 Qualcomm Incorporated System and/or method for determining sufficiency of pseudorange measurements
US8121238B2 (en) * 2006-06-30 2012-02-21 Csr Technology Inc. System and method for synchronizing digital bits in a data stream
WO2008005904A2 (en) * 2006-06-30 2008-01-10 Sirf Technology, Inc. Enhanced aiding in gps systems
US7898474B2 (en) * 2006-07-20 2011-03-01 Seiko Epson Corporation Positioning device, method of controlling positioning device, and recording medium having program for controlling positioning device recorded thereon
JP4285509B2 (ja) * 2006-07-20 2009-06-24 セイコーエプソン株式会社 測位装置、測位装置の制御方法及びプログラム
WO2008013263A1 (fr) * 2006-07-28 2008-01-31 Ntt Docomo, Inc. Terminal de communication mobile et procédé de positionnement gps
WO2008013261A1 (fr) * 2006-07-28 2008-01-31 Ntt Docomo, Inc. Terminal de communication mobile, procédé de positionnement gps, système de calcul de positionnement, et serveur de positionnement
KR101217939B1 (ko) 2006-08-01 2013-01-02 퀄컴 인코포레이티드 로케이션 서버에 정보 업데이트를 제공하는 시스템 및/또는방법
US7616153B2 (en) * 2006-08-04 2009-11-10 Seiko Epson Corporation Electronic device and time adjustment method
US8692710B2 (en) * 2006-08-31 2014-04-08 Sige Semiconductor (Europe) Limited Apparatus and method for use in global positioning measurements
FR2906632B1 (fr) * 2006-09-29 2010-09-03 Inrets Procede de localisation d'un vehicule.
US7966013B2 (en) 2006-11-03 2011-06-21 Telecommunication Systems, Inc. Roaming gateway enabling location based services (LBS) roaming for user plane in CDMA networks without requiring use of a mobile positioning center (MPC)
ATE480113T1 (de) * 2006-11-30 2010-09-15 Telecom Italia Spa Verfahren und netzwerk zur bestimmung einer umgebung, in der sich ein mobiles endgerät befindet
US20080130794A1 (en) * 2006-12-04 2008-06-05 Chia-Chin Chong Method for optimum threshold selection of time-of-arrival estimators
US7468696B2 (en) * 2006-12-14 2008-12-23 The Boeing Company Method and device for trilateration using LOS link prediction and pre-measurement LOS path filtering
JP4910676B2 (ja) * 2006-12-15 2012-04-04 セイコーエプソン株式会社 演算回路、測位装置、指標算出方法及びプログラム
US7466209B2 (en) * 2007-01-05 2008-12-16 Sirf Technology, Inc. System and method for providing temperature correction in a crystal oscillator
US20080238772A1 (en) * 2007-01-24 2008-10-02 Ohio University Method and apparatus for using multipath signal in gps architecture
US7692584B2 (en) * 2007-01-31 2010-04-06 Nd Satcom Gmbh Antenna system driven by intelligent components communicating via data-bus, and method and computer program therefore
US8050386B2 (en) 2007-02-12 2011-11-01 Telecommunication Systems, Inc. Mobile automatic location identification (ALI) for first responders
JP4265665B2 (ja) * 2007-02-21 2009-05-20 ソニー株式会社 電子機器、通信条件設定装置、通信条件設定方法及びコンピュータプログラム
TWI492607B (zh) * 2007-04-03 2015-07-11 Ymax Comm Corp 集結聯絡表之技術
US7724612B2 (en) * 2007-04-20 2010-05-25 Sirf Technology, Inc. System and method for providing aiding information to a satellite positioning system receiver over short-range wireless connections
JP5109706B2 (ja) * 2007-04-23 2012-12-26 セイコーエプソン株式会社 測位方法及び測位装置
US7786933B2 (en) * 2007-05-21 2010-08-31 Spatial Digital Systems, Inc. Digital beam-forming apparatus and technique for a multi-beam global positioning system (GPS) receiver
US9435893B2 (en) 2007-05-21 2016-09-06 Spatial Digital Systems, Inc. Digital beam-forming apparatus and technique for a multi-beam global positioning system (GPS) receiver
WO2009038726A1 (en) 2007-09-17 2009-03-26 Telecommunication Systems, Inc. Emergency 911 data messaging
FR2921729B1 (fr) 2007-09-28 2011-04-01 Sagem Defense Securite Procede et systeme de gestion et detection des multitrajets dans un systeme de navigation.
US7800532B2 (en) * 2007-10-12 2010-09-21 Seiko Epson Corporation Position determination method, positioning device, and electronic instrument
JP2009109478A (ja) * 2007-10-12 2009-05-21 Seiko Epson Corp 初回出力測位位置決定方法、プログラム、測位装置及び電子機器
US7995683B2 (en) * 2007-10-24 2011-08-09 Sirf Technology Inc. Noise floor independent delay-locked loop discriminator
US7642957B2 (en) * 2007-11-27 2010-01-05 Sirf Technology, Inc. GPS system utilizing multiple antennas
US7929530B2 (en) 2007-11-30 2011-04-19 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US9130963B2 (en) 2011-04-06 2015-09-08 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
CN101201396B (zh) * 2007-12-20 2012-03-07 上海伽利略导航有限公司 全球定位系统高灵敏度接收机及其室内外无缝切换方法
US8326682B2 (en) * 2007-12-31 2012-12-04 United States Cellular Corporation Applications of cluster analysis for cellular operators
US8144053B2 (en) * 2008-02-04 2012-03-27 Csr Technology Inc. System and method for verifying consistent measurements in performing GPS positioning
JP2008175824A (ja) * 2008-02-07 2008-07-31 Softbank Mobile Corp 測位方法及び測位システム
US20090209224A1 (en) * 2008-02-20 2009-08-20 Borislow Daniel M Computer-Related Devices and Techniques for Facilitating an Emergency Call Via a Cellular or Data Network
US8700322B2 (en) * 2008-02-20 2014-04-15 Qualcomm Incorporated Efficient use of expected user altitude data to aid in determining a position of a mobile station
US8699984B2 (en) 2008-02-25 2014-04-15 Csr Technology Inc. Adaptive noise figure control in a radio receiver
US7616064B2 (en) * 2008-02-28 2009-11-10 Noshir Dubash Digital synthesizer for low power location receivers
US8478305B2 (en) * 2008-04-09 2013-07-02 Csr Technology Inc. System and method for integrating location information into an internet phone system
US8947207B2 (en) 2008-04-29 2015-02-03 Quake Global, Inc. Method and apparatus for a deployable radio-frequency identification portal system
US8022869B2 (en) 2008-05-29 2011-09-20 Qualcomm Incorporated Apparatus and method for cross-correlation spur mitigation
EP2283641B1 (en) * 2008-06-06 2020-08-12 Skyhook Wireless, Inc. Method and system for determining location using a hybrid satellite and wlan positioning system by selecting the best wlan-ps solution
FR2932277A1 (fr) * 2008-06-06 2009-12-11 Thales Sa Procede de protection d'un utilisateur de recepteur de radionavigation vis-a-vis de mesures de pseudo-distances aberrantes
US8155666B2 (en) 2008-06-16 2012-04-10 Skyhook Wireless, Inc. Methods and systems for determining location using a cellular and WLAN positioning system by selecting the best cellular positioning system solution
US8106821B2 (en) 2008-06-27 2012-01-31 Qualcomm Incorporated Methods and apparatuses for use with mode-switchable navigation radio
US8073414B2 (en) 2008-06-27 2011-12-06 Sirf Technology Inc. Auto-tuning system for an on-chip RF filter
US8072376B2 (en) * 2008-06-27 2011-12-06 Sirf Technology Inc. Method and apparatus for mitigating the effects of cross correlation in a GPS receiver
JP2010038895A (ja) * 2008-07-09 2010-02-18 Ntt Docomo Inc 測位システム、測位方法及び測位プログラム
US8068587B2 (en) 2008-08-22 2011-11-29 Telecommunication Systems, Inc. Nationwide table routing of voice over internet protocol (VOIP) emergency calls
US8212720B2 (en) * 2008-09-24 2012-07-03 Texas Instruments Incorporated Detecting lack of movement to aid GNSS receivers
US8271189B2 (en) * 2008-09-26 2012-09-18 Qualcomm Incorporated Enhanced database information for urban navigation
US20100081458A1 (en) * 2008-10-01 2010-04-01 Qualcomm Incorporated Mobile Terminal Motion Detection Methods and Systems
US9036683B2 (en) 2008-10-02 2015-05-19 Texas Instruments Incorporated Mitigation circuitry generating cross correlation doppler/code LAG variable comparison value
EP2347395A4 (en) 2008-10-14 2016-11-02 Telecomm Systems Inc Location Based Approach Alert
US8892128B2 (en) 2008-10-14 2014-11-18 Telecommunication Systems, Inc. Location based geo-reminders
US8478228B2 (en) 2008-10-20 2013-07-02 Qualcomm Incorporated Mobile receiver with location services capability
US20100117884A1 (en) * 2008-11-11 2010-05-13 Qualcomm Incorporated Method for performing consistency checks for multiple signals received from a transmitter
US8433283B2 (en) 2009-01-27 2013-04-30 Ymax Communications Corp. Computer-related devices and techniques for facilitating an emergency call via a cellular or data network using remote communication device identifying information
US9301191B2 (en) 2013-09-20 2016-03-29 Telecommunication Systems, Inc. Quality of service to over the top applications used with VPN
US8867485B2 (en) 2009-05-05 2014-10-21 Telecommunication Systems, Inc. Multiple location retrieval function (LRF) network having location continuity
US8063820B2 (en) * 2009-07-16 2011-11-22 Skyhook Wireless, Inc. Methods and systems for determining location using a hybrid satellite and WLAN positioning system by selecting the best SPS measurements
US8022877B2 (en) 2009-07-16 2011-09-20 Skyhook Wireless, Inc. Systems and methods for using a satellite positioning system to detect moved WLAN access points
US8600297B2 (en) 2009-07-28 2013-12-03 Qualcomm Incorporated Method and system for femto cell self-timing and self-locating
US20110050496A1 (en) * 2009-09-02 2011-03-03 Qualcomm Incorporated Energy Domain Based Peak Reconstruction Methods And Apparatuses
US8390510B2 (en) * 2009-09-16 2013-03-05 Qualcomm Incorporated Methods and apparatuses for affecting application of a filtering model using carrier phase
DE102010011982A1 (de) * 2009-09-29 2011-04-07 Siemens Aktiengesellschaft Verfahren zum rechnergestützten Erstellen und/oder Aktualisieren einer Referenzkarte für eine satellitengestützte Ortung eines Objekts
US8638256B2 (en) * 2009-09-29 2014-01-28 Skyhook Wireless, Inc. Accuracy and performance of a hybrid positioning system
US8279114B2 (en) * 2009-10-02 2012-10-02 Skyhook Wireless, Inc. Method of determining position in a hybrid positioning system using a dilution of precision metric
US20110080318A1 (en) * 2009-10-02 2011-04-07 Skyhook Wireless, Inc. Determining A Dilution of Precision Metric Using Two or Three GPS Satellites
US8981992B2 (en) * 2009-10-12 2015-03-17 Qualcomm Incorporated Methods and apparatuses for selectively validating satellite positioning system measurement information
US9726764B1 (en) 2009-12-07 2017-08-08 Rockwell Collins, Inc. System and mehtod for providing space-based precision position correlations for promoting improved availability, accuracy and integrity
US20110199257A1 (en) * 2010-02-18 2011-08-18 David Lundgren Method and system for updating altitude information for a location by using terrain model information to prime altitude sensors
EP2548045A4 (en) * 2010-03-17 2016-01-13 Nokia Technologies Oy METHOD AND DEVICE FOR TESTING RECEIVED SIGNALS IN A RADIO SIGNAL POSITIONING SYSTEM
US20120006610A1 (en) 2010-07-09 2012-01-12 Erik Wallace Telematics enhanced mobile device safety interlock
US8315599B2 (en) 2010-07-09 2012-11-20 Telecommunication Systems, Inc. Location privacy selector
US8494094B2 (en) 2010-08-02 2013-07-23 Qualcomm Incorporated Demodulation of data collected prior to bit edge detection
US8988282B2 (en) * 2010-08-26 2015-03-24 Intel Mobile Communications GmbH Satellite-based position determination
IT1401753B1 (it) * 2010-08-30 2013-08-02 Torino Politecnico Sistema di posizionamento geo-spaziale cooperativo operante con sistemi di navigazione globale satellitare e reti di telecomunicazione wireless, relativo procedimento e apparato di posizionamento geo-spaziale.
CN102401902A (zh) * 2010-09-08 2012-04-04 神讯电脑(昆山)有限公司 卫星状态判断方法
KR101972606B1 (ko) 2010-11-03 2019-04-25 스카이후크 와이어리스, 인크. 복합 위치 결정 시스템에서 위치 추정의 신뢰성 및 정확성을 증가시키는 시스템의 방법
US8384584B2 (en) * 2010-12-10 2013-02-26 Roundtrip Llc Reduced computation communication techniques for location systems
US8688087B2 (en) 2010-12-17 2014-04-01 Telecommunication Systems, Inc. N-dimensional affinity confluencer
US8942743B2 (en) 2010-12-17 2015-01-27 Telecommunication Systems, Inc. iALERT enhanced alert manager
JP5740961B2 (ja) * 2010-12-17 2015-07-01 セイコーエプソン株式会社 衛星信号捕捉適否判定方法及び衛星信号捕捉適否判定装置
WO2012087353A1 (en) 2010-12-22 2012-06-28 Telecommunication Systems, Inc. Area event handling when current network does not cover target area
US9031572B2 (en) 2010-12-22 2015-05-12 Qualcomm Incorporated Method and apparatus for estimating satellite positioning reliability
WO2012085876A2 (en) 2010-12-23 2012-06-28 Ariel-University Research And Development Company, Ltd. Methods, devices, and uses for calculating a position using a global navigation satellite system
US20120169535A1 (en) * 2011-01-05 2012-07-05 Qualcomm Incorporated Affecting electronic device positioning functions based on measured communication network signal parameters
WO2012141762A1 (en) 2011-02-25 2012-10-18 Telecommunication Systems, Inc. Mobile internet protocol (ip) location
US8981995B2 (en) 2011-06-03 2015-03-17 Microsoft Technology Licensing, Llc. Low accuracy positional data by detecting improbable samples
US9055455B2 (en) * 2011-06-29 2015-06-09 Pismo Labs Technology Ltd. Systems and methods providing assisted aiming for wireless links
US10199726B2 (en) 2011-06-29 2019-02-05 Pismo Labs Technology Limited Systems and methods providing assisted aiming for wireless links through a plurality of external antennas
JP5638476B2 (ja) * 2011-07-12 2014-12-10 株式会社Nttドコモ 測位支援装置及び測位支援方法
US9470529B2 (en) 2011-07-14 2016-10-18 Microsoft Technology Licensing, Llc Activating and deactivating sensors for dead reckoning
US9464903B2 (en) 2011-07-14 2016-10-11 Microsoft Technology Licensing, Llc Crowd sourcing based on dead reckoning
CN102967868B (zh) * 2011-09-01 2015-01-21 神讯电脑(昆山)有限公司 定位装置及其信号处理方法
US8649806B2 (en) 2011-09-02 2014-02-11 Telecommunication Systems, Inc. Aggregate location dynometer (ALD)
JP6149212B2 (ja) * 2011-09-14 2017-06-21 株式会社メガチップス 測位装置、観測装置、測位方法およびプログラム
US9479344B2 (en) 2011-09-16 2016-10-25 Telecommunication Systems, Inc. Anonymous voice conversation
US8736487B2 (en) * 2011-09-21 2014-05-27 Csr Technology Inc. Method and apparatus of using height aiding from a contour table for GNSS positioning
FR2980618A1 (fr) * 2011-09-22 2013-03-29 Airbus Operations Sas Procede et systeme de determination d'une information de position d'un aeronef lors d'une approche d'une piste d'atterrissage.
US8831556B2 (en) 2011-09-30 2014-09-09 Telecommunication Systems, Inc. Unique global identifier header for minimizing prank emergency 911 calls
JP5013385B1 (ja) * 2011-10-06 2012-08-29 独立行政法人電子航法研究所 Rtk測位計算に利用する衛星の選択方法及びその装置
JP2013088356A (ja) * 2011-10-20 2013-05-13 Sony Corp 情報処理装置、受信情報サーバ、情報処理方法、プログラム、及び記録媒体
US10184798B2 (en) 2011-10-28 2019-01-22 Microsoft Technology Licensing, Llc Multi-stage dead reckoning for crowd sourcing
US10151843B2 (en) 2011-11-22 2018-12-11 Radio Systems Corporation Systems and methods of tracking position and speed in GNSS applications
US9313637B2 (en) 2011-12-05 2016-04-12 Telecommunication Systems, Inc. Wireless emergency caller profile data delivery over a legacy interface
US9264537B2 (en) 2011-12-05 2016-02-16 Telecommunication Systems, Inc. Special emergency call treatment based on the caller
US9429657B2 (en) 2011-12-14 2016-08-30 Microsoft Technology Licensing, Llc Power efficient activation of a device movement sensor module
US8984591B2 (en) 2011-12-16 2015-03-17 Telecommunications Systems, Inc. Authentication via motion of wireless device movement
US9066295B2 (en) 2011-12-16 2015-06-23 Qualcomm Incorporated Power conservation techniques for use in devices with selectable power modes
US8649755B2 (en) 2011-12-16 2014-02-11 Qualcomm Incorporated Timing circuit calibration in devices with selectable power modes
US8406789B1 (en) * 2011-12-22 2013-03-26 Anite Finland Oy Apparatus and method for detecting co-channels signals
WO2013102870A1 (en) 2012-01-04 2013-07-11 Ariel-University Research And Development Company, Ltd. Methods for identifying whether or not a satellite has a line of sight
US9384339B2 (en) 2012-01-13 2016-07-05 Telecommunication Systems, Inc. Authenticating cloud computing enabling secure services
US8954580B2 (en) 2012-01-27 2015-02-10 Compete, Inc. Hybrid internet traffic measurement using site-centric and panel data
US9900395B2 (en) 2012-01-27 2018-02-20 Comscore, Inc. Dynamic normalization of internet traffic
US8688174B2 (en) 2012-03-13 2014-04-01 Telecommunication Systems, Inc. Integrated, detachable ear bud device for a wireless phone
US9307372B2 (en) 2012-03-26 2016-04-05 Telecommunication Systems, Inc. No responders online
US9544260B2 (en) 2012-03-26 2017-01-10 Telecommunication Systems, Inc. Rapid assignment dynamic ownership queue
US9338153B2 (en) 2012-04-11 2016-05-10 Telecommunication Systems, Inc. Secure distribution of non-privileged authentication credentials
WO2013158907A1 (en) * 2012-04-18 2013-10-24 Owen Henry S Navigation track correction
US9423507B2 (en) 2012-05-30 2016-08-23 Csr Technology Inc. Methods and apparatuses for multipath estimation and correction in GNSS navigation systems
US10386490B2 (en) 2012-07-16 2019-08-20 Microsoft Technology Licensing, Llc Reduced sampling low power GPS
US20140043188A1 (en) * 2012-08-09 2014-02-13 California Institute Of Technology Global positioning system radiometric evaluation
US9313638B2 (en) 2012-08-15 2016-04-12 Telecommunication Systems, Inc. Device independent caller data access for emergency calls
KR101832921B1 (ko) * 2012-08-20 2018-02-27 부산대학교 산학협력단 Gps 수신기 주변의 비가시 상태 판단 방법 및 장치
US9208346B2 (en) 2012-09-05 2015-12-08 Telecommunication Systems, Inc. Persona-notitia intellection codifier
US9817125B2 (en) * 2012-09-07 2017-11-14 Microsoft Technology Licensing, Llc Estimating and predicting structures proximate to a mobile device
JP2014074699A (ja) * 2012-10-05 2014-04-24 Denso Corp 地図情報処理装置、コンピュータプログラム
US9456301B2 (en) 2012-12-11 2016-09-27 Telecommunication Systems, Inc. Efficient prisoner tracking
US9361889B2 (en) * 2013-01-29 2016-06-07 Qualcomm Incorporated Landmark based positioning with verbal input
US9989650B2 (en) * 2013-02-13 2018-06-05 Here Global B.V. Position in urban canyons
US9841492B2 (en) 2013-02-25 2017-12-12 Quake Global, Inc. Ceiling-mounted RFID-enabled tracking
CA2902912C (en) 2013-02-26 2022-02-01 Quake Global, Inc. Methods and apparatus for automatic identification wristband
US10203397B2 (en) * 2013-03-15 2019-02-12 Nextnav, Llc Methods and apparatus for improving time of arrival determination
US8983047B2 (en) 2013-03-20 2015-03-17 Telecommunication Systems, Inc. Index of suspicion determination for communications request
US9476988B2 (en) * 2013-05-09 2016-10-25 Samsung Electronics Co., Ltd. Method, apparatus and system for reducing power consumption in GNSS receivers
WO2014182883A1 (en) * 2013-05-10 2014-11-13 Telcom Ventures, Llc Methods of position-location determination using a high-confidence range, and related systems and devices
IN2013CH03050A (zh) * 2013-07-08 2015-09-04 Accord Software & Systems Pvt Ltd
CN103472471B (zh) * 2013-08-27 2015-06-24 泰斗微电子科技有限公司 一种卫星导航系统信息可用性判定方法、处理模块及终端
US10317538B2 (en) 2013-08-27 2019-06-11 Microsoft Technology Licensing, Llc Cloud-offloaded global satellite positioning
US9408034B2 (en) 2013-09-09 2016-08-02 Telecommunication Systems, Inc. Extended area event for network based proximity discovery
US9516104B2 (en) 2013-09-11 2016-12-06 Telecommunication Systems, Inc. Intelligent load balancer enhanced routing
US9191916B1 (en) * 2013-09-30 2015-11-17 Sprint Spectrum L.P. Method and system for skewing location determinations
US9479897B2 (en) 2013-10-03 2016-10-25 Telecommunication Systems, Inc. SUPL-WiFi access point controller location based services for WiFi enabled mobile devices
US9671499B2 (en) 2013-10-30 2017-06-06 Microsoft Technology Licensing, Llc High-sensitivity GPS device with directional antenna
US9596575B2 (en) * 2013-11-14 2017-03-14 Futurewei Technologies, Inc. System and method for localization and traffic density estimation via segmentation and calibration sampling
FR3018926B1 (fr) * 2014-03-21 2018-03-30 Thales Procede de geopositionnement avec indice de confiance et terminal associe
FR3020687B1 (fr) * 2014-04-30 2017-12-01 Thales Sa Procede de determination de la position d'un recepteur de systeme de navigation par satellites, et systeme associe
WO2016019362A1 (en) 2014-07-31 2016-02-04 Ossia, Inc. Techniques for determining distance between radiating objects in multipath wireless power delivery environments
US9749925B2 (en) * 2015-02-06 2017-08-29 Qualcomm Incorporated Systems and methods for GNSS rat priority control for coexistence of a GNSS receiver and one or more rat transceivers
CN107533140B (zh) 2015-03-06 2020-12-25 看门人系统公司 可移动物体的低能耗定位
US10219166B2 (en) 2015-04-30 2019-02-26 Mist Systems, Inc. Methods and apparatus for generating, transmitting and/or using beacons
US9363784B1 (en) 2015-04-30 2016-06-07 Mist Systems Inc. Methods and apparatus relating to the use of real and/or virtual beacons
US9743254B2 (en) 2015-04-30 2017-08-22 Mist Systems, Inc. Methods and apparatus relating to the use of received signals to determine wireless terminal location and/or refine location determination models
US9967803B2 (en) 2015-04-30 2018-05-08 Mist Systems, Inc. Dynamic virtual beacon methods and apparatus
US10378908B2 (en) * 2015-06-26 2019-08-13 Here Global B.V. Method and apparatus for determining road stacking based upon error statistics
US20160377731A1 (en) * 2015-06-29 2016-12-29 Qualcomm Technologies International, Ltd. Detection of parking lot context
US9952328B2 (en) * 2015-08-19 2018-04-24 Qualcomm Incorporated Antenna pattern data mining for automotive GNSS receivers
US10001541B2 (en) 2015-09-04 2018-06-19 Gatekeeper Systems, Inc. Magnetometer and accelerometer calibration for cart navigation system
US9731744B2 (en) 2015-09-04 2017-08-15 Gatekeeper Systems, Inc. Estimating motion of wheeled carts
CN106851550B (zh) 2015-12-04 2020-02-14 华为技术有限公司 一种定位终端的方法以及基带单元
CN109313273A (zh) * 2016-03-30 2019-02-05 日本电气株式会社 记录有室内外判断程序的记录介质、室内外判断系统、室内外判断方法、移动终端和室内外环境分类判断单元
WO2018125333A2 (en) 2016-09-22 2018-07-05 The Regents Of The University Of California Sdr for navigation with lte signals
WO2018069239A1 (en) * 2016-10-11 2018-04-19 Philips Lighting Holding B.V. Positioning system and method for positioning
FR3058226B1 (fr) * 2016-11-03 2018-11-09 Uwinloc Procede et dispositif recepteur pour l’estimation de l’instant d’arrivee d’un signal radio, procede et systeme de localisation
CN109891260B (zh) 2016-11-04 2023-09-26 瑞典爱立信有限公司 用于在可能的多径传播条件下的到达时间(toa)估计的定位支持信息
US10232869B2 (en) 2017-03-08 2019-03-19 Gatekeeper Systems, Inc. Navigation systems for wheeled carts
GB2564406B (en) * 2017-07-06 2022-09-07 Focal Point Positioning Ltd Method and system for correcting the frequency or phase of a local signal generated using a local oscillator
CN108151743B (zh) * 2017-12-13 2021-11-16 联想(北京)有限公司 室内外位置识别方法及系统
FR3076354B1 (fr) * 2017-12-28 2019-11-22 Thales Procede de controle de l'integralite de l'estimation de la position d'un porteur mobile dans un systeme de mesure de positionnement par satellite
US11002825B2 (en) * 2017-12-29 2021-05-11 Sonitor Technologies As Position determination system having a deconvolution decoder using a joint snr-time of arrival approach
US11280912B2 (en) 2018-01-12 2022-03-22 The Regents Of The University Of Colorado Hybrid interference localization
JP6952250B2 (ja) * 2018-06-15 2021-10-20 パナソニックIpマネジメント株式会社 測位方法および測位端末
KR102609093B1 (ko) * 2018-10-26 2023-12-04 삼성전자주식회사 Gnss 신호의 다중 경로 상태를 검출하는 방법 및 이를 지원하는 전자 장치
EP3668197B1 (en) 2018-12-12 2021-11-03 Rohde & Schwarz GmbH & Co. KG Method and radio for setting the transmission power of a radio transmission
WO2020144679A1 (en) 2019-01-07 2020-07-16 Regulus Cyber Ltd. Detection and mitigation of satellite navigation spoofing
KR102043405B1 (ko) * 2019-06-20 2019-11-12 주식회사 첨단공간정보 지아이에스를 기반으로 하는 지형지물 변형 편집용 영상처리 편집시스템
EP4028795A1 (fr) * 2019-09-12 2022-07-20 Thales Dispositif et procede de localisation autonome d'un vehicule mobile sur une voie ferree
CN111239777B (zh) * 2020-01-07 2023-07-25 哈尔滨工业大学 一种基于位置指纹的卫星集群分级定位方法
CN111398996A (zh) * 2020-03-17 2020-07-10 广州南方卫星导航仪器有限公司 一种测绘性卫星导航接收机
EP3889647A1 (en) * 2020-03-30 2021-10-06 Polar Electro Oy Positioning of wearable training computer
CN112068160A (zh) * 2020-04-30 2020-12-11 东华大学 一种基于导航定位系统的无人机信号干扰方法
US11086021B1 (en) 2020-06-24 2021-08-10 Regulus Cyber Ltd. Duplicate peak detection
CN114236577B (zh) * 2021-12-17 2022-08-23 山东大学 一种基于人工神经网络的gnss信号捕获方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402450A (en) * 1992-01-22 1995-03-28 Trimble Navigation Signal timing synchronizer
CN1113619A (zh) * 1993-11-24 1995-12-20 诺瓦特尔通讯有限公司 信号处理的方法与装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140971A (ja) * 1986-12-04 1988-06-13 Nissan Motor Co Ltd Gps航法装置
DE69029201T2 (de) * 1990-01-30 1997-04-17 Ni Skij I Kosm Priborostroenij Verfahren und vorrichtung für funknavigationsbestimmungen mit künstlichen erdsatelliten
JPH0496530A (ja) * 1990-08-13 1992-03-27 Toyota Central Res & Dev Lab Inc 位置検出装置及び方法
US5214675A (en) 1991-07-02 1993-05-25 Motorola, Inc. System and method for calculating channel gain and noise variance of a communication channel
JPH0634738A (ja) * 1992-07-13 1994-02-10 Japan Radio Co Ltd Gps受信機
JP3283913B2 (ja) * 1992-08-20 2002-05-20 日本無線株式会社 Gps受信装置
FI934759A (fi) * 1993-10-27 1995-04-28 Nokia Telecommunications Oy Menetelmä monikäyttöhäiriön poistamiseksi sekä liikkuva asema
JPH07140224A (ja) * 1993-11-16 1995-06-02 Nippondenso Co Ltd スペクトル拡散信号捕捉装置
US5512908A (en) * 1994-07-08 1996-04-30 Lockheed Sanders, Inc. Apparatus and method for locating cellular telephones
GB9417600D0 (en) * 1994-09-01 1994-10-19 British Telecomm Navigation information system
JPH08149029A (ja) * 1994-11-16 1996-06-07 Honda Motor Co Ltd 車両用受信装置
EP0843828B1 (en) * 1995-08-09 2007-10-17 Magellan Corporation Multipath error reduction in a spread spectrum receiver for ranging applications
US5841396A (en) * 1996-03-08 1998-11-24 Snaptrack, Inc. GPS receiver utilizing a communication link
US6208290B1 (en) 1996-03-08 2001-03-27 Snaptrack, Inc. GPS receiver utilizing a communication link
CN1132380A (zh) * 1995-11-17 1996-10-02 吴敌 一种防伪标志的制作方法
JP2858561B2 (ja) * 1996-05-30 1999-02-17 日本電気株式会社 デジタルdll回路
JPH1048314A (ja) * 1996-07-31 1998-02-20 Mitsumi Electric Co Ltd 衛星受信装置及び衛星受信システム
WO1998008319A1 (en) * 1996-08-23 1998-02-26 Data Fusion Corporation Rake receiver for spread spectrum signal demodulation
CN1206468A (zh) * 1996-08-29 1999-01-27 皇家菲利浦电子有限公司 全球定位系统(gps)接收机和电信设备的组合
US5901183A (en) * 1996-09-25 1999-05-04 Magellan Corporation Signal correlation technique for a receiver of a spread spectrum signal including a pseudo-random noise code that reduces errors when a multipath signal is present
US5890068A (en) * 1996-10-03 1999-03-30 Cell-Loc Inc. Wireless location system
KR100208804B1 (ko) * 1996-10-31 1999-07-15 윤종용 이동체용 네비게이션장치 및 그 처리방법
JPH10153652A (ja) * 1996-11-25 1998-06-09 Matsushita Electric Ind Co Ltd Gps受信機
JP3406167B2 (ja) * 1996-12-25 2003-05-12 松下電器産業株式会社 同期装置
FI109735B (fi) * 1997-02-28 2002-09-30 Nokia Corp Vastaanottomenetelmä ja vastaanotin
JPH10253740A (ja) * 1997-03-14 1998-09-25 Japan Aviation Electron Ind Ltd Gps受信機に用いる衛星の組合せ決定方法及びこの方法を用いた衛星の組合せ決定装置
US5973643A (en) * 1997-04-11 1999-10-26 Corsair Communications, Inc. Method and apparatus for mobile emitter location
US6040800A (en) * 1997-04-22 2000-03-21 Ericsson Inc. Systems and methods for locating remote terminals in radiocommunication systems
US5920278A (en) * 1997-05-28 1999-07-06 Gregory D. Gibbons Method and apparatus for identifying, locating, tracking, or communicating with remote objects
JPH11118903A (ja) * 1997-10-16 1999-04-30 Matsushita Electric Ind Co Ltd 位置検出装置
US6493378B1 (en) * 1998-01-06 2002-12-10 Topcon Gps Llc Methods and apparatuses for reducing multipath errors in the demodulation of pseudo-random coded signals
US6133876A (en) * 1998-03-23 2000-10-17 Time Domain Corporation System and method for position determination by impulse radio
US6014102A (en) * 1998-04-17 2000-01-11 Motorola, Inc. Method and apparatus for calibrating location finding equipment within a communication system
US6313786B1 (en) * 1998-07-02 2001-11-06 Snaptrack, Inc. Method and apparatus for measurement processing of satellite positioning system (SPS) signals
US6423776B1 (en) 2000-05-02 2002-07-23 Honeywell International Inc. Oxygen scavenging high barrier polyamide compositions for packaging applications
US6740798B1 (en) 2002-01-28 2004-05-25 Pioneer Hi-Breed International, Inc. Inbred maize line PH70R
JP5075240B2 (ja) 2010-08-27 2012-11-21 シャープ株式会社 操作装置、画像処理装置、及び、表示方法
CA2874447A1 (en) 2012-05-22 2013-11-28 Sparo Labs Spirometer system and methods of data analysis
US9811375B2 (en) 2014-04-30 2017-11-07 Vmware, Inc. Operating system migration while preserving applications, data, and settings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402450A (en) * 1992-01-22 1995-03-28 Trimble Navigation Signal timing synchronizer
US5815539A (en) * 1992-01-22 1998-09-29 Trimble Navigation Limited Signal timing synchronizer
CN1113619A (zh) * 1993-11-24 1995-12-20 诺瓦特尔通讯有限公司 信号处理的方法与装置

Also Published As

Publication number Publication date
JP2012163566A (ja) 2012-08-30
EP1788405B1 (en) 2008-12-03
JP5558683B2 (ja) 2014-07-23
ES2362808T3 (es) 2011-07-13
JP5377956B2 (ja) 2013-12-25
EP2037290A1 (en) 2009-03-18
US20020050944A1 (en) 2002-05-02
JP2009031278A (ja) 2009-02-12
JP2009168804A (ja) 2009-07-30
CA2634618A1 (en) 2000-08-03
ATE414914T1 (de) 2008-12-15
CN103698786B (zh) 2017-11-24
CA2359662C (en) 2009-08-11
AU3349800A (en) 2000-08-18
HK1044377B (zh) 2007-10-12
EP1788405A1 (en) 2007-05-23
ATE509287T1 (de) 2011-05-15
EP1166145A2 (en) 2002-01-02
NO20013755D0 (no) 2001-07-31
CA2359662A1 (en) 2000-08-03
EP2037290B1 (en) 2011-05-11
IL144599A0 (en) 2002-05-23
ES2312334T3 (es) 2009-03-01
JP2003514215A (ja) 2003-04-15
CA2634677C (en) 2012-08-07
AU770440B2 (en) 2004-02-19
WO2000045191A3 (en) 2000-12-07
EP1775598B1 (en) 2008-11-19
HK1108185A1 (en) 2008-05-02
DE60041013D1 (de) 2009-01-15
CA2634618C (en) 2012-08-07
ES2316107T3 (es) 2009-04-01
JP2014206539A (ja) 2014-10-30
KR20010101917A (ko) 2001-11-15
DE60040880D1 (de) 2009-01-02
DE60039854D1 (de) 2008-09-25
IL144599A (en) 2006-12-31
NO20013755L (no) 2001-09-25
EP1166145B1 (en) 2008-08-13
US6707422B2 (en) 2004-03-16
WO2000045191A2 (en) 2000-08-03
CN101025439A (zh) 2007-08-29
MXPA01007686A (es) 2003-10-14
JP5931521B2 (ja) 2016-06-08
BRPI0007834B1 (pt) 2015-04-07
CA2634677A1 (en) 2000-08-03
EP1775598A2 (en) 2007-04-18
CN103698786A (zh) 2014-04-02
KR100732795B1 (ko) 2007-06-27
ATE416388T1 (de) 2008-12-15
ATE404882T1 (de) 2008-08-15
CN1316259C (zh) 2007-05-16
US6313786B1 (en) 2001-11-06
CN1351716A (zh) 2002-05-29
HK1044377A1 (en) 2002-10-18
BR0007834A (pt) 2004-06-15
EP1775598A3 (en) 2007-07-04
ES2316104T3 (es) 2009-04-01
JP4270757B2 (ja) 2009-06-03

Similar Documents

Publication Publication Date Title
CN101025439B (zh) 用于卫星定位系统(sps)信号测量值处理的方法和装置
JP5230888B2 (ja) 衛星状態情報を衛星測位システムに使用するための方法および装置
CN100401093C (zh) 适用于混合定位系统确定误差估计的方法和装置
CN101408605B (zh) 使用关于卫星定位系统的辅助数据的方法和装置
US6813560B2 (en) Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1106583

Country of ref document: HK

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1106583

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20140820